mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-12 02:56:47 +07:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
725 lines
18 KiB
C
725 lines
18 KiB
C
/* $Id: sparc-stub.c,v 1.28 2001/10/30 04:54:21 davem Exp $
|
|
* sparc-stub.c: KGDB support for the Linux kernel.
|
|
*
|
|
* Modifications to run under Linux
|
|
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
|
*
|
|
* This file originally came from the gdb sources, and the
|
|
* copyright notices have been retained below.
|
|
*/
|
|
|
|
/****************************************************************************
|
|
|
|
THIS SOFTWARE IS NOT COPYRIGHTED
|
|
|
|
HP offers the following for use in the public domain. HP makes no
|
|
warranty with regard to the software or its performance and the
|
|
user accepts the software "AS IS" with all faults.
|
|
|
|
HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
|
|
TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
|
|
*
|
|
* Module name: remcom.c $
|
|
* Revision: 1.34 $
|
|
* Date: 91/03/09 12:29:49 $
|
|
* Contributor: Lake Stevens Instrument Division$
|
|
*
|
|
* Description: low level support for gdb debugger. $
|
|
*
|
|
* Considerations: only works on target hardware $
|
|
*
|
|
* Written by: Glenn Engel $
|
|
* ModuleState: Experimental $
|
|
*
|
|
* NOTES: See Below $
|
|
*
|
|
* Modified for SPARC by Stu Grossman, Cygnus Support.
|
|
*
|
|
* This code has been extensively tested on the Fujitsu SPARClite demo board.
|
|
*
|
|
* To enable debugger support, two things need to happen. One, a
|
|
* call to set_debug_traps() is necessary in order to allow any breakpoints
|
|
* or error conditions to be properly intercepted and reported to gdb.
|
|
* Two, a breakpoint needs to be generated to begin communication. This
|
|
* is most easily accomplished by a call to breakpoint(). Breakpoint()
|
|
* simulates a breakpoint by executing a trap #1.
|
|
*
|
|
*************
|
|
*
|
|
* The following gdb commands are supported:
|
|
*
|
|
* command function Return value
|
|
*
|
|
* g return the value of the CPU registers hex data or ENN
|
|
* G set the value of the CPU registers OK or ENN
|
|
*
|
|
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
|
|
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
|
|
*
|
|
* c Resume at current address SNN ( signal NN)
|
|
* cAA..AA Continue at address AA..AA SNN
|
|
*
|
|
* s Step one instruction SNN
|
|
* sAA..AA Step one instruction from AA..AA SNN
|
|
*
|
|
* k kill
|
|
*
|
|
* ? What was the last sigval ? SNN (signal NN)
|
|
*
|
|
* bBB..BB Set baud rate to BB..BB OK or BNN, then sets
|
|
* baud rate
|
|
*
|
|
* All commands and responses are sent with a packet which includes a
|
|
* checksum. A packet consists of
|
|
*
|
|
* $<packet info>#<checksum>.
|
|
*
|
|
* where
|
|
* <packet info> :: <characters representing the command or response>
|
|
* <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
|
|
*
|
|
* When a packet is received, it is first acknowledged with either '+' or '-'.
|
|
* '+' indicates a successful transfer. '-' indicates a failed transfer.
|
|
*
|
|
* Example:
|
|
*
|
|
* Host: Reply:
|
|
* $m0,10#2a +$00010203040506070809101112131415#42
|
|
*
|
|
****************************************************************************/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp_lock.h>
|
|
|
|
#include <asm/system.h>
|
|
#include <asm/signal.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/head.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/vac-ops.h>
|
|
#include <asm/kgdb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
/*
|
|
*
|
|
* external low-level support routines
|
|
*/
|
|
|
|
extern void putDebugChar(char); /* write a single character */
|
|
extern char getDebugChar(void); /* read and return a single char */
|
|
|
|
/*
|
|
* BUFMAX defines the maximum number of characters in inbound/outbound buffers
|
|
* at least NUMREGBYTES*2 are needed for register packets
|
|
*/
|
|
#define BUFMAX 2048
|
|
|
|
static int initialized; /* !0 means we've been initialized */
|
|
|
|
static const char hexchars[]="0123456789abcdef";
|
|
|
|
#define NUMREGS 72
|
|
|
|
/* Number of bytes of registers. */
|
|
#define NUMREGBYTES (NUMREGS * 4)
|
|
enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
|
|
O0, O1, O2, O3, O4, O5, SP, O7,
|
|
L0, L1, L2, L3, L4, L5, L6, L7,
|
|
I0, I1, I2, I3, I4, I5, FP, I7,
|
|
|
|
F0, F1, F2, F3, F4, F5, F6, F7,
|
|
F8, F9, F10, F11, F12, F13, F14, F15,
|
|
F16, F17, F18, F19, F20, F21, F22, F23,
|
|
F24, F25, F26, F27, F28, F29, F30, F31,
|
|
Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR };
|
|
|
|
|
|
extern void trap_low(void); /* In arch/sparc/kernel/entry.S */
|
|
|
|
unsigned long get_sun4cpte(unsigned long addr)
|
|
{
|
|
unsigned long entry;
|
|
|
|
__asm__ __volatile__("\n\tlda [%1] %2, %0\n\t" :
|
|
"=r" (entry) :
|
|
"r" (addr), "i" (ASI_PTE));
|
|
return entry;
|
|
}
|
|
|
|
unsigned long get_sun4csegmap(unsigned long addr)
|
|
{
|
|
unsigned long entry;
|
|
|
|
__asm__ __volatile__("\n\tlduba [%1] %2, %0\n\t" :
|
|
"=r" (entry) :
|
|
"r" (addr), "i" (ASI_SEGMAP));
|
|
return entry;
|
|
}
|
|
|
|
#if 0
|
|
/* Have to sort this out. This cannot be done after initialization. */
|
|
static void flush_cache_all_nop(void) {}
|
|
#endif
|
|
|
|
/* Place where we save old trap entries for restoration */
|
|
struct tt_entry kgdb_savettable[256];
|
|
typedef void (*trapfunc_t)(void);
|
|
|
|
/* Helper routine for manipulation of kgdb_savettable */
|
|
static inline void copy_ttentry(struct tt_entry *src, struct tt_entry *dest)
|
|
{
|
|
dest->inst_one = src->inst_one;
|
|
dest->inst_two = src->inst_two;
|
|
dest->inst_three = src->inst_three;
|
|
dest->inst_four = src->inst_four;
|
|
}
|
|
|
|
/* Initialize the kgdb_savettable so that debugging can commence */
|
|
static void eh_init(void)
|
|
{
|
|
int i;
|
|
|
|
for(i=0; i < 256; i++)
|
|
copy_ttentry(&sparc_ttable[i], &kgdb_savettable[i]);
|
|
}
|
|
|
|
/* Install an exception handler for kgdb */
|
|
static void exceptionHandler(int tnum, trapfunc_t trap_entry)
|
|
{
|
|
unsigned long te_addr = (unsigned long) trap_entry;
|
|
|
|
/* Make new vector */
|
|
sparc_ttable[tnum].inst_one =
|
|
SPARC_BRANCH((unsigned long) te_addr,
|
|
(unsigned long) &sparc_ttable[tnum].inst_one);
|
|
sparc_ttable[tnum].inst_two = SPARC_RD_PSR_L0;
|
|
sparc_ttable[tnum].inst_three = SPARC_NOP;
|
|
sparc_ttable[tnum].inst_four = SPARC_NOP;
|
|
}
|
|
|
|
/* Convert ch from a hex digit to an int */
|
|
static int
|
|
hex(unsigned char ch)
|
|
{
|
|
if (ch >= 'a' && ch <= 'f')
|
|
return ch-'a'+10;
|
|
if (ch >= '0' && ch <= '9')
|
|
return ch-'0';
|
|
if (ch >= 'A' && ch <= 'F')
|
|
return ch-'A'+10;
|
|
return -1;
|
|
}
|
|
|
|
/* scan for the sequence $<data>#<checksum> */
|
|
static void
|
|
getpacket(char *buffer)
|
|
{
|
|
unsigned char checksum;
|
|
unsigned char xmitcsum;
|
|
int i;
|
|
int count;
|
|
unsigned char ch;
|
|
|
|
do {
|
|
/* wait around for the start character, ignore all other characters */
|
|
while ((ch = (getDebugChar() & 0x7f)) != '$') ;
|
|
|
|
checksum = 0;
|
|
xmitcsum = -1;
|
|
|
|
count = 0;
|
|
|
|
/* now, read until a # or end of buffer is found */
|
|
while (count < BUFMAX) {
|
|
ch = getDebugChar() & 0x7f;
|
|
if (ch == '#')
|
|
break;
|
|
checksum = checksum + ch;
|
|
buffer[count] = ch;
|
|
count = count + 1;
|
|
}
|
|
|
|
if (count >= BUFMAX)
|
|
continue;
|
|
|
|
buffer[count] = 0;
|
|
|
|
if (ch == '#') {
|
|
xmitcsum = hex(getDebugChar() & 0x7f) << 4;
|
|
xmitcsum |= hex(getDebugChar() & 0x7f);
|
|
if (checksum != xmitcsum)
|
|
putDebugChar('-'); /* failed checksum */
|
|
else {
|
|
putDebugChar('+'); /* successful transfer */
|
|
/* if a sequence char is present, reply the ID */
|
|
if (buffer[2] == ':') {
|
|
putDebugChar(buffer[0]);
|
|
putDebugChar(buffer[1]);
|
|
/* remove sequence chars from buffer */
|
|
count = strlen(buffer);
|
|
for (i=3; i <= count; i++)
|
|
buffer[i-3] = buffer[i];
|
|
}
|
|
}
|
|
}
|
|
} while (checksum != xmitcsum);
|
|
}
|
|
|
|
/* send the packet in buffer. */
|
|
|
|
static void
|
|
putpacket(unsigned char *buffer)
|
|
{
|
|
unsigned char checksum;
|
|
int count;
|
|
unsigned char ch, recv;
|
|
|
|
/* $<packet info>#<checksum>. */
|
|
do {
|
|
putDebugChar('$');
|
|
checksum = 0;
|
|
count = 0;
|
|
|
|
while ((ch = buffer[count])) {
|
|
putDebugChar(ch);
|
|
checksum += ch;
|
|
count += 1;
|
|
}
|
|
|
|
putDebugChar('#');
|
|
putDebugChar(hexchars[checksum >> 4]);
|
|
putDebugChar(hexchars[checksum & 0xf]);
|
|
recv = getDebugChar();
|
|
} while ((recv & 0x7f) != '+');
|
|
}
|
|
|
|
static char remcomInBuffer[BUFMAX];
|
|
static char remcomOutBuffer[BUFMAX];
|
|
|
|
/* Convert the memory pointed to by mem into hex, placing result in buf.
|
|
* Return a pointer to the last char put in buf (null), in case of mem fault,
|
|
* return 0.
|
|
*/
|
|
|
|
static unsigned char *
|
|
mem2hex(char *mem, char *buf, int count)
|
|
{
|
|
unsigned char ch;
|
|
|
|
while (count-- > 0) {
|
|
/* This assembler code is basically: ch = *mem++;
|
|
* except that we use the SPARC/Linux exception table
|
|
* mechanism (see how "fixup" works in kernel_mna_trap_fault)
|
|
* to arrange for a "return 0" upon a memory fault
|
|
*/
|
|
__asm__(
|
|
"\n1:\n\t"
|
|
"ldub [%0], %1\n\t"
|
|
"inc %0\n\t"
|
|
".section .fixup,#alloc,#execinstr\n\t"
|
|
".align 4\n"
|
|
"2:\n\t"
|
|
"retl\n\t"
|
|
" mov 0, %%o0\n\t"
|
|
".section __ex_table, #alloc\n\t"
|
|
".align 4\n\t"
|
|
".word 1b, 2b\n\t"
|
|
".text\n"
|
|
: "=r" (mem), "=r" (ch) : "0" (mem));
|
|
*buf++ = hexchars[ch >> 4];
|
|
*buf++ = hexchars[ch & 0xf];
|
|
}
|
|
|
|
*buf = 0;
|
|
return buf;
|
|
}
|
|
|
|
/* convert the hex array pointed to by buf into binary to be placed in mem
|
|
* return a pointer to the character AFTER the last byte written.
|
|
*/
|
|
static char *
|
|
hex2mem(char *buf, char *mem, int count)
|
|
{
|
|
int i;
|
|
unsigned char ch;
|
|
|
|
for (i=0; i<count; i++) {
|
|
|
|
ch = hex(*buf++) << 4;
|
|
ch |= hex(*buf++);
|
|
/* Assembler code is *mem++ = ch; with return 0 on fault */
|
|
__asm__(
|
|
"\n1:\n\t"
|
|
"stb %1, [%0]\n\t"
|
|
"inc %0\n\t"
|
|
".section .fixup,#alloc,#execinstr\n\t"
|
|
".align 4\n"
|
|
"2:\n\t"
|
|
"retl\n\t"
|
|
" mov 0, %%o0\n\t"
|
|
".section __ex_table, #alloc\n\t"
|
|
".align 4\n\t"
|
|
".word 1b, 2b\n\t"
|
|
".text\n"
|
|
: "=r" (mem) : "r" (ch) , "0" (mem));
|
|
}
|
|
return mem;
|
|
}
|
|
|
|
/* This table contains the mapping between SPARC hardware trap types, and
|
|
signals, which are primarily what GDB understands. It also indicates
|
|
which hardware traps we need to commandeer when initializing the stub. */
|
|
|
|
static struct hard_trap_info
|
|
{
|
|
unsigned char tt; /* Trap type code for SPARC */
|
|
unsigned char signo; /* Signal that we map this trap into */
|
|
} hard_trap_info[] = {
|
|
{SP_TRAP_SBPT, SIGTRAP}, /* ta 1 - Linux/KGDB software breakpoint */
|
|
{0, 0} /* Must be last */
|
|
};
|
|
|
|
/* Set up exception handlers for tracing and breakpoints */
|
|
|
|
void
|
|
set_debug_traps(void)
|
|
{
|
|
struct hard_trap_info *ht;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
#if 0
|
|
/* Have to sort this out. This cannot be done after initialization. */
|
|
BTFIXUPSET_CALL(flush_cache_all, flush_cache_all_nop, BTFIXUPCALL_NOP);
|
|
#endif
|
|
|
|
/* Initialize our copy of the Linux Sparc trap table */
|
|
eh_init();
|
|
|
|
for (ht = hard_trap_info; ht->tt && ht->signo; ht++) {
|
|
/* Only if it doesn't destroy our fault handlers */
|
|
if((ht->tt != SP_TRAP_TFLT) &&
|
|
(ht->tt != SP_TRAP_DFLT))
|
|
exceptionHandler(ht->tt, trap_low);
|
|
}
|
|
|
|
/* In case GDB is started before us, ack any packets (presumably
|
|
* "$?#xx") sitting there.
|
|
*
|
|
* I've found this code causes more problems than it solves,
|
|
* so that's why it's commented out. GDB seems to work fine
|
|
* now starting either before or after the kernel -bwb
|
|
*/
|
|
#if 0
|
|
while((c = getDebugChar()) != '$');
|
|
while((c = getDebugChar()) != '#');
|
|
c = getDebugChar(); /* eat first csum byte */
|
|
c = getDebugChar(); /* eat second csum byte */
|
|
putDebugChar('+'); /* ack it */
|
|
#endif
|
|
|
|
initialized = 1; /* connect! */
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* Convert the SPARC hardware trap type code to a unix signal number. */
|
|
|
|
static int
|
|
computeSignal(int tt)
|
|
{
|
|
struct hard_trap_info *ht;
|
|
|
|
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
|
|
if (ht->tt == tt)
|
|
return ht->signo;
|
|
|
|
return SIGHUP; /* default for things we don't know about */
|
|
}
|
|
|
|
/*
|
|
* While we find nice hex chars, build an int.
|
|
* Return number of chars processed.
|
|
*/
|
|
|
|
static int
|
|
hexToInt(char **ptr, int *intValue)
|
|
{
|
|
int numChars = 0;
|
|
int hexValue;
|
|
|
|
*intValue = 0;
|
|
|
|
while (**ptr) {
|
|
hexValue = hex(**ptr);
|
|
if (hexValue < 0)
|
|
break;
|
|
|
|
*intValue = (*intValue << 4) | hexValue;
|
|
numChars ++;
|
|
|
|
(*ptr)++;
|
|
}
|
|
|
|
return (numChars);
|
|
}
|
|
|
|
/*
|
|
* This function does all command processing for interfacing to gdb. It
|
|
* returns 1 if you should skip the instruction at the trap address, 0
|
|
* otherwise.
|
|
*/
|
|
|
|
extern void breakinst(void);
|
|
|
|
void
|
|
handle_exception (unsigned long *registers)
|
|
{
|
|
int tt; /* Trap type */
|
|
int sigval;
|
|
int addr;
|
|
int length;
|
|
char *ptr;
|
|
unsigned long *sp;
|
|
|
|
/* First, we must force all of the windows to be spilled out */
|
|
|
|
asm("save %sp, -64, %sp\n\t"
|
|
"save %sp, -64, %sp\n\t"
|
|
"save %sp, -64, %sp\n\t"
|
|
"save %sp, -64, %sp\n\t"
|
|
"save %sp, -64, %sp\n\t"
|
|
"save %sp, -64, %sp\n\t"
|
|
"save %sp, -64, %sp\n\t"
|
|
"save %sp, -64, %sp\n\t"
|
|
"restore\n\t"
|
|
"restore\n\t"
|
|
"restore\n\t"
|
|
"restore\n\t"
|
|
"restore\n\t"
|
|
"restore\n\t"
|
|
"restore\n\t"
|
|
"restore\n\t");
|
|
|
|
lock_kernel();
|
|
if (registers[PC] == (unsigned long)breakinst) {
|
|
/* Skip over breakpoint trap insn */
|
|
registers[PC] = registers[NPC];
|
|
registers[NPC] += 4;
|
|
}
|
|
|
|
sp = (unsigned long *)registers[SP];
|
|
|
|
tt = (registers[TBR] >> 4) & 0xff;
|
|
|
|
/* reply to host that an exception has occurred */
|
|
sigval = computeSignal(tt);
|
|
ptr = remcomOutBuffer;
|
|
|
|
*ptr++ = 'T';
|
|
*ptr++ = hexchars[sigval >> 4];
|
|
*ptr++ = hexchars[sigval & 0xf];
|
|
|
|
*ptr++ = hexchars[PC >> 4];
|
|
*ptr++ = hexchars[PC & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)®isters[PC], ptr, 4);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[FP >> 4];
|
|
*ptr++ = hexchars[FP & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *) (sp + 8 + 6), ptr, 4); /* FP */
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[SP >> 4];
|
|
*ptr++ = hexchars[SP & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)&sp, ptr, 4);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[NPC >> 4];
|
|
*ptr++ = hexchars[NPC & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)®isters[NPC], ptr, 4);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[O7 >> 4];
|
|
*ptr++ = hexchars[O7 & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)®isters[O7], ptr, 4);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = 0;
|
|
|
|
putpacket(remcomOutBuffer);
|
|
|
|
/* XXX We may want to add some features dealing with poking the
|
|
* XXX page tables, the real ones on the srmmu, and what is currently
|
|
* XXX loaded in the sun4/sun4c tlb at this point in time. But this
|
|
* XXX also required hacking to the gdb sources directly...
|
|
*/
|
|
|
|
while (1) {
|
|
remcomOutBuffer[0] = 0;
|
|
|
|
getpacket(remcomInBuffer);
|
|
switch (remcomInBuffer[0]) {
|
|
case '?':
|
|
remcomOutBuffer[0] = 'S';
|
|
remcomOutBuffer[1] = hexchars[sigval >> 4];
|
|
remcomOutBuffer[2] = hexchars[sigval & 0xf];
|
|
remcomOutBuffer[3] = 0;
|
|
break;
|
|
|
|
case 'd':
|
|
/* toggle debug flag */
|
|
break;
|
|
|
|
case 'g': /* return the value of the CPU registers */
|
|
{
|
|
ptr = remcomOutBuffer;
|
|
/* G & O regs */
|
|
ptr = mem2hex((char *)registers, ptr, 16 * 4);
|
|
/* L & I regs */
|
|
ptr = mem2hex((char *) (sp + 0), ptr, 16 * 4);
|
|
/* Floating point */
|
|
memset(ptr, '0', 32 * 8);
|
|
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
mem2hex((char *)®isters[Y], (ptr + 32 * 4 * 2), (8 * 4));
|
|
}
|
|
break;
|
|
|
|
case 'G': /* set the value of the CPU registers - return OK */
|
|
{
|
|
unsigned long *newsp, psr;
|
|
|
|
psr = registers[PSR];
|
|
|
|
ptr = &remcomInBuffer[1];
|
|
/* G & O regs */
|
|
hex2mem(ptr, (char *)registers, 16 * 4);
|
|
/* L & I regs */
|
|
hex2mem(ptr + 16 * 4 * 2, (char *) (sp + 0), 16 * 4);
|
|
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
hex2mem(ptr + 64 * 4 * 2, (char *)®isters[Y], 8 * 4);
|
|
|
|
/* See if the stack pointer has moved. If so,
|
|
* then copy the saved locals and ins to the
|
|
* new location. This keeps the window
|
|
* overflow and underflow routines happy.
|
|
*/
|
|
|
|
newsp = (unsigned long *)registers[SP];
|
|
if (sp != newsp)
|
|
sp = memcpy(newsp, sp, 16 * 4);
|
|
|
|
/* Don't allow CWP to be modified. */
|
|
|
|
if (psr != registers[PSR])
|
|
registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f);
|
|
|
|
strcpy(remcomOutBuffer,"OK");
|
|
}
|
|
break;
|
|
|
|
case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
|
|
/* Try to read %x,%x. */
|
|
|
|
ptr = &remcomInBuffer[1];
|
|
|
|
if (hexToInt(&ptr, &addr)
|
|
&& *ptr++ == ','
|
|
&& hexToInt(&ptr, &length)) {
|
|
if (mem2hex((char *)addr, remcomOutBuffer, length))
|
|
break;
|
|
|
|
strcpy (remcomOutBuffer, "E03");
|
|
} else {
|
|
strcpy(remcomOutBuffer,"E01");
|
|
}
|
|
break;
|
|
|
|
case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
|
|
/* Try to read '%x,%x:'. */
|
|
|
|
ptr = &remcomInBuffer[1];
|
|
|
|
if (hexToInt(&ptr, &addr)
|
|
&& *ptr++ == ','
|
|
&& hexToInt(&ptr, &length)
|
|
&& *ptr++ == ':') {
|
|
if (hex2mem(ptr, (char *)addr, length)) {
|
|
strcpy(remcomOutBuffer, "OK");
|
|
} else {
|
|
strcpy(remcomOutBuffer, "E03");
|
|
}
|
|
} else {
|
|
strcpy(remcomOutBuffer, "E02");
|
|
}
|
|
break;
|
|
|
|
case 'c': /* cAA..AA Continue at address AA..AA(optional) */
|
|
/* try to read optional parameter, pc unchanged if no parm */
|
|
|
|
ptr = &remcomInBuffer[1];
|
|
if (hexToInt(&ptr, &addr)) {
|
|
registers[PC] = addr;
|
|
registers[NPC] = addr + 4;
|
|
}
|
|
|
|
/* Need to flush the instruction cache here, as we may have deposited a
|
|
* breakpoint, and the icache probably has no way of knowing that a data ref to
|
|
* some location may have changed something that is in the instruction cache.
|
|
*/
|
|
flush_cache_all();
|
|
unlock_kernel();
|
|
return;
|
|
|
|
/* kill the program */
|
|
case 'k' : /* do nothing */
|
|
break;
|
|
case 'r': /* Reset */
|
|
asm ("call 0\n\t"
|
|
"nop\n\t");
|
|
break;
|
|
} /* switch */
|
|
|
|
/* reply to the request */
|
|
putpacket(remcomOutBuffer);
|
|
} /* while(1) */
|
|
}
|
|
|
|
/* This function will generate a breakpoint exception. It is used at the
|
|
beginning of a program to sync up with a debugger and can be used
|
|
otherwise as a quick means to stop program execution and "break" into
|
|
the debugger. */
|
|
|
|
void
|
|
breakpoint(void)
|
|
{
|
|
if (!initialized)
|
|
return;
|
|
|
|
/* Again, watch those c-prefixes for ELF kernels */
|
|
#if defined(__svr4__) || defined(__ELF__)
|
|
asm(".globl breakinst\n"
|
|
"breakinst:\n\t"
|
|
"ta 1\n");
|
|
#else
|
|
asm(".globl _breakinst\n"
|
|
"_breakinst:\n\t"
|
|
"ta 1\n");
|
|
#endif
|
|
}
|