mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 12:07:10 +07:00
7f30491ccd
After moving the the include files there were a few clean-ups: 1) Some files used #include <asm-ia64/xyz.h>, changed to <asm/xyz.h> 2) Some comments alerted maintainers to look at various header files to make matching updates if certain code were to be changed. Updated these comments to use the new include paths. 3) Some header files mentioned their own names in initial comments. Just deleted these self references. Signed-off-by: Tony Luck <tony.luck@intel.com>
3359 lines
127 KiB
C
3359 lines
127 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
|
|
*/
|
|
|
|
#ifndef _ASM_IA64_SN_SHUBIO_H
|
|
#define _ASM_IA64_SN_SHUBIO_H
|
|
|
|
#define HUB_WIDGET_ID_MAX 0xf
|
|
#define IIO_NUM_ITTES 7
|
|
#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
|
|
|
|
#define IIO_WID 0x00400000 /* Crosstalk Widget Identification */
|
|
/* This register is also accessible from
|
|
* Crosstalk at address 0x0. */
|
|
#define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */
|
|
#define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */
|
|
#define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */
|
|
#define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */
|
|
#define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */
|
|
#define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */
|
|
#define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */
|
|
#define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */
|
|
#define IIO_ILLR 0x00400130 /* IO LLP Log Register */
|
|
#define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */
|
|
|
|
#define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */
|
|
#define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */
|
|
|
|
#define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */
|
|
#define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */
|
|
|
|
#define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */
|
|
#define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */
|
|
#define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */
|
|
#define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */
|
|
#define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */
|
|
#define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */
|
|
#define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */
|
|
|
|
#define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */
|
|
#define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */
|
|
#define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */
|
|
#define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */
|
|
#define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */
|
|
#define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */
|
|
#define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */
|
|
#define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */
|
|
#define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */
|
|
|
|
#define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */
|
|
#define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */
|
|
#define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */
|
|
#define IIO_IECLR 0x004001F8 /* IO Error Clear Register */
|
|
#define IIO_IBCR 0x00400200 /* IO BTE Control Register */
|
|
|
|
#define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */
|
|
#define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */
|
|
|
|
#define IIO_ILCT 0x00400218 /* IO LLP Channel Test */
|
|
|
|
#define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */
|
|
#define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */
|
|
|
|
#define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */
|
|
#define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */
|
|
|
|
#define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */
|
|
#define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */
|
|
#define IIO_IWC 0x00400250 /* IO Wrapper Control Register */
|
|
#define IIO_IWS 0x00400258 /* IO Wrapper Status Register */
|
|
#define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */
|
|
|
|
#define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */
|
|
|
|
#define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */
|
|
#define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */
|
|
#define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */
|
|
#define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */
|
|
#define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */
|
|
#define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */
|
|
#define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */
|
|
#define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */
|
|
|
|
#define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */
|
|
#define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */
|
|
#define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */
|
|
#define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */
|
|
#define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */
|
|
#define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */
|
|
#define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */
|
|
#define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */
|
|
|
|
#define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */
|
|
#define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */
|
|
#define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */
|
|
#define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */
|
|
#define IIO_ICMR 0x004003A8 /* IO CRB Management Register */
|
|
#define IIO_ICCR 0x004003B0 /* IO CRB Control Register */
|
|
#define IIO_ICTO 0x004003B8 /* IO CRB Timeout */
|
|
#define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */
|
|
|
|
#define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */
|
|
#define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */
|
|
#define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */
|
|
#define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */
|
|
#define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */
|
|
|
|
#define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */
|
|
#define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */
|
|
#define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */
|
|
#define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */
|
|
#define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */
|
|
|
|
#define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */
|
|
#define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */
|
|
#define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */
|
|
#define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */
|
|
#define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */
|
|
|
|
#define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */
|
|
#define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */
|
|
#define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */
|
|
#define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */
|
|
#define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */
|
|
|
|
#define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */
|
|
#define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */
|
|
#define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */
|
|
#define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */
|
|
#define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */
|
|
|
|
#define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */
|
|
#define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */
|
|
#define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */
|
|
#define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */
|
|
#define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */
|
|
|
|
#define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */
|
|
#define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */
|
|
#define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */
|
|
#define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */
|
|
#define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */
|
|
|
|
#define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */
|
|
#define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */
|
|
#define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */
|
|
#define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */
|
|
#define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */
|
|
|
|
#define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */
|
|
#define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */
|
|
#define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */
|
|
#define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */
|
|
#define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */
|
|
|
|
#define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */
|
|
#define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */
|
|
#define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */
|
|
#define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */
|
|
#define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */
|
|
|
|
#define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */
|
|
#define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */
|
|
#define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */
|
|
#define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */
|
|
#define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */
|
|
|
|
#define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */
|
|
#define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */
|
|
#define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */
|
|
#define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */
|
|
#define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */
|
|
|
|
#define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */
|
|
#define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */
|
|
#define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */
|
|
#define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */
|
|
#define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */
|
|
|
|
#define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */
|
|
#define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */
|
|
#define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */
|
|
#define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */
|
|
#define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */
|
|
|
|
#define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */
|
|
#define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */
|
|
#define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */
|
|
#define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */
|
|
#define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */
|
|
|
|
#define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */
|
|
#define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */
|
|
#define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */
|
|
|
|
#define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */
|
|
|
|
#define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */
|
|
#define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */
|
|
#define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */
|
|
#define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */
|
|
#define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */
|
|
#define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */
|
|
#define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */
|
|
#define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */
|
|
#define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */
|
|
#define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */
|
|
#define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */
|
|
#define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */
|
|
|
|
#define IIO_IPCR 0x00430000 /* IO Performance Control */
|
|
#define IIO_IPPR 0x00430008 /* IO Performance Profiling */
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: This register echoes some information from the *
|
|
* LB_REV_ID register. It is available through Crosstalk as described *
|
|
* above. The REV_NUM and MFG_NUM fields receive their values from *
|
|
* the REVISION and MANUFACTURER fields in the LB_REV_ID register. *
|
|
* The PART_NUM field's value is the Crosstalk device ID number that *
|
|
* Steve Miller assigned to the SHub chip. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_wid_u {
|
|
u64 ii_wid_regval;
|
|
struct {
|
|
u64 w_rsvd_1:1;
|
|
u64 w_mfg_num:11;
|
|
u64 w_part_num:16;
|
|
u64 w_rev_num:4;
|
|
u64 w_rsvd:32;
|
|
} ii_wid_fld_s;
|
|
} ii_wid_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* The fields in this register are set upon detection of an error *
|
|
* and cleared by various mechanisms, as explained in the *
|
|
* description. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_wstat_u {
|
|
u64 ii_wstat_regval;
|
|
struct {
|
|
u64 w_pending:4;
|
|
u64 w_xt_crd_to:1;
|
|
u64 w_xt_tail_to:1;
|
|
u64 w_rsvd_3:3;
|
|
u64 w_tx_mx_rty:1;
|
|
u64 w_rsvd_2:6;
|
|
u64 w_llp_tx_cnt:8;
|
|
u64 w_rsvd_1:8;
|
|
u64 w_crazy:1;
|
|
u64 w_rsvd:31;
|
|
} ii_wstat_fld_s;
|
|
} ii_wstat_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: This is a read-write enabled register. It controls *
|
|
* various aspects of the Crosstalk flow control. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_wcr_u {
|
|
u64 ii_wcr_regval;
|
|
struct {
|
|
u64 w_wid:4;
|
|
u64 w_tag:1;
|
|
u64 w_rsvd_1:8;
|
|
u64 w_dst_crd:3;
|
|
u64 w_f_bad_pkt:1;
|
|
u64 w_dir_con:1;
|
|
u64 w_e_thresh:5;
|
|
u64 w_rsvd:41;
|
|
} ii_wcr_fld_s;
|
|
} ii_wcr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: This register's value is a bit vector that guards *
|
|
* access to local registers within the II as well as to external *
|
|
* Crosstalk widgets. Each bit in the register corresponds to a *
|
|
* particular region in the system; a region consists of one, two or *
|
|
* four nodes (depending on the value of the REGION_SIZE field in the *
|
|
* LB_REV_ID register, which is documented in Section 8.3.1.1). The *
|
|
* protection provided by this register applies to PIO read *
|
|
* operations as well as PIO write operations. The II will perform a *
|
|
* PIO read or write request only if the bit for the requestor's *
|
|
* region is set; otherwise, the II will not perform the requested *
|
|
* operation and will return an error response. When a PIO read or *
|
|
* write request targets an external Crosstalk widget, then not only *
|
|
* must the bit for the requestor's region be set in the ILAPR, but *
|
|
* also the target widget's bit in the IOWA register must be set in *
|
|
* order for the II to perform the requested operation; otherwise, *
|
|
* the II will return an error response. Hence, the protection *
|
|
* provided by the IOWA register supplements the protection provided *
|
|
* by the ILAPR for requests that target external Crosstalk widgets. *
|
|
* This register itself can be accessed only by the nodes whose *
|
|
* region ID bits are enabled in this same register. It can also be *
|
|
* accessed through the IAlias space by the local processors. *
|
|
* The reset value of this register allows access by all nodes. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ilapr_u {
|
|
u64 ii_ilapr_regval;
|
|
struct {
|
|
u64 i_region:64;
|
|
} ii_ilapr_fld_s;
|
|
} ii_ilapr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: A write to this register of the 64-bit value *
|
|
* "SGIrules" in ASCII, will cause the bit in the ILAPR register *
|
|
* corresponding to the region of the requestor to be set (allow *
|
|
* access). A write of any other value will be ignored. Access *
|
|
* protection for this register is "SGIrules". *
|
|
* This register can also be accessed through the IAlias space. *
|
|
* However, this access will not change the access permissions in the *
|
|
* ILAPR. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ilapo_u {
|
|
u64 ii_ilapo_regval;
|
|
struct {
|
|
u64 i_io_ovrride:64;
|
|
} ii_ilapo_fld_s;
|
|
} ii_ilapo_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register qualifies all the PIO and Graphics writes launched *
|
|
* from the SHUB towards a widget. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iowa_u {
|
|
u64 ii_iowa_regval;
|
|
struct {
|
|
u64 i_w0_oac:1;
|
|
u64 i_rsvd_1:7;
|
|
u64 i_wx_oac:8;
|
|
u64 i_rsvd:48;
|
|
} ii_iowa_fld_s;
|
|
} ii_iowa_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: This register qualifies all the requests launched *
|
|
* from a widget towards the Shub. This register is intended to be *
|
|
* used by software in case of misbehaving widgets. *
|
|
* *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iiwa_u {
|
|
u64 ii_iiwa_regval;
|
|
struct {
|
|
u64 i_w0_iac:1;
|
|
u64 i_rsvd_1:7;
|
|
u64 i_wx_iac:8;
|
|
u64 i_rsvd:48;
|
|
} ii_iiwa_fld_s;
|
|
} ii_iiwa_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: This register qualifies all the operations launched *
|
|
* from a widget towards the SHub. It allows individual access *
|
|
* control for up to 8 devices per widget. A device refers to *
|
|
* individual DMA master hosted by a widget. *
|
|
* The bits in each field of this register are cleared by the Shub *
|
|
* upon detection of an error which requires the device to be *
|
|
* disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric *
|
|
* Crosstalk). Whether or not a device has access rights to this *
|
|
* Shub is determined by an AND of the device enable bit in the *
|
|
* appropriate field of this register and the corresponding bit in *
|
|
* the Wx_IAC field (for the widget which this device belongs to). *
|
|
* The bits in this field are set by writing a 1 to them. Incoming *
|
|
* replies from Crosstalk are not subject to this access control *
|
|
* mechanism. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iidem_u {
|
|
u64 ii_iidem_regval;
|
|
struct {
|
|
u64 i_w8_dxs:8;
|
|
u64 i_w9_dxs:8;
|
|
u64 i_wa_dxs:8;
|
|
u64 i_wb_dxs:8;
|
|
u64 i_wc_dxs:8;
|
|
u64 i_wd_dxs:8;
|
|
u64 i_we_dxs:8;
|
|
u64 i_wf_dxs:8;
|
|
} ii_iidem_fld_s;
|
|
} ii_iidem_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the various programmable fields necessary *
|
|
* for controlling and observing the LLP signals. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ilcsr_u {
|
|
u64 ii_ilcsr_regval;
|
|
struct {
|
|
u64 i_nullto:6;
|
|
u64 i_rsvd_4:2;
|
|
u64 i_wrmrst:1;
|
|
u64 i_rsvd_3:1;
|
|
u64 i_llp_en:1;
|
|
u64 i_bm8:1;
|
|
u64 i_llp_stat:2;
|
|
u64 i_remote_power:1;
|
|
u64 i_rsvd_2:1;
|
|
u64 i_maxrtry:10;
|
|
u64 i_d_avail_sel:2;
|
|
u64 i_rsvd_1:4;
|
|
u64 i_maxbrst:10;
|
|
u64 i_rsvd:22;
|
|
|
|
} ii_ilcsr_fld_s;
|
|
} ii_ilcsr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This is simply a status registers that monitors the LLP error *
|
|
* rate. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_illr_u {
|
|
u64 ii_illr_regval;
|
|
struct {
|
|
u64 i_sn_cnt:16;
|
|
u64 i_cb_cnt:16;
|
|
u64 i_rsvd:32;
|
|
} ii_illr_fld_s;
|
|
} ii_illr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: All II-detected non-BTE error interrupts are *
|
|
* specified via this register. *
|
|
* NOTE: The PI interrupt register address is hardcoded in the II. If *
|
|
* PI_ID==0, then the II sends an interrupt request (Duplonet PWRI *
|
|
* packet) to address offset 0x0180_0090 within the local register *
|
|
* address space of PI0 on the node specified by the NODE field. If *
|
|
* PI_ID==1, then the II sends the interrupt request to address *
|
|
* offset 0x01A0_0090 within the local register address space of PI1 *
|
|
* on the node specified by the NODE field. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iidsr_u {
|
|
u64 ii_iidsr_regval;
|
|
struct {
|
|
u64 i_level:8;
|
|
u64 i_pi_id:1;
|
|
u64 i_node:11;
|
|
u64 i_rsvd_3:4;
|
|
u64 i_enable:1;
|
|
u64 i_rsvd_2:3;
|
|
u64 i_int_sent:2;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_pi0_forward_int:1;
|
|
u64 i_pi1_forward_int:1;
|
|
u64 i_rsvd:30;
|
|
} ii_iidsr_fld_s;
|
|
} ii_iidsr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are two instances of this register. This register is used *
|
|
* for matching up the incoming responses from the graphics widget to *
|
|
* the processor that initiated the graphics operation. The *
|
|
* write-responses are converted to graphics credits and returned to *
|
|
* the processor so that the processor interface can manage the flow *
|
|
* control. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_igfx0_u {
|
|
u64 ii_igfx0_regval;
|
|
struct {
|
|
u64 i_w_num:4;
|
|
u64 i_pi_id:1;
|
|
u64 i_n_num:12;
|
|
u64 i_p_num:1;
|
|
u64 i_rsvd:46;
|
|
} ii_igfx0_fld_s;
|
|
} ii_igfx0_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are two instances of this register. This register is used *
|
|
* for matching up the incoming responses from the graphics widget to *
|
|
* the processor that initiated the graphics operation. The *
|
|
* write-responses are converted to graphics credits and returned to *
|
|
* the processor so that the processor interface can manage the flow *
|
|
* control. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_igfx1_u {
|
|
u64 ii_igfx1_regval;
|
|
struct {
|
|
u64 i_w_num:4;
|
|
u64 i_pi_id:1;
|
|
u64 i_n_num:12;
|
|
u64 i_p_num:1;
|
|
u64 i_rsvd:46;
|
|
} ii_igfx1_fld_s;
|
|
} ii_igfx1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are two instances of this registers. These registers are *
|
|
* used as scratch registers for software use. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iscr0_u {
|
|
u64 ii_iscr0_regval;
|
|
struct {
|
|
u64 i_scratch:64;
|
|
} ii_iscr0_fld_s;
|
|
} ii_iscr0_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are two instances of this registers. These registers are *
|
|
* used as scratch registers for software use. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iscr1_u {
|
|
u64 ii_iscr1_regval;
|
|
struct {
|
|
u64 i_scratch:64;
|
|
} ii_iscr1_fld_s;
|
|
} ii_iscr1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are seven instances of translation table entry *
|
|
* registers. Each register maps a Shub Big Window to a 48-bit *
|
|
* address on Crosstalk. *
|
|
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
|
|
* number) are used to select one of these 7 registers. The Widget *
|
|
* number field is then derived from the W_NUM field for synthesizing *
|
|
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
|
|
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
|
|
* are padded with zeros. Although the maximum Crosstalk space *
|
|
* addressable by the SHub is thus the lower 16 GBytes per widget *
|
|
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
|
|
* space can be accessed. *
|
|
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
|
|
* Window number) are used to select one of these 7 registers. The *
|
|
* Widget number field is then derived from the W_NUM field for *
|
|
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
|
|
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
|
|
* field is used as Crosstalk[47], and remainder of the Crosstalk *
|
|
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
|
|
* Crosstalk space addressable by the Shub is thus the lower *
|
|
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
|
|
* of this space can be accessed. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_itte1_u {
|
|
u64 ii_itte1_regval;
|
|
struct {
|
|
u64 i_offset:5;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_w_num:4;
|
|
u64 i_iosp:1;
|
|
u64 i_rsvd:51;
|
|
} ii_itte1_fld_s;
|
|
} ii_itte1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are seven instances of translation table entry *
|
|
* registers. Each register maps a Shub Big Window to a 48-bit *
|
|
* address on Crosstalk. *
|
|
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
|
|
* number) are used to select one of these 7 registers. The Widget *
|
|
* number field is then derived from the W_NUM field for synthesizing *
|
|
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
|
|
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
|
|
* are padded with zeros. Although the maximum Crosstalk space *
|
|
* addressable by the Shub is thus the lower 16 GBytes per widget *
|
|
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
|
|
* space can be accessed. *
|
|
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
|
|
* Window number) are used to select one of these 7 registers. The *
|
|
* Widget number field is then derived from the W_NUM field for *
|
|
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
|
|
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
|
|
* field is used as Crosstalk[47], and remainder of the Crosstalk *
|
|
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
|
|
* Crosstalk space addressable by the Shub is thus the lower *
|
|
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
|
|
* of this space can be accessed. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_itte2_u {
|
|
u64 ii_itte2_regval;
|
|
struct {
|
|
u64 i_offset:5;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_w_num:4;
|
|
u64 i_iosp:1;
|
|
u64 i_rsvd:51;
|
|
} ii_itte2_fld_s;
|
|
} ii_itte2_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are seven instances of translation table entry *
|
|
* registers. Each register maps a Shub Big Window to a 48-bit *
|
|
* address on Crosstalk. *
|
|
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
|
|
* number) are used to select one of these 7 registers. The Widget *
|
|
* number field is then derived from the W_NUM field for synthesizing *
|
|
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
|
|
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
|
|
* are padded with zeros. Although the maximum Crosstalk space *
|
|
* addressable by the Shub is thus the lower 16 GBytes per widget *
|
|
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
|
|
* space can be accessed. *
|
|
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
|
|
* Window number) are used to select one of these 7 registers. The *
|
|
* Widget number field is then derived from the W_NUM field for *
|
|
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
|
|
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
|
|
* field is used as Crosstalk[47], and remainder of the Crosstalk *
|
|
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
|
|
* Crosstalk space addressable by the SHub is thus the lower *
|
|
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
|
|
* of this space can be accessed. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_itte3_u {
|
|
u64 ii_itte3_regval;
|
|
struct {
|
|
u64 i_offset:5;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_w_num:4;
|
|
u64 i_iosp:1;
|
|
u64 i_rsvd:51;
|
|
} ii_itte3_fld_s;
|
|
} ii_itte3_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are seven instances of translation table entry *
|
|
* registers. Each register maps a SHub Big Window to a 48-bit *
|
|
* address on Crosstalk. *
|
|
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
|
|
* number) are used to select one of these 7 registers. The Widget *
|
|
* number field is then derived from the W_NUM field for synthesizing *
|
|
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
|
|
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
|
|
* are padded with zeros. Although the maximum Crosstalk space *
|
|
* addressable by the SHub is thus the lower 16 GBytes per widget *
|
|
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
|
|
* space can be accessed. *
|
|
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
|
|
* Window number) are used to select one of these 7 registers. The *
|
|
* Widget number field is then derived from the W_NUM field for *
|
|
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
|
|
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
|
|
* field is used as Crosstalk[47], and remainder of the Crosstalk *
|
|
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
|
|
* Crosstalk space addressable by the SHub is thus the lower *
|
|
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
|
|
* of this space can be accessed. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_itte4_u {
|
|
u64 ii_itte4_regval;
|
|
struct {
|
|
u64 i_offset:5;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_w_num:4;
|
|
u64 i_iosp:1;
|
|
u64 i_rsvd:51;
|
|
} ii_itte4_fld_s;
|
|
} ii_itte4_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are seven instances of translation table entry *
|
|
* registers. Each register maps a SHub Big Window to a 48-bit *
|
|
* address on Crosstalk. *
|
|
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
|
|
* number) are used to select one of these 7 registers. The Widget *
|
|
* number field is then derived from the W_NUM field for synthesizing *
|
|
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
|
|
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
|
|
* are padded with zeros. Although the maximum Crosstalk space *
|
|
* addressable by the Shub is thus the lower 16 GBytes per widget *
|
|
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
|
|
* space can be accessed. *
|
|
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
|
|
* Window number) are used to select one of these 7 registers. The *
|
|
* Widget number field is then derived from the W_NUM field for *
|
|
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
|
|
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
|
|
* field is used as Crosstalk[47], and remainder of the Crosstalk *
|
|
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
|
|
* Crosstalk space addressable by the Shub is thus the lower *
|
|
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
|
|
* of this space can be accessed. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_itte5_u {
|
|
u64 ii_itte5_regval;
|
|
struct {
|
|
u64 i_offset:5;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_w_num:4;
|
|
u64 i_iosp:1;
|
|
u64 i_rsvd:51;
|
|
} ii_itte5_fld_s;
|
|
} ii_itte5_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are seven instances of translation table entry *
|
|
* registers. Each register maps a Shub Big Window to a 48-bit *
|
|
* address on Crosstalk. *
|
|
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
|
|
* number) are used to select one of these 7 registers. The Widget *
|
|
* number field is then derived from the W_NUM field for synthesizing *
|
|
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
|
|
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
|
|
* are padded with zeros. Although the maximum Crosstalk space *
|
|
* addressable by the Shub is thus the lower 16 GBytes per widget *
|
|
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
|
|
* space can be accessed. *
|
|
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
|
|
* Window number) are used to select one of these 7 registers. The *
|
|
* Widget number field is then derived from the W_NUM field for *
|
|
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
|
|
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
|
|
* field is used as Crosstalk[47], and remainder of the Crosstalk *
|
|
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
|
|
* Crosstalk space addressable by the Shub is thus the lower *
|
|
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
|
|
* of this space can be accessed. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_itte6_u {
|
|
u64 ii_itte6_regval;
|
|
struct {
|
|
u64 i_offset:5;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_w_num:4;
|
|
u64 i_iosp:1;
|
|
u64 i_rsvd:51;
|
|
} ii_itte6_fld_s;
|
|
} ii_itte6_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are seven instances of translation table entry *
|
|
* registers. Each register maps a Shub Big Window to a 48-bit *
|
|
* address on Crosstalk. *
|
|
* For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
|
|
* number) are used to select one of these 7 registers. The Widget *
|
|
* number field is then derived from the W_NUM field for synthesizing *
|
|
* a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
|
|
* SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
|
|
* are padded with zeros. Although the maximum Crosstalk space *
|
|
* addressable by the Shub is thus the lower 16 GBytes per widget *
|
|
* (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
|
|
* space can be accessed. *
|
|
* For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
|
|
* Window number) are used to select one of these 7 registers. The *
|
|
* Widget number field is then derived from the W_NUM field for *
|
|
* synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
|
|
* concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
|
|
* field is used as Crosstalk[47], and remainder of the Crosstalk *
|
|
* address bits (Crosstalk[46:34]) are always zero. While the maximum *
|
|
* Crosstalk space addressable by the SHub is thus the lower *
|
|
* 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
|
|
* of this space can be accessed. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_itte7_u {
|
|
u64 ii_itte7_regval;
|
|
struct {
|
|
u64 i_offset:5;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_w_num:4;
|
|
u64 i_iosp:1;
|
|
u64 i_rsvd:51;
|
|
} ii_itte7_fld_s;
|
|
} ii_itte7_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 9 instances of this register, one per *
|
|
* actual widget in this implementation of SHub and Crossbow. *
|
|
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
|
|
* refers to Crossbow's internal space. *
|
|
* This register contains the state elements per widget that are *
|
|
* necessary to manage the PIO flow control on Crosstalk and on the *
|
|
* Router Network. See the PIO Flow Control chapter for a complete *
|
|
* description of this register *
|
|
* The SPUR_WR bit requires some explanation. When this register is *
|
|
* written, the new value of the C field is captured in an internal *
|
|
* register so the hardware can remember what the programmer wrote *
|
|
* into the credit counter. The SPUR_WR bit sets whenever the C field *
|
|
* increments above this stored value, which indicates that there *
|
|
* have been more responses received than requests sent. The SPUR_WR *
|
|
* bit cannot be cleared until a value is written to the IPRBx *
|
|
* register; the write will correct the C field and capture its new *
|
|
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
|
|
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
|
|
* . *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprb0_u {
|
|
u64 ii_iprb0_regval;
|
|
struct {
|
|
u64 i_c:8;
|
|
u64 i_na:14;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_nb:14;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_m:2;
|
|
u64 i_f:1;
|
|
u64 i_of_cnt:5;
|
|
u64 i_error:1;
|
|
u64 i_rd_to:1;
|
|
u64 i_spur_wr:1;
|
|
u64 i_spur_rd:1;
|
|
u64 i_rsvd:11;
|
|
u64 i_mult_err:1;
|
|
} ii_iprb0_fld_s;
|
|
} ii_iprb0_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 9 instances of this register, one per *
|
|
* actual widget in this implementation of SHub and Crossbow. *
|
|
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
|
|
* refers to Crossbow's internal space. *
|
|
* This register contains the state elements per widget that are *
|
|
* necessary to manage the PIO flow control on Crosstalk and on the *
|
|
* Router Network. See the PIO Flow Control chapter for a complete *
|
|
* description of this register *
|
|
* The SPUR_WR bit requires some explanation. When this register is *
|
|
* written, the new value of the C field is captured in an internal *
|
|
* register so the hardware can remember what the programmer wrote *
|
|
* into the credit counter. The SPUR_WR bit sets whenever the C field *
|
|
* increments above this stored value, which indicates that there *
|
|
* have been more responses received than requests sent. The SPUR_WR *
|
|
* bit cannot be cleared until a value is written to the IPRBx *
|
|
* register; the write will correct the C field and capture its new *
|
|
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
|
|
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
|
|
* . *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprb8_u {
|
|
u64 ii_iprb8_regval;
|
|
struct {
|
|
u64 i_c:8;
|
|
u64 i_na:14;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_nb:14;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_m:2;
|
|
u64 i_f:1;
|
|
u64 i_of_cnt:5;
|
|
u64 i_error:1;
|
|
u64 i_rd_to:1;
|
|
u64 i_spur_wr:1;
|
|
u64 i_spur_rd:1;
|
|
u64 i_rsvd:11;
|
|
u64 i_mult_err:1;
|
|
} ii_iprb8_fld_s;
|
|
} ii_iprb8_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 9 instances of this register, one per *
|
|
* actual widget in this implementation of SHub and Crossbow. *
|
|
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
|
|
* refers to Crossbow's internal space. *
|
|
* This register contains the state elements per widget that are *
|
|
* necessary to manage the PIO flow control on Crosstalk and on the *
|
|
* Router Network. See the PIO Flow Control chapter for a complete *
|
|
* description of this register *
|
|
* The SPUR_WR bit requires some explanation. When this register is *
|
|
* written, the new value of the C field is captured in an internal *
|
|
* register so the hardware can remember what the programmer wrote *
|
|
* into the credit counter. The SPUR_WR bit sets whenever the C field *
|
|
* increments above this stored value, which indicates that there *
|
|
* have been more responses received than requests sent. The SPUR_WR *
|
|
* bit cannot be cleared until a value is written to the IPRBx *
|
|
* register; the write will correct the C field and capture its new *
|
|
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
|
|
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
|
|
* . *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprb9_u {
|
|
u64 ii_iprb9_regval;
|
|
struct {
|
|
u64 i_c:8;
|
|
u64 i_na:14;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_nb:14;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_m:2;
|
|
u64 i_f:1;
|
|
u64 i_of_cnt:5;
|
|
u64 i_error:1;
|
|
u64 i_rd_to:1;
|
|
u64 i_spur_wr:1;
|
|
u64 i_spur_rd:1;
|
|
u64 i_rsvd:11;
|
|
u64 i_mult_err:1;
|
|
} ii_iprb9_fld_s;
|
|
} ii_iprb9_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 9 instances of this register, one per *
|
|
* actual widget in this implementation of SHub and Crossbow. *
|
|
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
|
|
* refers to Crossbow's internal space. *
|
|
* This register contains the state elements per widget that are *
|
|
* necessary to manage the PIO flow control on Crosstalk and on the *
|
|
* Router Network. See the PIO Flow Control chapter for a complete *
|
|
* description of this register *
|
|
* The SPUR_WR bit requires some explanation. When this register is *
|
|
* written, the new value of the C field is captured in an internal *
|
|
* register so the hardware can remember what the programmer wrote *
|
|
* into the credit counter. The SPUR_WR bit sets whenever the C field *
|
|
* increments above this stored value, which indicates that there *
|
|
* have been more responses received than requests sent. The SPUR_WR *
|
|
* bit cannot be cleared until a value is written to the IPRBx *
|
|
* register; the write will correct the C field and capture its new *
|
|
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
|
|
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
|
|
* *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprba_u {
|
|
u64 ii_iprba_regval;
|
|
struct {
|
|
u64 i_c:8;
|
|
u64 i_na:14;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_nb:14;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_m:2;
|
|
u64 i_f:1;
|
|
u64 i_of_cnt:5;
|
|
u64 i_error:1;
|
|
u64 i_rd_to:1;
|
|
u64 i_spur_wr:1;
|
|
u64 i_spur_rd:1;
|
|
u64 i_rsvd:11;
|
|
u64 i_mult_err:1;
|
|
} ii_iprba_fld_s;
|
|
} ii_iprba_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 9 instances of this register, one per *
|
|
* actual widget in this implementation of SHub and Crossbow. *
|
|
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
|
|
* refers to Crossbow's internal space. *
|
|
* This register contains the state elements per widget that are *
|
|
* necessary to manage the PIO flow control on Crosstalk and on the *
|
|
* Router Network. See the PIO Flow Control chapter for a complete *
|
|
* description of this register *
|
|
* The SPUR_WR bit requires some explanation. When this register is *
|
|
* written, the new value of the C field is captured in an internal *
|
|
* register so the hardware can remember what the programmer wrote *
|
|
* into the credit counter. The SPUR_WR bit sets whenever the C field *
|
|
* increments above this stored value, which indicates that there *
|
|
* have been more responses received than requests sent. The SPUR_WR *
|
|
* bit cannot be cleared until a value is written to the IPRBx *
|
|
* register; the write will correct the C field and capture its new *
|
|
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
|
|
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
|
|
* . *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprbb_u {
|
|
u64 ii_iprbb_regval;
|
|
struct {
|
|
u64 i_c:8;
|
|
u64 i_na:14;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_nb:14;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_m:2;
|
|
u64 i_f:1;
|
|
u64 i_of_cnt:5;
|
|
u64 i_error:1;
|
|
u64 i_rd_to:1;
|
|
u64 i_spur_wr:1;
|
|
u64 i_spur_rd:1;
|
|
u64 i_rsvd:11;
|
|
u64 i_mult_err:1;
|
|
} ii_iprbb_fld_s;
|
|
} ii_iprbb_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 9 instances of this register, one per *
|
|
* actual widget in this implementation of SHub and Crossbow. *
|
|
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
|
|
* refers to Crossbow's internal space. *
|
|
* This register contains the state elements per widget that are *
|
|
* necessary to manage the PIO flow control on Crosstalk and on the *
|
|
* Router Network. See the PIO Flow Control chapter for a complete *
|
|
* description of this register *
|
|
* The SPUR_WR bit requires some explanation. When this register is *
|
|
* written, the new value of the C field is captured in an internal *
|
|
* register so the hardware can remember what the programmer wrote *
|
|
* into the credit counter. The SPUR_WR bit sets whenever the C field *
|
|
* increments above this stored value, which indicates that there *
|
|
* have been more responses received than requests sent. The SPUR_WR *
|
|
* bit cannot be cleared until a value is written to the IPRBx *
|
|
* register; the write will correct the C field and capture its new *
|
|
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
|
|
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
|
|
* . *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprbc_u {
|
|
u64 ii_iprbc_regval;
|
|
struct {
|
|
u64 i_c:8;
|
|
u64 i_na:14;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_nb:14;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_m:2;
|
|
u64 i_f:1;
|
|
u64 i_of_cnt:5;
|
|
u64 i_error:1;
|
|
u64 i_rd_to:1;
|
|
u64 i_spur_wr:1;
|
|
u64 i_spur_rd:1;
|
|
u64 i_rsvd:11;
|
|
u64 i_mult_err:1;
|
|
} ii_iprbc_fld_s;
|
|
} ii_iprbc_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 9 instances of this register, one per *
|
|
* actual widget in this implementation of SHub and Crossbow. *
|
|
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
|
|
* refers to Crossbow's internal space. *
|
|
* This register contains the state elements per widget that are *
|
|
* necessary to manage the PIO flow control on Crosstalk and on the *
|
|
* Router Network. See the PIO Flow Control chapter for a complete *
|
|
* description of this register *
|
|
* The SPUR_WR bit requires some explanation. When this register is *
|
|
* written, the new value of the C field is captured in an internal *
|
|
* register so the hardware can remember what the programmer wrote *
|
|
* into the credit counter. The SPUR_WR bit sets whenever the C field *
|
|
* increments above this stored value, which indicates that there *
|
|
* have been more responses received than requests sent. The SPUR_WR *
|
|
* bit cannot be cleared until a value is written to the IPRBx *
|
|
* register; the write will correct the C field and capture its new *
|
|
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
|
|
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
|
|
* . *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprbd_u {
|
|
u64 ii_iprbd_regval;
|
|
struct {
|
|
u64 i_c:8;
|
|
u64 i_na:14;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_nb:14;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_m:2;
|
|
u64 i_f:1;
|
|
u64 i_of_cnt:5;
|
|
u64 i_error:1;
|
|
u64 i_rd_to:1;
|
|
u64 i_spur_wr:1;
|
|
u64 i_spur_rd:1;
|
|
u64 i_rsvd:11;
|
|
u64 i_mult_err:1;
|
|
} ii_iprbd_fld_s;
|
|
} ii_iprbd_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 9 instances of this register, one per *
|
|
* actual widget in this implementation of SHub and Crossbow. *
|
|
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
|
|
* refers to Crossbow's internal space. *
|
|
* This register contains the state elements per widget that are *
|
|
* necessary to manage the PIO flow control on Crosstalk and on the *
|
|
* Router Network. See the PIO Flow Control chapter for a complete *
|
|
* description of this register *
|
|
* The SPUR_WR bit requires some explanation. When this register is *
|
|
* written, the new value of the C field is captured in an internal *
|
|
* register so the hardware can remember what the programmer wrote *
|
|
* into the credit counter. The SPUR_WR bit sets whenever the C field *
|
|
* increments above this stored value, which indicates that there *
|
|
* have been more responses received than requests sent. The SPUR_WR *
|
|
* bit cannot be cleared until a value is written to the IPRBx *
|
|
* register; the write will correct the C field and capture its new *
|
|
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
|
|
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
|
|
* . *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprbe_u {
|
|
u64 ii_iprbe_regval;
|
|
struct {
|
|
u64 i_c:8;
|
|
u64 i_na:14;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_nb:14;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_m:2;
|
|
u64 i_f:1;
|
|
u64 i_of_cnt:5;
|
|
u64 i_error:1;
|
|
u64 i_rd_to:1;
|
|
u64 i_spur_wr:1;
|
|
u64 i_spur_rd:1;
|
|
u64 i_rsvd:11;
|
|
u64 i_mult_err:1;
|
|
} ii_iprbe_fld_s;
|
|
} ii_iprbe_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 9 instances of this register, one per *
|
|
* actual widget in this implementation of Shub and Crossbow. *
|
|
* Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
|
|
* refers to Crossbow's internal space. *
|
|
* This register contains the state elements per widget that are *
|
|
* necessary to manage the PIO flow control on Crosstalk and on the *
|
|
* Router Network. See the PIO Flow Control chapter for a complete *
|
|
* description of this register *
|
|
* The SPUR_WR bit requires some explanation. When this register is *
|
|
* written, the new value of the C field is captured in an internal *
|
|
* register so the hardware can remember what the programmer wrote *
|
|
* into the credit counter. The SPUR_WR bit sets whenever the C field *
|
|
* increments above this stored value, which indicates that there *
|
|
* have been more responses received than requests sent. The SPUR_WR *
|
|
* bit cannot be cleared until a value is written to the IPRBx *
|
|
* register; the write will correct the C field and capture its new *
|
|
* value in the internal register. Even if IECLR[E_PRB_x] is set, the *
|
|
* SPUR_WR bit will persist if IPRBx hasn't yet been written. *
|
|
* . *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprbf_u {
|
|
u64 ii_iprbf_regval;
|
|
struct {
|
|
u64 i_c:8;
|
|
u64 i_na:14;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_nb:14;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_m:2;
|
|
u64 i_f:1;
|
|
u64 i_of_cnt:5;
|
|
u64 i_error:1;
|
|
u64 i_rd_to:1;
|
|
u64 i_spur_wr:1;
|
|
u64 i_spur_rd:1;
|
|
u64 i_rsvd:11;
|
|
u64 i_mult_err:1;
|
|
} ii_iprbe_fld_s;
|
|
} ii_iprbf_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register specifies the timeout value to use for monitoring *
|
|
* Crosstalk credits which are used outbound to Crosstalk. An *
|
|
* internal counter called the Crosstalk Credit Timeout Counter *
|
|
* increments every 128 II clocks. The counter starts counting *
|
|
* anytime the credit count drops below a threshold, and resets to *
|
|
* zero (stops counting) anytime the credit count is at or above the *
|
|
* threshold. The threshold is 1 credit in direct connect mode and 2 *
|
|
* in Crossbow connect mode. When the internal Crosstalk Credit *
|
|
* Timeout Counter reaches the value programmed in this register, a *
|
|
* Crosstalk Credit Timeout has occurred. The internal counter is not *
|
|
* readable from software, and stops counting at its maximum value, *
|
|
* so it cannot cause more than one interrupt. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ixcc_u {
|
|
u64 ii_ixcc_regval;
|
|
struct {
|
|
u64 i_time_out:26;
|
|
u64 i_rsvd:38;
|
|
} ii_ixcc_fld_s;
|
|
} ii_ixcc_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: This register qualifies all the PIO and DMA *
|
|
* operations launched from widget 0 towards the SHub. In *
|
|
* addition, it also qualifies accesses by the BTE streams. *
|
|
* The bits in each field of this register are cleared by the SHub *
|
|
* upon detection of an error which requires widget 0 or the BTE *
|
|
* streams to be terminated. Whether or not widget x has access *
|
|
* rights to this SHub is determined by an AND of the device *
|
|
* enable bit in the appropriate field of this register and bit 0 in *
|
|
* the Wx_IAC field. The bits in this field are set by writing a 1 to *
|
|
* them. Incoming replies from Crosstalk are not subject to this *
|
|
* access control mechanism. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_imem_u {
|
|
u64 ii_imem_regval;
|
|
struct {
|
|
u64 i_w0_esd:1;
|
|
u64 i_rsvd_3:3;
|
|
u64 i_b0_esd:1;
|
|
u64 i_rsvd_2:3;
|
|
u64 i_b1_esd:1;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_clr_precise:1;
|
|
u64 i_rsvd:51;
|
|
} ii_imem_fld_s;
|
|
} ii_imem_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: This register specifies the timeout value to use for *
|
|
* monitoring Crosstalk tail flits coming into the Shub in the *
|
|
* TAIL_TO field. An internal counter associated with this register *
|
|
* is incremented every 128 II internal clocks (7 bits). The counter *
|
|
* starts counting anytime a header micropacket is received and stops *
|
|
* counting (and resets to zero) any time a micropacket with a Tail *
|
|
* bit is received. Once the counter reaches the threshold value *
|
|
* programmed in this register, it generates an interrupt to the *
|
|
* processor that is programmed into the IIDSR. The counter saturates *
|
|
* (does not roll over) at its maximum value, so it cannot cause *
|
|
* another interrupt until after it is cleared. *
|
|
* The register also contains the Read Response Timeout values. The *
|
|
* Prescalar is 23 bits, and counts II clocks. An internal counter *
|
|
* increments on every II clock and when it reaches the value in the *
|
|
* Prescalar field, all IPRTE registers with their valid bits set *
|
|
* have their Read Response timers bumped. Whenever any of them match *
|
|
* the value in the RRSP_TO field, a Read Response Timeout has *
|
|
* occurred, and error handling occurs as described in the Error *
|
|
* Handling section of this document. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ixtt_u {
|
|
u64 ii_ixtt_regval;
|
|
struct {
|
|
u64 i_tail_to:26;
|
|
u64 i_rsvd_1:6;
|
|
u64 i_rrsp_ps:23;
|
|
u64 i_rrsp_to:5;
|
|
u64 i_rsvd:4;
|
|
} ii_ixtt_fld_s;
|
|
} ii_ixtt_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Writing a 1 to the fields of this register clears the appropriate *
|
|
* error bits in other areas of SHub. Note that when the *
|
|
* E_PRB_x bits are used to clear error bits in PRB registers, *
|
|
* SPUR_RD and SPUR_WR may persist, because they require additional *
|
|
* action to clear them. See the IPRBx and IXSS Register *
|
|
* specifications. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ieclr_u {
|
|
u64 ii_ieclr_regval;
|
|
struct {
|
|
u64 i_e_prb_0:1;
|
|
u64 i_rsvd:7;
|
|
u64 i_e_prb_8:1;
|
|
u64 i_e_prb_9:1;
|
|
u64 i_e_prb_a:1;
|
|
u64 i_e_prb_b:1;
|
|
u64 i_e_prb_c:1;
|
|
u64 i_e_prb_d:1;
|
|
u64 i_e_prb_e:1;
|
|
u64 i_e_prb_f:1;
|
|
u64 i_e_crazy:1;
|
|
u64 i_e_bte_0:1;
|
|
u64 i_e_bte_1:1;
|
|
u64 i_reserved_1:10;
|
|
u64 i_spur_rd_hdr:1;
|
|
u64 i_cam_intr_to:1;
|
|
u64 i_cam_overflow:1;
|
|
u64 i_cam_read_miss:1;
|
|
u64 i_ioq_rep_underflow:1;
|
|
u64 i_ioq_req_underflow:1;
|
|
u64 i_ioq_rep_overflow:1;
|
|
u64 i_ioq_req_overflow:1;
|
|
u64 i_iiq_rep_overflow:1;
|
|
u64 i_iiq_req_overflow:1;
|
|
u64 i_ii_xn_rep_cred_overflow:1;
|
|
u64 i_ii_xn_req_cred_overflow:1;
|
|
u64 i_ii_xn_invalid_cmd:1;
|
|
u64 i_xn_ii_invalid_cmd:1;
|
|
u64 i_reserved_2:21;
|
|
} ii_ieclr_fld_s;
|
|
} ii_ieclr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register controls both BTEs. SOFT_RESET is intended for *
|
|
* recovery after an error. COUNT controls the total number of CRBs *
|
|
* that both BTEs (combined) can use, which affects total BTE *
|
|
* bandwidth. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibcr_u {
|
|
u64 ii_ibcr_regval;
|
|
struct {
|
|
u64 i_count:4;
|
|
u64 i_rsvd_1:4;
|
|
u64 i_soft_reset:1;
|
|
u64 i_rsvd:55;
|
|
} ii_ibcr_fld_s;
|
|
} ii_ibcr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the header of a spurious read response *
|
|
* received from Crosstalk. A spurious read response is defined as a *
|
|
* read response received by II from a widget for which (1) the SIDN *
|
|
* has a value between 1 and 7, inclusive (II never sends requests to *
|
|
* these widgets (2) there is no valid IPRTE register which *
|
|
* corresponds to the TNUM, or (3) the widget indicated in SIDN is *
|
|
* not the same as the widget recorded in the IPRTE register *
|
|
* referenced by the TNUM. If this condition is true, and if the *
|
|
* IXSS[VALID] bit is clear, then the header of the spurious read *
|
|
* response is capture in IXSM and IXSS, and IXSS[VALID] is set. The *
|
|
* errant header is thereby captured, and no further spurious read *
|
|
* respones are captured until IXSS[VALID] is cleared by setting the *
|
|
* appropriate bit in IECLR.Everytime a spurious read response is *
|
|
* detected, the SPUR_RD bit of the PRB corresponding to the incoming *
|
|
* message's SIDN field is set. This always happens, regarless of *
|
|
* whether a header is captured. The programmer should check *
|
|
* IXSM[SIDN] to determine which widget sent the spurious response, *
|
|
* because there may be more than one SPUR_RD bit set in the PRB *
|
|
* registers. The widget indicated by IXSM[SIDN] was the first *
|
|
* spurious read response to be received since the last time *
|
|
* IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB *
|
|
* will be set. Any SPUR_RD bits in any other PRB registers indicate *
|
|
* spurious messages from other widets which were detected after the *
|
|
* header was captured.. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ixsm_u {
|
|
u64 ii_ixsm_regval;
|
|
struct {
|
|
u64 i_byte_en:32;
|
|
u64 i_reserved:1;
|
|
u64 i_tag:3;
|
|
u64 i_alt_pactyp:4;
|
|
u64 i_bo:1;
|
|
u64 i_error:1;
|
|
u64 i_vbpm:1;
|
|
u64 i_gbr:1;
|
|
u64 i_ds:2;
|
|
u64 i_ct:1;
|
|
u64 i_tnum:5;
|
|
u64 i_pactyp:4;
|
|
u64 i_sidn:4;
|
|
u64 i_didn:4;
|
|
} ii_ixsm_fld_s;
|
|
} ii_ixsm_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the sideband bits of a spurious read *
|
|
* response received from Crosstalk. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ixss_u {
|
|
u64 ii_ixss_regval;
|
|
struct {
|
|
u64 i_sideband:8;
|
|
u64 i_rsvd:55;
|
|
u64 i_valid:1;
|
|
} ii_ixss_fld_s;
|
|
} ii_ixss_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register enables software to access the II LLP's test port. *
|
|
* Refer to the LLP 2.5 documentation for an explanation of the test *
|
|
* port. Software can write to this register to program the values *
|
|
* for the control fields (TestErrCapture, TestClear, TestFlit, *
|
|
* TestMask and TestSeed). Similarly, software can read from this *
|
|
* register to obtain the values of the test port's status outputs *
|
|
* (TestCBerr, TestValid and TestData). *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ilct_u {
|
|
u64 ii_ilct_regval;
|
|
struct {
|
|
u64 i_test_seed:20;
|
|
u64 i_test_mask:8;
|
|
u64 i_test_data:20;
|
|
u64 i_test_valid:1;
|
|
u64 i_test_cberr:1;
|
|
u64 i_test_flit:3;
|
|
u64 i_test_clear:1;
|
|
u64 i_test_err_capture:1;
|
|
u64 i_rsvd:9;
|
|
} ii_ilct_fld_s;
|
|
} ii_ilct_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* If the II detects an illegal incoming Duplonet packet (request or *
|
|
* reply) when VALID==0 in the IIEPH1 register, then it saves the *
|
|
* contents of the packet's header flit in the IIEPH1 and IIEPH2 *
|
|
* registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, *
|
|
* and assigns a value to the ERR_TYPE field which indicates the *
|
|
* specific nature of the error. The II recognizes four different *
|
|
* types of errors: short request packets (ERR_TYPE==2), short reply *
|
|
* packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long *
|
|
* reply packets (ERR_TYPE==5). The encodings for these types of *
|
|
* errors were chosen to be consistent with the same types of errors *
|
|
* indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in *
|
|
* the LB unit). If the II detects an illegal incoming Duplonet *
|
|
* packet when VALID==1 in the IIEPH1 register, then it merely sets *
|
|
* the OVERRUN bit to indicate that a subsequent error has happened, *
|
|
* and does nothing further. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iieph1_u {
|
|
u64 ii_iieph1_regval;
|
|
struct {
|
|
u64 i_command:7;
|
|
u64 i_rsvd_5:1;
|
|
u64 i_suppl:14;
|
|
u64 i_rsvd_4:1;
|
|
u64 i_source:14;
|
|
u64 i_rsvd_3:1;
|
|
u64 i_err_type:4;
|
|
u64 i_rsvd_2:4;
|
|
u64 i_overrun:1;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_valid:1;
|
|
u64 i_rsvd:13;
|
|
} ii_iieph1_fld_s;
|
|
} ii_iieph1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register holds the Address field from the header flit of an *
|
|
* incoming erroneous Duplonet packet, along with the tail bit which *
|
|
* accompanied this header flit. This register is essentially an *
|
|
* extension of IIEPH1. Two registers were necessary because the 64 *
|
|
* bits available in only a single register were insufficient to *
|
|
* capture the entire header flit of an erroneous packet. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iieph2_u {
|
|
u64 ii_iieph2_regval;
|
|
struct {
|
|
u64 i_rsvd_0:3;
|
|
u64 i_address:47;
|
|
u64 i_rsvd_1:10;
|
|
u64 i_tail:1;
|
|
u64 i_rsvd:3;
|
|
} ii_iieph2_fld_s;
|
|
} ii_iieph2_u_t;
|
|
|
|
/******************************/
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register's value is a bit vector that guards access from SXBs *
|
|
* to local registers within the II as well as to external Crosstalk *
|
|
* widgets *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_islapr_u {
|
|
u64 ii_islapr_regval;
|
|
struct {
|
|
u64 i_region:64;
|
|
} ii_islapr_fld_s;
|
|
} ii_islapr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* A write to this register of the 56-bit value "Pup+Bun" will cause *
|
|
* the bit in the ISLAPR register corresponding to the region of the *
|
|
* requestor to be set (access allowed). (
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_islapo_u {
|
|
u64 ii_islapo_regval;
|
|
struct {
|
|
u64 i_io_sbx_ovrride:56;
|
|
u64 i_rsvd:8;
|
|
} ii_islapo_fld_s;
|
|
} ii_islapo_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Determines how long the wrapper will wait aftr an interrupt is *
|
|
* initially issued from the II before it times out the outstanding *
|
|
* interrupt and drops it from the interrupt queue. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iwi_u {
|
|
u64 ii_iwi_regval;
|
|
struct {
|
|
u64 i_prescale:24;
|
|
u64 i_rsvd:8;
|
|
u64 i_timeout:8;
|
|
u64 i_rsvd1:8;
|
|
u64 i_intrpt_retry_period:8;
|
|
u64 i_rsvd2:8;
|
|
} ii_iwi_fld_s;
|
|
} ii_iwi_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Log errors which have occurred in the II wrapper. The errors are *
|
|
* cleared by writing to the IECLR register. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iwel_u {
|
|
u64 ii_iwel_regval;
|
|
struct {
|
|
u64 i_intr_timed_out:1;
|
|
u64 i_rsvd:7;
|
|
u64 i_cam_overflow:1;
|
|
u64 i_cam_read_miss:1;
|
|
u64 i_rsvd1:2;
|
|
u64 i_ioq_rep_underflow:1;
|
|
u64 i_ioq_req_underflow:1;
|
|
u64 i_ioq_rep_overflow:1;
|
|
u64 i_ioq_req_overflow:1;
|
|
u64 i_iiq_rep_overflow:1;
|
|
u64 i_iiq_req_overflow:1;
|
|
u64 i_rsvd2:6;
|
|
u64 i_ii_xn_rep_cred_over_under:1;
|
|
u64 i_ii_xn_req_cred_over_under:1;
|
|
u64 i_rsvd3:6;
|
|
u64 i_ii_xn_invalid_cmd:1;
|
|
u64 i_xn_ii_invalid_cmd:1;
|
|
u64 i_rsvd4:30;
|
|
} ii_iwel_fld_s;
|
|
} ii_iwel_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Controls the II wrapper. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iwc_u {
|
|
u64 ii_iwc_regval;
|
|
struct {
|
|
u64 i_dma_byte_swap:1;
|
|
u64 i_rsvd:3;
|
|
u64 i_cam_read_lines_reset:1;
|
|
u64 i_rsvd1:3;
|
|
u64 i_ii_xn_cred_over_under_log:1;
|
|
u64 i_rsvd2:19;
|
|
u64 i_xn_rep_iq_depth:5;
|
|
u64 i_rsvd3:3;
|
|
u64 i_xn_req_iq_depth:5;
|
|
u64 i_rsvd4:3;
|
|
u64 i_iiq_depth:6;
|
|
u64 i_rsvd5:12;
|
|
u64 i_force_rep_cred:1;
|
|
u64 i_force_req_cred:1;
|
|
} ii_iwc_fld_s;
|
|
} ii_iwc_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Status in the II wrapper. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iws_u {
|
|
u64 ii_iws_regval;
|
|
struct {
|
|
u64 i_xn_rep_iq_credits:5;
|
|
u64 i_rsvd:3;
|
|
u64 i_xn_req_iq_credits:5;
|
|
u64 i_rsvd1:51;
|
|
} ii_iws_fld_s;
|
|
} ii_iws_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Masks errors in the IWEL register. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iweim_u {
|
|
u64 ii_iweim_regval;
|
|
struct {
|
|
u64 i_intr_timed_out:1;
|
|
u64 i_rsvd:7;
|
|
u64 i_cam_overflow:1;
|
|
u64 i_cam_read_miss:1;
|
|
u64 i_rsvd1:2;
|
|
u64 i_ioq_rep_underflow:1;
|
|
u64 i_ioq_req_underflow:1;
|
|
u64 i_ioq_rep_overflow:1;
|
|
u64 i_ioq_req_overflow:1;
|
|
u64 i_iiq_rep_overflow:1;
|
|
u64 i_iiq_req_overflow:1;
|
|
u64 i_rsvd2:6;
|
|
u64 i_ii_xn_rep_cred_overflow:1;
|
|
u64 i_ii_xn_req_cred_overflow:1;
|
|
u64 i_rsvd3:6;
|
|
u64 i_ii_xn_invalid_cmd:1;
|
|
u64 i_xn_ii_invalid_cmd:1;
|
|
u64 i_rsvd4:30;
|
|
} ii_iweim_fld_s;
|
|
} ii_iweim_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* A write to this register causes a particular field in the *
|
|
* corresponding widget's PRB entry to be adjusted up or down by 1. *
|
|
* This counter should be used when recovering from error and reset *
|
|
* conditions. Note that software would be capable of causing *
|
|
* inadvertent overflow or underflow of these counters. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ipca_u {
|
|
u64 ii_ipca_regval;
|
|
struct {
|
|
u64 i_wid:4;
|
|
u64 i_adjust:1;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_field:2;
|
|
u64 i_rsvd:54;
|
|
} ii_ipca_fld_s;
|
|
} ii_ipca_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte0a_u {
|
|
u64 ii_iprte0a_regval;
|
|
struct {
|
|
u64 i_rsvd_1:54;
|
|
u64 i_widget:4;
|
|
u64 i_to_cnt:5;
|
|
u64 i_vld:1;
|
|
} ii_iprte0a_fld_s;
|
|
} ii_iprte0a_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte1a_u {
|
|
u64 ii_iprte1a_regval;
|
|
struct {
|
|
u64 i_rsvd_1:54;
|
|
u64 i_widget:4;
|
|
u64 i_to_cnt:5;
|
|
u64 i_vld:1;
|
|
} ii_iprte1a_fld_s;
|
|
} ii_iprte1a_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte2a_u {
|
|
u64 ii_iprte2a_regval;
|
|
struct {
|
|
u64 i_rsvd_1:54;
|
|
u64 i_widget:4;
|
|
u64 i_to_cnt:5;
|
|
u64 i_vld:1;
|
|
} ii_iprte2a_fld_s;
|
|
} ii_iprte2a_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte3a_u {
|
|
u64 ii_iprte3a_regval;
|
|
struct {
|
|
u64 i_rsvd_1:54;
|
|
u64 i_widget:4;
|
|
u64 i_to_cnt:5;
|
|
u64 i_vld:1;
|
|
} ii_iprte3a_fld_s;
|
|
} ii_iprte3a_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte4a_u {
|
|
u64 ii_iprte4a_regval;
|
|
struct {
|
|
u64 i_rsvd_1:54;
|
|
u64 i_widget:4;
|
|
u64 i_to_cnt:5;
|
|
u64 i_vld:1;
|
|
} ii_iprte4a_fld_s;
|
|
} ii_iprte4a_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte5a_u {
|
|
u64 ii_iprte5a_regval;
|
|
struct {
|
|
u64 i_rsvd_1:54;
|
|
u64 i_widget:4;
|
|
u64 i_to_cnt:5;
|
|
u64 i_vld:1;
|
|
} ii_iprte5a_fld_s;
|
|
} ii_iprte5a_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte6a_u {
|
|
u64 ii_iprte6a_regval;
|
|
struct {
|
|
u64 i_rsvd_1:54;
|
|
u64 i_widget:4;
|
|
u64 i_to_cnt:5;
|
|
u64 i_vld:1;
|
|
} ii_iprte6a_fld_s;
|
|
} ii_iprte6a_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte7a_u {
|
|
u64 ii_iprte7a_regval;
|
|
struct {
|
|
u64 i_rsvd_1:54;
|
|
u64 i_widget:4;
|
|
u64 i_to_cnt:5;
|
|
u64 i_vld:1;
|
|
} ii_iprtea7_fld_s;
|
|
} ii_iprte7a_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte0b_u {
|
|
u64 ii_iprte0b_regval;
|
|
struct {
|
|
u64 i_rsvd_1:3;
|
|
u64 i_address:47;
|
|
u64 i_init:3;
|
|
u64 i_source:11;
|
|
} ii_iprte0b_fld_s;
|
|
} ii_iprte0b_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte1b_u {
|
|
u64 ii_iprte1b_regval;
|
|
struct {
|
|
u64 i_rsvd_1:3;
|
|
u64 i_address:47;
|
|
u64 i_init:3;
|
|
u64 i_source:11;
|
|
} ii_iprte1b_fld_s;
|
|
} ii_iprte1b_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte2b_u {
|
|
u64 ii_iprte2b_regval;
|
|
struct {
|
|
u64 i_rsvd_1:3;
|
|
u64 i_address:47;
|
|
u64 i_init:3;
|
|
u64 i_source:11;
|
|
} ii_iprte2b_fld_s;
|
|
} ii_iprte2b_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte3b_u {
|
|
u64 ii_iprte3b_regval;
|
|
struct {
|
|
u64 i_rsvd_1:3;
|
|
u64 i_address:47;
|
|
u64 i_init:3;
|
|
u64 i_source:11;
|
|
} ii_iprte3b_fld_s;
|
|
} ii_iprte3b_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte4b_u {
|
|
u64 ii_iprte4b_regval;
|
|
struct {
|
|
u64 i_rsvd_1:3;
|
|
u64 i_address:47;
|
|
u64 i_init:3;
|
|
u64 i_source:11;
|
|
} ii_iprte4b_fld_s;
|
|
} ii_iprte4b_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte5b_u {
|
|
u64 ii_iprte5b_regval;
|
|
struct {
|
|
u64 i_rsvd_1:3;
|
|
u64 i_address:47;
|
|
u64 i_init:3;
|
|
u64 i_source:11;
|
|
} ii_iprte5b_fld_s;
|
|
} ii_iprte5b_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte6b_u {
|
|
u64 ii_iprte6b_regval;
|
|
struct {
|
|
u64 i_rsvd_1:3;
|
|
u64 i_address:47;
|
|
u64 i_init:3;
|
|
u64 i_source:11;
|
|
|
|
} ii_iprte6b_fld_s;
|
|
} ii_iprte6b_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* There are 8 instances of this register. This register contains *
|
|
* the information that the II has to remember once it has launched a *
|
|
* PIO Read operation. The contents are used to form the correct *
|
|
* Router Network packet and direct the Crosstalk reply to the *
|
|
* appropriate processor. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iprte7b_u {
|
|
u64 ii_iprte7b_regval;
|
|
struct {
|
|
u64 i_rsvd_1:3;
|
|
u64 i_address:47;
|
|
u64 i_init:3;
|
|
u64 i_source:11;
|
|
} ii_iprte7b_fld_s;
|
|
} ii_iprte7b_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: SHub II contains a feature which did not exist in *
|
|
* the Hub which automatically cleans up after a Read Response *
|
|
* timeout, including deallocation of the IPRTE and recovery of IBuf *
|
|
* space. The inclusion of this register in SHub is for backward *
|
|
* compatibility *
|
|
* A write to this register causes an entry from the table of *
|
|
* outstanding PIO Read Requests to be freed and returned to the *
|
|
* stack of free entries. This register is used in handling the *
|
|
* timeout errors that result in a PIO Reply never returning from *
|
|
* Crosstalk. *
|
|
* Note that this register does not affect the contents of the IPRTE *
|
|
* registers. The Valid bits in those registers have to be *
|
|
* specifically turned off by software. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ipdr_u {
|
|
u64 ii_ipdr_regval;
|
|
struct {
|
|
u64 i_te:3;
|
|
u64 i_rsvd_1:1;
|
|
u64 i_pnd:1;
|
|
u64 i_init_rpcnt:1;
|
|
u64 i_rsvd:58;
|
|
} ii_ipdr_fld_s;
|
|
} ii_ipdr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* A write to this register causes a CRB entry to be returned to the *
|
|
* queue of free CRBs. The entry should have previously been cleared *
|
|
* (mark bit) via backdoor access to the pertinent CRB entry. This *
|
|
* register is used in the last step of handling the errors that are *
|
|
* captured and marked in CRB entries. Briefly: 1) first error for *
|
|
* DMA write from a particular device, and first error for a *
|
|
* particular BTE stream, lead to a marked CRB entry, and processor *
|
|
* interrupt, 2) software reads the error information captured in the *
|
|
* CRB entry, and presumably takes some corrective action, 3) *
|
|
* software clears the mark bit, and finally 4) software writes to *
|
|
* the ICDR register to return the CRB entry to the list of free CRB *
|
|
* entries. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icdr_u {
|
|
u64 ii_icdr_regval;
|
|
struct {
|
|
u64 i_crb_num:4;
|
|
u64 i_pnd:1;
|
|
u64 i_rsvd:59;
|
|
} ii_icdr_fld_s;
|
|
} ii_icdr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register provides debug access to two FIFOs inside of II. *
|
|
* Both IOQ_MAX* fields of this register contain the instantaneous *
|
|
* depth (in units of the number of available entries) of the *
|
|
* associated IOQ FIFO. A read of this register will return the *
|
|
* number of free entries on each FIFO at the time of the read. So *
|
|
* when a FIFO is idle, the associated field contains the maximum *
|
|
* depth of the FIFO. This register is writable for debug reasons *
|
|
* and is intended to be written with the maximum desired FIFO depth *
|
|
* while the FIFO is idle. Software must assure that II is idle when *
|
|
* this register is written. If there are any active entries in any *
|
|
* of these FIFOs when this register is written, the results are *
|
|
* undefined. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ifdr_u {
|
|
u64 ii_ifdr_regval;
|
|
struct {
|
|
u64 i_ioq_max_rq:7;
|
|
u64 i_set_ioq_rq:1;
|
|
u64 i_ioq_max_rp:7;
|
|
u64 i_set_ioq_rp:1;
|
|
u64 i_rsvd:48;
|
|
} ii_ifdr_fld_s;
|
|
} ii_ifdr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register allows the II to become sluggish in removing *
|
|
* messages from its inbound queue (IIQ). This will cause messages to *
|
|
* back up in either virtual channel. Disabling the "molasses" mode *
|
|
* subsequently allows the II to be tested under stress. In the *
|
|
* sluggish ("Molasses") mode, the localized effects of congestion *
|
|
* can be observed. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iiap_u {
|
|
u64 ii_iiap_regval;
|
|
struct {
|
|
u64 i_rq_mls:6;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_rp_mls:6;
|
|
u64 i_rsvd:50;
|
|
} ii_iiap_fld_s;
|
|
} ii_iiap_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register allows several parameters of CRB operation to be *
|
|
* set. Note that writing to this register can have catastrophic side *
|
|
* effects, if the CRB is not quiescent, i.e. if the CRB is *
|
|
* processing protocol messages when the write occurs. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icmr_u {
|
|
u64 ii_icmr_regval;
|
|
struct {
|
|
u64 i_sp_msg:1;
|
|
u64 i_rd_hdr:1;
|
|
u64 i_rsvd_4:2;
|
|
u64 i_c_cnt:4;
|
|
u64 i_rsvd_3:4;
|
|
u64 i_clr_rqpd:1;
|
|
u64 i_clr_rppd:1;
|
|
u64 i_rsvd_2:2;
|
|
u64 i_fc_cnt:4;
|
|
u64 i_crb_vld:15;
|
|
u64 i_crb_mark:15;
|
|
u64 i_rsvd_1:2;
|
|
u64 i_precise:1;
|
|
u64 i_rsvd:11;
|
|
} ii_icmr_fld_s;
|
|
} ii_icmr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register allows control of the table portion of the CRB *
|
|
* logic via software. Control operations from this register have *
|
|
* priority over all incoming Crosstalk or BTE requests. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_iccr_u {
|
|
u64 ii_iccr_regval;
|
|
struct {
|
|
u64 i_crb_num:4;
|
|
u64 i_rsvd_1:4;
|
|
u64 i_cmd:8;
|
|
u64 i_pending:1;
|
|
u64 i_rsvd:47;
|
|
} ii_iccr_fld_s;
|
|
} ii_iccr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register allows the maximum timeout value to be programmed. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icto_u {
|
|
u64 ii_icto_regval;
|
|
struct {
|
|
u64 i_timeout:8;
|
|
u64 i_rsvd:56;
|
|
} ii_icto_fld_s;
|
|
} ii_icto_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register allows the timeout prescalar to be programmed. An *
|
|
* internal counter is associated with this register. When the *
|
|
* internal counter reaches the value of the PRESCALE field, the *
|
|
* timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] *
|
|
* field). The internal counter resets to zero, and then continues *
|
|
* counting. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ictp_u {
|
|
u64 ii_ictp_regval;
|
|
struct {
|
|
u64 i_prescale:24;
|
|
u64 i_rsvd:40;
|
|
} ii_ictp_fld_s;
|
|
} ii_ictp_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
|
|
* used for Crosstalk operations (both cacheline and partial *
|
|
* operations) or BTE/IO. Because the CRB entries are very wide, five *
|
|
* registers (_A to _E) are required to read and write each entry. *
|
|
* The CRB Entry registers can be conceptualized as rows and columns *
|
|
* (illustrated in the table above). Each row contains the 4 *
|
|
* registers required for a single CRB Entry. The first doubleword *
|
|
* (column) for each entry is labeled A, and the second doubleword *
|
|
* (higher address) is labeled B, the third doubleword is labeled C, *
|
|
* the fourth doubleword is labeled D and the fifth doubleword is *
|
|
* labeled E. All CRB entries have their addresses on a quarter *
|
|
* cacheline aligned boundary. *
|
|
* Upon reset, only the following fields are initialized: valid *
|
|
* (VLD), priority count, timeout, timeout valid, and context valid. *
|
|
* All other bits should be cleared by software before use (after *
|
|
* recovering any potential error state from before the reset). *
|
|
* The following four tables summarize the format for the four *
|
|
* registers that are used for each ICRB# Entry. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icrb0_a_u {
|
|
u64 ii_icrb0_a_regval;
|
|
struct {
|
|
u64 ia_iow:1;
|
|
u64 ia_vld:1;
|
|
u64 ia_addr:47;
|
|
u64 ia_tnum:5;
|
|
u64 ia_sidn:4;
|
|
u64 ia_rsvd:6;
|
|
} ii_icrb0_a_fld_s;
|
|
} ii_icrb0_a_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
|
|
* used for Crosstalk operations (both cacheline and partial *
|
|
* operations) or BTE/IO. Because the CRB entries are very wide, five *
|
|
* registers (_A to _E) are required to read and write each entry. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icrb0_b_u {
|
|
u64 ii_icrb0_b_regval;
|
|
struct {
|
|
u64 ib_xt_err:1;
|
|
u64 ib_mark:1;
|
|
u64 ib_ln_uce:1;
|
|
u64 ib_errcode:3;
|
|
u64 ib_error:1;
|
|
u64 ib_stall__bte_1:1;
|
|
u64 ib_stall__bte_0:1;
|
|
u64 ib_stall__intr:1;
|
|
u64 ib_stall_ib:1;
|
|
u64 ib_intvn:1;
|
|
u64 ib_wb:1;
|
|
u64 ib_hold:1;
|
|
u64 ib_ack:1;
|
|
u64 ib_resp:1;
|
|
u64 ib_ack_cnt:11;
|
|
u64 ib_rsvd:7;
|
|
u64 ib_exc:5;
|
|
u64 ib_init:3;
|
|
u64 ib_imsg:8;
|
|
u64 ib_imsgtype:2;
|
|
u64 ib_use_old:1;
|
|
u64 ib_rsvd_1:11;
|
|
} ii_icrb0_b_fld_s;
|
|
} ii_icrb0_b_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
|
|
* used for Crosstalk operations (both cacheline and partial *
|
|
* operations) or BTE/IO. Because the CRB entries are very wide, five *
|
|
* registers (_A to _E) are required to read and write each entry. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icrb0_c_u {
|
|
u64 ii_icrb0_c_regval;
|
|
struct {
|
|
u64 ic_source:15;
|
|
u64 ic_size:2;
|
|
u64 ic_ct:1;
|
|
u64 ic_bte_num:1;
|
|
u64 ic_gbr:1;
|
|
u64 ic_resprqd:1;
|
|
u64 ic_bo:1;
|
|
u64 ic_suppl:15;
|
|
u64 ic_rsvd:27;
|
|
} ii_icrb0_c_fld_s;
|
|
} ii_icrb0_c_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
|
|
* used for Crosstalk operations (both cacheline and partial *
|
|
* operations) or BTE/IO. Because the CRB entries are very wide, five *
|
|
* registers (_A to _E) are required to read and write each entry. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icrb0_d_u {
|
|
u64 ii_icrb0_d_regval;
|
|
struct {
|
|
u64 id_pa_be:43;
|
|
u64 id_bte_op:1;
|
|
u64 id_pr_psc:4;
|
|
u64 id_pr_cnt:4;
|
|
u64 id_sleep:1;
|
|
u64 id_rsvd:11;
|
|
} ii_icrb0_d_fld_s;
|
|
} ii_icrb0_d_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
|
|
* used for Crosstalk operations (both cacheline and partial *
|
|
* operations) or BTE/IO. Because the CRB entries are very wide, five *
|
|
* registers (_A to _E) are required to read and write each entry. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icrb0_e_u {
|
|
u64 ii_icrb0_e_regval;
|
|
struct {
|
|
u64 ie_timeout:8;
|
|
u64 ie_context:15;
|
|
u64 ie_rsvd:1;
|
|
u64 ie_tvld:1;
|
|
u64 ie_cvld:1;
|
|
u64 ie_rsvd_0:38;
|
|
} ii_icrb0_e_fld_s;
|
|
} ii_icrb0_e_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the lower 64 bits of the header of the *
|
|
* spurious message captured by II. Valid when the SP_MSG bit in ICMR *
|
|
* register is set. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icsml_u {
|
|
u64 ii_icsml_regval;
|
|
struct {
|
|
u64 i_tt_addr:47;
|
|
u64 i_newsuppl_ex:14;
|
|
u64 i_reserved:2;
|
|
u64 i_overflow:1;
|
|
} ii_icsml_fld_s;
|
|
} ii_icsml_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the middle 64 bits of the header of the *
|
|
* spurious message captured by II. Valid when the SP_MSG bit in ICMR *
|
|
* register is set. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icsmm_u {
|
|
u64 ii_icsmm_regval;
|
|
struct {
|
|
u64 i_tt_ack_cnt:11;
|
|
u64 i_reserved:53;
|
|
} ii_icsmm_fld_s;
|
|
} ii_icsmm_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the microscopic state, all the inputs to *
|
|
* the protocol table, captured with the spurious message. Valid when *
|
|
* the SP_MSG bit in the ICMR register is set. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_icsmh_u {
|
|
u64 ii_icsmh_regval;
|
|
struct {
|
|
u64 i_tt_vld:1;
|
|
u64 i_xerr:1;
|
|
u64 i_ft_cwact_o:1;
|
|
u64 i_ft_wact_o:1;
|
|
u64 i_ft_active_o:1;
|
|
u64 i_sync:1;
|
|
u64 i_mnusg:1;
|
|
u64 i_mnusz:1;
|
|
u64 i_plusz:1;
|
|
u64 i_plusg:1;
|
|
u64 i_tt_exc:5;
|
|
u64 i_tt_wb:1;
|
|
u64 i_tt_hold:1;
|
|
u64 i_tt_ack:1;
|
|
u64 i_tt_resp:1;
|
|
u64 i_tt_intvn:1;
|
|
u64 i_g_stall_bte1:1;
|
|
u64 i_g_stall_bte0:1;
|
|
u64 i_g_stall_il:1;
|
|
u64 i_g_stall_ib:1;
|
|
u64 i_tt_imsg:8;
|
|
u64 i_tt_imsgtype:2;
|
|
u64 i_tt_use_old:1;
|
|
u64 i_tt_respreqd:1;
|
|
u64 i_tt_bte_num:1;
|
|
u64 i_cbn:1;
|
|
u64 i_match:1;
|
|
u64 i_rpcnt_lt_34:1;
|
|
u64 i_rpcnt_ge_34:1;
|
|
u64 i_rpcnt_lt_18:1;
|
|
u64 i_rpcnt_ge_18:1;
|
|
u64 i_rpcnt_lt_2:1;
|
|
u64 i_rpcnt_ge_2:1;
|
|
u64 i_rqcnt_lt_18:1;
|
|
u64 i_rqcnt_ge_18:1;
|
|
u64 i_rqcnt_lt_2:1;
|
|
u64 i_rqcnt_ge_2:1;
|
|
u64 i_tt_device:7;
|
|
u64 i_tt_init:3;
|
|
u64 i_reserved:5;
|
|
} ii_icsmh_fld_s;
|
|
} ii_icsmh_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* The Shub DEBUG unit provides a 3-bit selection signal to the *
|
|
* II core and a 3-bit selection signal to the fsbclk domain in the II *
|
|
* wrapper. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_idbss_u {
|
|
u64 ii_idbss_regval;
|
|
struct {
|
|
u64 i_iioclk_core_submenu:3;
|
|
u64 i_rsvd:5;
|
|
u64 i_fsbclk_wrapper_submenu:3;
|
|
u64 i_rsvd_1:5;
|
|
u64 i_iioclk_menu:5;
|
|
u64 i_rsvd_2:43;
|
|
} ii_idbss_fld_s;
|
|
} ii_idbss_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: This register is used to set up the length for a *
|
|
* transfer and then to monitor the progress of that transfer. This *
|
|
* register needs to be initialized before a transfer is started. A *
|
|
* legitimate write to this register will set the Busy bit, clear the *
|
|
* Error bit, and initialize the length to the value desired. *
|
|
* While the transfer is in progress, hardware will decrement the *
|
|
* length field with each successful block that is copied. Once the *
|
|
* transfer completes, hardware will clear the Busy bit. The length *
|
|
* field will also contain the number of cache lines left to be *
|
|
* transferred. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibls0_u {
|
|
u64 ii_ibls0_regval;
|
|
struct {
|
|
u64 i_length:16;
|
|
u64 i_error:1;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_busy:1;
|
|
u64 i_rsvd:43;
|
|
} ii_ibls0_fld_s;
|
|
} ii_ibls0_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register should be loaded before a transfer is started. The *
|
|
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
|
|
* address as described in Section 1.3, Figure2 and Figure3. Since *
|
|
* the bottom 7 bits of the address are always taken to be zero, BTE *
|
|
* transfers are always cacheline-aligned. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibsa0_u {
|
|
u64 ii_ibsa0_regval;
|
|
struct {
|
|
u64 i_rsvd_1:7;
|
|
u64 i_addr:42;
|
|
u64 i_rsvd:15;
|
|
} ii_ibsa0_fld_s;
|
|
} ii_ibsa0_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register should be loaded before a transfer is started. The *
|
|
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
|
|
* address as described in Section 1.3, Figure2 and Figure3. Since *
|
|
* the bottom 7 bits of the address are always taken to be zero, BTE *
|
|
* transfers are always cacheline-aligned. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibda0_u {
|
|
u64 ii_ibda0_regval;
|
|
struct {
|
|
u64 i_rsvd_1:7;
|
|
u64 i_addr:42;
|
|
u64 i_rsvd:15;
|
|
} ii_ibda0_fld_s;
|
|
} ii_ibda0_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Writing to this register sets up the attributes of the transfer *
|
|
* and initiates the transfer operation. Reading this register has *
|
|
* the side effect of terminating any transfer in progress. Note: *
|
|
* stopping a transfer midstream could have an adverse impact on the *
|
|
* other BTE. If a BTE stream has to be stopped (due to error *
|
|
* handling for example), both BTE streams should be stopped and *
|
|
* their transfers discarded. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibct0_u {
|
|
u64 ii_ibct0_regval;
|
|
struct {
|
|
u64 i_zerofill:1;
|
|
u64 i_rsvd_2:3;
|
|
u64 i_notify:1;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_poison:1;
|
|
u64 i_rsvd:55;
|
|
} ii_ibct0_fld_s;
|
|
} ii_ibct0_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the address to which the WINV is sent. *
|
|
* This address has to be cache line aligned. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibna0_u {
|
|
u64 ii_ibna0_regval;
|
|
struct {
|
|
u64 i_rsvd_1:7;
|
|
u64 i_addr:42;
|
|
u64 i_rsvd:15;
|
|
} ii_ibna0_fld_s;
|
|
} ii_ibna0_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the programmable level as well as the node *
|
|
* ID and PI unit of the processor to which the interrupt will be *
|
|
* sent. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibia0_u {
|
|
u64 ii_ibia0_regval;
|
|
struct {
|
|
u64 i_rsvd_2:1;
|
|
u64 i_node_id:11;
|
|
u64 i_rsvd_1:4;
|
|
u64 i_level:7;
|
|
u64 i_rsvd:41;
|
|
} ii_ibia0_fld_s;
|
|
} ii_ibia0_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Description: This register is used to set up the length for a *
|
|
* transfer and then to monitor the progress of that transfer. This *
|
|
* register needs to be initialized before a transfer is started. A *
|
|
* legitimate write to this register will set the Busy bit, clear the *
|
|
* Error bit, and initialize the length to the value desired. *
|
|
* While the transfer is in progress, hardware will decrement the *
|
|
* length field with each successful block that is copied. Once the *
|
|
* transfer completes, hardware will clear the Busy bit. The length *
|
|
* field will also contain the number of cache lines left to be *
|
|
* transferred. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibls1_u {
|
|
u64 ii_ibls1_regval;
|
|
struct {
|
|
u64 i_length:16;
|
|
u64 i_error:1;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_busy:1;
|
|
u64 i_rsvd:43;
|
|
} ii_ibls1_fld_s;
|
|
} ii_ibls1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register should be loaded before a transfer is started. The *
|
|
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
|
|
* address as described in Section 1.3, Figure2 and Figure3. Since *
|
|
* the bottom 7 bits of the address are always taken to be zero, BTE *
|
|
* transfers are always cacheline-aligned. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibsa1_u {
|
|
u64 ii_ibsa1_regval;
|
|
struct {
|
|
u64 i_rsvd_1:7;
|
|
u64 i_addr:33;
|
|
u64 i_rsvd:24;
|
|
} ii_ibsa1_fld_s;
|
|
} ii_ibsa1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register should be loaded before a transfer is started. The *
|
|
* address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
|
|
* address as described in Section 1.3, Figure2 and Figure3. Since *
|
|
* the bottom 7 bits of the address are always taken to be zero, BTE *
|
|
* transfers are always cacheline-aligned. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibda1_u {
|
|
u64 ii_ibda1_regval;
|
|
struct {
|
|
u64 i_rsvd_1:7;
|
|
u64 i_addr:33;
|
|
u64 i_rsvd:24;
|
|
} ii_ibda1_fld_s;
|
|
} ii_ibda1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* Writing to this register sets up the attributes of the transfer *
|
|
* and initiates the transfer operation. Reading this register has *
|
|
* the side effect of terminating any transfer in progress. Note: *
|
|
* stopping a transfer midstream could have an adverse impact on the *
|
|
* other BTE. If a BTE stream has to be stopped (due to error *
|
|
* handling for example), both BTE streams should be stopped and *
|
|
* their transfers discarded. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibct1_u {
|
|
u64 ii_ibct1_regval;
|
|
struct {
|
|
u64 i_zerofill:1;
|
|
u64 i_rsvd_2:3;
|
|
u64 i_notify:1;
|
|
u64 i_rsvd_1:3;
|
|
u64 i_poison:1;
|
|
u64 i_rsvd:55;
|
|
} ii_ibct1_fld_s;
|
|
} ii_ibct1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the address to which the WINV is sent. *
|
|
* This address has to be cache line aligned. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibna1_u {
|
|
u64 ii_ibna1_regval;
|
|
struct {
|
|
u64 i_rsvd_1:7;
|
|
u64 i_addr:33;
|
|
u64 i_rsvd:24;
|
|
} ii_ibna1_fld_s;
|
|
} ii_ibna1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register contains the programmable level as well as the node *
|
|
* ID and PI unit of the processor to which the interrupt will be *
|
|
* sent. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ibia1_u {
|
|
u64 ii_ibia1_regval;
|
|
struct {
|
|
u64 i_pi_id:1;
|
|
u64 i_node_id:8;
|
|
u64 i_rsvd_1:7;
|
|
u64 i_level:7;
|
|
u64 i_rsvd:41;
|
|
} ii_ibia1_fld_s;
|
|
} ii_ibia1_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* This register defines the resources that feed information into *
|
|
* the two performance counters located in the IO Performance *
|
|
* Profiling Register. There are 17 different quantities that can be *
|
|
* measured. Given these 17 different options, the two performance *
|
|
* counters have 15 of them in common; menu selections 0 through 0xE *
|
|
* are identical for each performance counter. As for the other two *
|
|
* options, one is available from one performance counter and the *
|
|
* other is available from the other performance counter. Hence, the *
|
|
* II supports all 17*16=272 possible combinations of quantities to *
|
|
* measure. *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ipcr_u {
|
|
u64 ii_ipcr_regval;
|
|
struct {
|
|
u64 i_ippr0_c:4;
|
|
u64 i_ippr1_c:4;
|
|
u64 i_icct:8;
|
|
u64 i_rsvd:48;
|
|
} ii_ipcr_fld_s;
|
|
} ii_ipcr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* *
|
|
* *
|
|
************************************************************************/
|
|
|
|
typedef union ii_ippr_u {
|
|
u64 ii_ippr_regval;
|
|
struct {
|
|
u64 i_ippr0:32;
|
|
u64 i_ippr1:32;
|
|
} ii_ippr_fld_s;
|
|
} ii_ippr_u_t;
|
|
|
|
/************************************************************************
|
|
* *
|
|
* The following defines which were not formed into structures are *
|
|
* probably indentical to another register, and the name of the *
|
|
* register is provided against each of these registers. This *
|
|
* information needs to be checked carefully *
|
|
* *
|
|
* IIO_ICRB1_A IIO_ICRB0_A *
|
|
* IIO_ICRB1_B IIO_ICRB0_B *
|
|
* IIO_ICRB1_C IIO_ICRB0_C *
|
|
* IIO_ICRB1_D IIO_ICRB0_D *
|
|
* IIO_ICRB1_E IIO_ICRB0_E *
|
|
* IIO_ICRB2_A IIO_ICRB0_A *
|
|
* IIO_ICRB2_B IIO_ICRB0_B *
|
|
* IIO_ICRB2_C IIO_ICRB0_C *
|
|
* IIO_ICRB2_D IIO_ICRB0_D *
|
|
* IIO_ICRB2_E IIO_ICRB0_E *
|
|
* IIO_ICRB3_A IIO_ICRB0_A *
|
|
* IIO_ICRB3_B IIO_ICRB0_B *
|
|
* IIO_ICRB3_C IIO_ICRB0_C *
|
|
* IIO_ICRB3_D IIO_ICRB0_D *
|
|
* IIO_ICRB3_E IIO_ICRB0_E *
|
|
* IIO_ICRB4_A IIO_ICRB0_A *
|
|
* IIO_ICRB4_B IIO_ICRB0_B *
|
|
* IIO_ICRB4_C IIO_ICRB0_C *
|
|
* IIO_ICRB4_D IIO_ICRB0_D *
|
|
* IIO_ICRB4_E IIO_ICRB0_E *
|
|
* IIO_ICRB5_A IIO_ICRB0_A *
|
|
* IIO_ICRB5_B IIO_ICRB0_B *
|
|
* IIO_ICRB5_C IIO_ICRB0_C *
|
|
* IIO_ICRB5_D IIO_ICRB0_D *
|
|
* IIO_ICRB5_E IIO_ICRB0_E *
|
|
* IIO_ICRB6_A IIO_ICRB0_A *
|
|
* IIO_ICRB6_B IIO_ICRB0_B *
|
|
* IIO_ICRB6_C IIO_ICRB0_C *
|
|
* IIO_ICRB6_D IIO_ICRB0_D *
|
|
* IIO_ICRB6_E IIO_ICRB0_E *
|
|
* IIO_ICRB7_A IIO_ICRB0_A *
|
|
* IIO_ICRB7_B IIO_ICRB0_B *
|
|
* IIO_ICRB7_C IIO_ICRB0_C *
|
|
* IIO_ICRB7_D IIO_ICRB0_D *
|
|
* IIO_ICRB7_E IIO_ICRB0_E *
|
|
* IIO_ICRB8_A IIO_ICRB0_A *
|
|
* IIO_ICRB8_B IIO_ICRB0_B *
|
|
* IIO_ICRB8_C IIO_ICRB0_C *
|
|
* IIO_ICRB8_D IIO_ICRB0_D *
|
|
* IIO_ICRB8_E IIO_ICRB0_E *
|
|
* IIO_ICRB9_A IIO_ICRB0_A *
|
|
* IIO_ICRB9_B IIO_ICRB0_B *
|
|
* IIO_ICRB9_C IIO_ICRB0_C *
|
|
* IIO_ICRB9_D IIO_ICRB0_D *
|
|
* IIO_ICRB9_E IIO_ICRB0_E *
|
|
* IIO_ICRBA_A IIO_ICRB0_A *
|
|
* IIO_ICRBA_B IIO_ICRB0_B *
|
|
* IIO_ICRBA_C IIO_ICRB0_C *
|
|
* IIO_ICRBA_D IIO_ICRB0_D *
|
|
* IIO_ICRBA_E IIO_ICRB0_E *
|
|
* IIO_ICRBB_A IIO_ICRB0_A *
|
|
* IIO_ICRBB_B IIO_ICRB0_B *
|
|
* IIO_ICRBB_C IIO_ICRB0_C *
|
|
* IIO_ICRBB_D IIO_ICRB0_D *
|
|
* IIO_ICRBB_E IIO_ICRB0_E *
|
|
* IIO_ICRBC_A IIO_ICRB0_A *
|
|
* IIO_ICRBC_B IIO_ICRB0_B *
|
|
* IIO_ICRBC_C IIO_ICRB0_C *
|
|
* IIO_ICRBC_D IIO_ICRB0_D *
|
|
* IIO_ICRBC_E IIO_ICRB0_E *
|
|
* IIO_ICRBD_A IIO_ICRB0_A *
|
|
* IIO_ICRBD_B IIO_ICRB0_B *
|
|
* IIO_ICRBD_C IIO_ICRB0_C *
|
|
* IIO_ICRBD_D IIO_ICRB0_D *
|
|
* IIO_ICRBD_E IIO_ICRB0_E *
|
|
* IIO_ICRBE_A IIO_ICRB0_A *
|
|
* IIO_ICRBE_B IIO_ICRB0_B *
|
|
* IIO_ICRBE_C IIO_ICRB0_C *
|
|
* IIO_ICRBE_D IIO_ICRB0_D *
|
|
* IIO_ICRBE_E IIO_ICRB0_E *
|
|
* *
|
|
************************************************************************/
|
|
|
|
/*
|
|
* Slightly friendlier names for some common registers.
|
|
*/
|
|
#define IIO_WIDGET IIO_WID /* Widget identification */
|
|
#define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */
|
|
#define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */
|
|
#define IIO_PROTECT IIO_ILAPR /* IO interface protection */
|
|
#define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */
|
|
#define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */
|
|
#define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */
|
|
#define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */
|
|
#define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */
|
|
#define IIO_LLP_LOG IIO_ILLR /* LLP log */
|
|
#define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout */
|
|
#define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */
|
|
#define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */
|
|
#define IIO_IGFX_0 IIO_IGFX0
|
|
#define IIO_IGFX_1 IIO_IGFX1
|
|
#define IIO_IBCT_0 IIO_IBCT0
|
|
#define IIO_IBCT_1 IIO_IBCT1
|
|
#define IIO_IBLS_0 IIO_IBLS0
|
|
#define IIO_IBLS_1 IIO_IBLS1
|
|
#define IIO_IBSA_0 IIO_IBSA0
|
|
#define IIO_IBSA_1 IIO_IBSA1
|
|
#define IIO_IBDA_0 IIO_IBDA0
|
|
#define IIO_IBDA_1 IIO_IBDA1
|
|
#define IIO_IBNA_0 IIO_IBNA0
|
|
#define IIO_IBNA_1 IIO_IBNA1
|
|
#define IIO_IBIA_0 IIO_IBIA0
|
|
#define IIO_IBIA_1 IIO_IBIA1
|
|
#define IIO_IOPRB_0 IIO_IPRB0
|
|
|
|
#define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x)))
|
|
#define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x)))
|
|
#define IIO_NUM_PRTES 8 /* Total number of PRB table entries */
|
|
#define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */
|
|
#define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */
|
|
|
|
#define IIO_NUM_IPRBS 9
|
|
|
|
#define IIO_LLP_CSR_IS_UP 0x00002000
|
|
#define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000
|
|
#define IIO_LLP_CSR_LLP_STAT_SHFT 12
|
|
|
|
#define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */
|
|
#define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */
|
|
|
|
/* key to IIO_PROTECT_OVRRD */
|
|
#define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */
|
|
|
|
/* BTE register names */
|
|
#define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */
|
|
#define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */
|
|
#define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */
|
|
#define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */
|
|
#define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */
|
|
#define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */
|
|
#define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */
|
|
#define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */
|
|
|
|
/* BTE register offsets from base */
|
|
#define BTEOFF_STAT 0
|
|
#define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
|
|
#define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
|
|
#define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
|
|
#define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
|
|
#define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
|
|
|
|
/* names used in shub diags */
|
|
#define IIO_BASE_BTE0 IIO_IBLS_0
|
|
#define IIO_BASE_BTE1 IIO_IBLS_1
|
|
|
|
/*
|
|
* Macro which takes the widget number, and returns the
|
|
* IO PRB address of that widget.
|
|
* value _x is expected to be a widget number in the range
|
|
* 0, 8 - 0xF
|
|
*/
|
|
#define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
|
|
(_x) : \
|
|
(_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
|
|
|
|
/* GFX Flow Control Node/Widget Register */
|
|
#define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */
|
|
#define IIO_IGFX_W_NUM_MASK ((1<<IIO_IGFX_W_NUM_BITS)-1)
|
|
#define IIO_IGFX_W_NUM_SHIFT 0
|
|
#define IIO_IGFX_PI_NUM_BITS 1 /* size of PI num field */
|
|
#define IIO_IGFX_PI_NUM_MASK ((1<<IIO_IGFX_PI_NUM_BITS)-1)
|
|
#define IIO_IGFX_PI_NUM_SHIFT 4
|
|
#define IIO_IGFX_N_NUM_BITS 8 /* size of node num field */
|
|
#define IIO_IGFX_N_NUM_MASK ((1<<IIO_IGFX_N_NUM_BITS)-1)
|
|
#define IIO_IGFX_N_NUM_SHIFT 5
|
|
#define IIO_IGFX_P_NUM_BITS 1 /* size of processor num field */
|
|
#define IIO_IGFX_P_NUM_MASK ((1<<IIO_IGFX_P_NUM_BITS)-1)
|
|
#define IIO_IGFX_P_NUM_SHIFT 16
|
|
#define IIO_IGFX_INIT(widget, pi, node, cpu) (\
|
|
(((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) | \
|
|
(((pi) & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)| \
|
|
(((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \
|
|
(((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
|
|
|
|
/* Scratch registers (all bits available) */
|
|
#define IIO_SCRATCH_REG0 IIO_ISCR0
|
|
#define IIO_SCRATCH_REG1 IIO_ISCR1
|
|
#define IIO_SCRATCH_MASK 0xffffffffffffffffUL
|
|
|
|
#define IIO_SCRATCH_BIT0_0 0x0000000000000001UL
|
|
#define IIO_SCRATCH_BIT0_1 0x0000000000000002UL
|
|
#define IIO_SCRATCH_BIT0_2 0x0000000000000004UL
|
|
#define IIO_SCRATCH_BIT0_3 0x0000000000000008UL
|
|
#define IIO_SCRATCH_BIT0_4 0x0000000000000010UL
|
|
#define IIO_SCRATCH_BIT0_5 0x0000000000000020UL
|
|
#define IIO_SCRATCH_BIT0_6 0x0000000000000040UL
|
|
#define IIO_SCRATCH_BIT0_7 0x0000000000000080UL
|
|
#define IIO_SCRATCH_BIT0_8 0x0000000000000100UL
|
|
#define IIO_SCRATCH_BIT0_9 0x0000000000000200UL
|
|
#define IIO_SCRATCH_BIT0_A 0x0000000000000400UL
|
|
|
|
#define IIO_SCRATCH_BIT1_0 0x0000000000000001UL
|
|
#define IIO_SCRATCH_BIT1_1 0x0000000000000002UL
|
|
/* IO Translation Table Entries */
|
|
#define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */
|
|
/* Hw manuals number them 1..7! */
|
|
/*
|
|
* IIO_IMEM Register fields.
|
|
*/
|
|
#define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */
|
|
#define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */
|
|
#define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */
|
|
|
|
/*
|
|
* As a permanent workaround for a bug in the PI side of the shub, we've
|
|
* redefined big window 7 as small window 0.
|
|
XXX does this still apply for SN1??
|
|
*/
|
|
#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
|
|
|
|
/*
|
|
* Use the top big window as a surrogate for the first small window
|
|
*/
|
|
#define SWIN0_BIGWIN HUB_NUM_BIG_WINDOW
|
|
|
|
#define ILCSR_WARM_RESET 0x100
|
|
|
|
/*
|
|
* CRB manipulation macros
|
|
* The CRB macros are slightly complicated, since there are up to
|
|
* four registers associated with each CRB entry.
|
|
*/
|
|
#define IIO_NUM_CRBS 15 /* Number of CRBs */
|
|
#define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */
|
|
#define IIO_ICRB_OFFSET 8
|
|
#define IIO_ICRB_0 IIO_ICRB0_A
|
|
#define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */
|
|
/* XXX - This is now tuneable:
|
|
#define IIO_FIRST_PC_ENTRY 12
|
|
*/
|
|
|
|
#define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
|
|
#define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
|
|
#define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
|
|
#define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
|
|
#define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
|
|
|
|
#define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7)
|
|
|
|
/*
|
|
* values for "ecode" field
|
|
*/
|
|
#define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */
|
|
#define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */
|
|
#define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access
|
|
* e.g. WINV to a Read only line. */
|
|
#define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */
|
|
#define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */
|
|
#define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */
|
|
#define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */
|
|
#define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */
|
|
|
|
/*
|
|
* Values for field imsgtype
|
|
*/
|
|
#define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */
|
|
#define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */
|
|
#define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */
|
|
#define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */
|
|
|
|
/*
|
|
* values for field initiator.
|
|
*/
|
|
#define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */
|
|
#define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */
|
|
#define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */
|
|
#define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */
|
|
#define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */
|
|
|
|
/*
|
|
* Number of credits Hub widget has while sending req/response to
|
|
* xbow.
|
|
* Value of 3 is required by Xbow 1.1
|
|
* We may be able to increase this to 4 with Xbow 1.2.
|
|
*/
|
|
#define HUBII_XBOW_CREDIT 3
|
|
#define HUBII_XBOW_REV2_CREDIT 4
|
|
|
|
/*
|
|
* Number of credits that xtalk devices should use when communicating
|
|
* with a SHub (depth of SHub's queue).
|
|
*/
|
|
#define HUB_CREDIT 4
|
|
|
|
/*
|
|
* Some IIO_PRB fields
|
|
*/
|
|
#define IIO_PRB_MULTI_ERR (1LL << 63)
|
|
#define IIO_PRB_SPUR_RD (1LL << 51)
|
|
#define IIO_PRB_SPUR_WR (1LL << 50)
|
|
#define IIO_PRB_RD_TO (1LL << 49)
|
|
#define IIO_PRB_ERROR (1LL << 48)
|
|
|
|
/*************************************************************************
|
|
|
|
Some of the IIO field masks and shifts are defined here.
|
|
This is in order to maintain compatibility in SN0 and SN1 code
|
|
|
|
**************************************************************************/
|
|
|
|
/*
|
|
* ICMR register fields
|
|
* (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
|
|
* present in SHub)
|
|
*/
|
|
|
|
#define IIO_ICMR_CRB_VLD_SHFT 20
|
|
#define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
|
|
|
|
#define IIO_ICMR_FC_CNT_SHFT 16
|
|
#define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT)
|
|
|
|
#define IIO_ICMR_C_CNT_SHFT 4
|
|
#define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT)
|
|
|
|
#define IIO_ICMR_PRECISE (1UL << 52)
|
|
#define IIO_ICMR_CLR_RPPD (1UL << 13)
|
|
#define IIO_ICMR_CLR_RQPD (1UL << 12)
|
|
|
|
/*
|
|
* IIO PIO Deallocation register field masks : (IIO_IPDR)
|
|
XXX present but not needed in bedrock? See the manual.
|
|
*/
|
|
#define IIO_IPDR_PND (1 << 4)
|
|
|
|
/*
|
|
* IIO CRB deallocation register field masks: (IIO_ICDR)
|
|
*/
|
|
#define IIO_ICDR_PND (1 << 4)
|
|
|
|
/*
|
|
* IO BTE Length/Status (IIO_IBLS) register bit field definitions
|
|
*/
|
|
#define IBLS_BUSY (0x1UL << 20)
|
|
#define IBLS_ERROR_SHFT 16
|
|
#define IBLS_ERROR (0x1UL << IBLS_ERROR_SHFT)
|
|
#define IBLS_LENGTH_MASK 0xffff
|
|
|
|
/*
|
|
* IO BTE Control/Terminate register (IBCT) register bit field definitions
|
|
*/
|
|
#define IBCT_POISON (0x1UL << 8)
|
|
#define IBCT_NOTIFY (0x1UL << 4)
|
|
#define IBCT_ZFIL_MODE (0x1UL << 0)
|
|
|
|
/*
|
|
* IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
|
|
*/
|
|
#define IIEPH1_VALID (1UL << 44)
|
|
#define IIEPH1_OVERRUN (1UL << 40)
|
|
#define IIEPH1_ERR_TYPE_SHFT 32
|
|
#define IIEPH1_ERR_TYPE_MASK 0xf
|
|
#define IIEPH1_SOURCE_SHFT 20
|
|
#define IIEPH1_SOURCE_MASK 11
|
|
#define IIEPH1_SUPPL_SHFT 8
|
|
#define IIEPH1_SUPPL_MASK 11
|
|
#define IIEPH1_CMD_SHFT 0
|
|
#define IIEPH1_CMD_MASK 7
|
|
|
|
#define IIEPH2_TAIL (1UL << 40)
|
|
#define IIEPH2_ADDRESS_SHFT 0
|
|
#define IIEPH2_ADDRESS_MASK 38
|
|
|
|
#define IIEPH1_ERR_SHORT_REQ 2
|
|
#define IIEPH1_ERR_SHORT_REPLY 3
|
|
#define IIEPH1_ERR_LONG_REQ 4
|
|
#define IIEPH1_ERR_LONG_REPLY 5
|
|
|
|
/*
|
|
* IO Error Clear register bit field definitions
|
|
*/
|
|
#define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */
|
|
#define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */
|
|
#define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */
|
|
#define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */
|
|
#define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */
|
|
#define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */
|
|
#define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */
|
|
#define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */
|
|
#define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */
|
|
#define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */
|
|
#define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */
|
|
#define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */
|
|
#define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */
|
|
#define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */
|
|
#define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */
|
|
|
|
/*
|
|
* IIO CRB control register Fields: IIO_ICCR
|
|
*/
|
|
#define IIO_ICCR_PENDING 0x10000
|
|
#define IIO_ICCR_CMD_MASK 0xFF
|
|
#define IIO_ICCR_CMD_SHFT 7
|
|
#define IIO_ICCR_CMD_NOP 0x0 /* No Op */
|
|
#define IIO_ICCR_CMD_WAKE 0x100 /* Reactivate CRB entry and process */
|
|
#define IIO_ICCR_CMD_TIMEOUT 0x200 /* Make CRB timeout & mark invalid */
|
|
#define IIO_ICCR_CMD_EJECT 0x400 /* Contents of entry written to memory
|
|
* via a WB
|
|
*/
|
|
#define IIO_ICCR_CMD_FLUSH 0x800
|
|
|
|
/*
|
|
*
|
|
* CRB Register description.
|
|
*
|
|
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
|
|
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
|
|
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
|
|
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
|
|
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
|
|
*
|
|
* Many of the fields in CRB are status bits used by hardware
|
|
* for implementation of the protocol. It's very dangerous to
|
|
* mess around with the CRB registers.
|
|
*
|
|
* It's OK to read the CRB registers and try to make sense out of the
|
|
* fields in CRB.
|
|
*
|
|
* Updating CRB requires all activities in Hub IIO to be quiesced.
|
|
* otherwise, a write to CRB could corrupt other CRB entries.
|
|
* CRBs are here only as a back door peek to shub IIO's status.
|
|
* Quiescing implies no dmas no PIOs
|
|
* either directly from the cpu or from sn0net.
|
|
* this is not something that can be done easily. So, AVOID updating
|
|
* CRBs.
|
|
*/
|
|
|
|
/*
|
|
* Easy access macros for CRBs, all 5 registers (A-E)
|
|
*/
|
|
typedef ii_icrb0_a_u_t icrba_t;
|
|
#define a_sidn ii_icrb0_a_fld_s.ia_sidn
|
|
#define a_tnum ii_icrb0_a_fld_s.ia_tnum
|
|
#define a_addr ii_icrb0_a_fld_s.ia_addr
|
|
#define a_valid ii_icrb0_a_fld_s.ia_vld
|
|
#define a_iow ii_icrb0_a_fld_s.ia_iow
|
|
#define a_regvalue ii_icrb0_a_regval
|
|
|
|
typedef ii_icrb0_b_u_t icrbb_t;
|
|
#define b_use_old ii_icrb0_b_fld_s.ib_use_old
|
|
#define b_imsgtype ii_icrb0_b_fld_s.ib_imsgtype
|
|
#define b_imsg ii_icrb0_b_fld_s.ib_imsg
|
|
#define b_initiator ii_icrb0_b_fld_s.ib_init
|
|
#define b_exc ii_icrb0_b_fld_s.ib_exc
|
|
#define b_ackcnt ii_icrb0_b_fld_s.ib_ack_cnt
|
|
#define b_resp ii_icrb0_b_fld_s.ib_resp
|
|
#define b_ack ii_icrb0_b_fld_s.ib_ack
|
|
#define b_hold ii_icrb0_b_fld_s.ib_hold
|
|
#define b_wb ii_icrb0_b_fld_s.ib_wb
|
|
#define b_intvn ii_icrb0_b_fld_s.ib_intvn
|
|
#define b_stall_ib ii_icrb0_b_fld_s.ib_stall_ib
|
|
#define b_stall_int ii_icrb0_b_fld_s.ib_stall__intr
|
|
#define b_stall_bte_0 ii_icrb0_b_fld_s.ib_stall__bte_0
|
|
#define b_stall_bte_1 ii_icrb0_b_fld_s.ib_stall__bte_1
|
|
#define b_error ii_icrb0_b_fld_s.ib_error
|
|
#define b_ecode ii_icrb0_b_fld_s.ib_errcode
|
|
#define b_lnetuce ii_icrb0_b_fld_s.ib_ln_uce
|
|
#define b_mark ii_icrb0_b_fld_s.ib_mark
|
|
#define b_xerr ii_icrb0_b_fld_s.ib_xt_err
|
|
#define b_regvalue ii_icrb0_b_regval
|
|
|
|
typedef ii_icrb0_c_u_t icrbc_t;
|
|
#define c_suppl ii_icrb0_c_fld_s.ic_suppl
|
|
#define c_barrop ii_icrb0_c_fld_s.ic_bo
|
|
#define c_doresp ii_icrb0_c_fld_s.ic_resprqd
|
|
#define c_gbr ii_icrb0_c_fld_s.ic_gbr
|
|
#define c_btenum ii_icrb0_c_fld_s.ic_bte_num
|
|
#define c_cohtrans ii_icrb0_c_fld_s.ic_ct
|
|
#define c_xtsize ii_icrb0_c_fld_s.ic_size
|
|
#define c_source ii_icrb0_c_fld_s.ic_source
|
|
#define c_regvalue ii_icrb0_c_regval
|
|
|
|
typedef ii_icrb0_d_u_t icrbd_t;
|
|
#define d_sleep ii_icrb0_d_fld_s.id_sleep
|
|
#define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt
|
|
#define d_pripsc ii_icrb0_d_fld_s.id_pr_psc
|
|
#define d_bteop ii_icrb0_d_fld_s.id_bte_op
|
|
#define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
|
|
#define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
|
|
#define d_regvalue ii_icrb0_d_regval
|
|
|
|
typedef ii_icrb0_e_u_t icrbe_t;
|
|
#define icrbe_ctxtvld ii_icrb0_e_fld_s.ie_cvld
|
|
#define icrbe_toutvld ii_icrb0_e_fld_s.ie_tvld
|
|
#define icrbe_context ii_icrb0_e_fld_s.ie_context
|
|
#define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout
|
|
#define e_regvalue ii_icrb0_e_regval
|
|
|
|
/* Number of widgets supported by shub */
|
|
#define HUB_NUM_WIDGET 9
|
|
#define HUB_WIDGET_ID_MIN 0x8
|
|
#define HUB_WIDGET_ID_MAX 0xf
|
|
|
|
#define HUB_WIDGET_PART_NUM 0xc120
|
|
#define MAX_HUBS_PER_XBOW 2
|
|
|
|
/* A few more #defines for backwards compatibility */
|
|
#define iprb_t ii_iprb0_u_t
|
|
#define iprb_regval ii_iprb0_regval
|
|
#define iprb_mult_err ii_iprb0_fld_s.i_mult_err
|
|
#define iprb_spur_rd ii_iprb0_fld_s.i_spur_rd
|
|
#define iprb_spur_wr ii_iprb0_fld_s.i_spur_wr
|
|
#define iprb_rd_to ii_iprb0_fld_s.i_rd_to
|
|
#define iprb_ovflow ii_iprb0_fld_s.i_of_cnt
|
|
#define iprb_error ii_iprb0_fld_s.i_error
|
|
#define iprb_ff ii_iprb0_fld_s.i_f
|
|
#define iprb_mode ii_iprb0_fld_s.i_m
|
|
#define iprb_bnakctr ii_iprb0_fld_s.i_nb
|
|
#define iprb_anakctr ii_iprb0_fld_s.i_na
|
|
#define iprb_xtalkctr ii_iprb0_fld_s.i_c
|
|
|
|
#define LNK_STAT_WORKING 0x2 /* LLP is working */
|
|
|
|
#define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */
|
|
#define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */
|
|
#define IIO_WSTAT_TXRETRY_MASK 0x7F /* should be 0xFF?? */
|
|
#define IIO_WSTAT_TXRETRY_SHFT 16
|
|
#define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
|
|
IIO_WSTAT_TXRETRY_MASK)
|
|
|
|
/* Number of II perf. counters we can multiplex at once */
|
|
|
|
#define IO_PERF_SETS 32
|
|
|
|
/* Bit for the widget in inbound access register */
|
|
#define IIO_IIWA_WIDGET(_w) ((u64)(1ULL << _w))
|
|
/* Bit for the widget in outbound access register */
|
|
#define IIO_IOWA_WIDGET(_w) ((u64)(1ULL << _w))
|
|
|
|
/* NOTE: The following define assumes that we are going to get
|
|
* widget numbers from 8 thru F and the device numbers within
|
|
* widget from 0 thru 7.
|
|
*/
|
|
#define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((u64)(1ULL << (8 * ((w) - 8) + (d))))
|
|
|
|
/* IO Interrupt Destination Register */
|
|
#define IIO_IIDSR_SENT_SHIFT 28
|
|
#define IIO_IIDSR_SENT_MASK 0x30000000
|
|
#define IIO_IIDSR_ENB_SHIFT 24
|
|
#define IIO_IIDSR_ENB_MASK 0x01000000
|
|
#define IIO_IIDSR_NODE_SHIFT 9
|
|
#define IIO_IIDSR_NODE_MASK 0x000ff700
|
|
#define IIO_IIDSR_PI_ID_SHIFT 8
|
|
#define IIO_IIDSR_PI_ID_MASK 0x00000100
|
|
#define IIO_IIDSR_LVL_SHIFT 0
|
|
#define IIO_IIDSR_LVL_MASK 0x000000ff
|
|
|
|
/* Xtalk timeout threshhold register (IIO_IXTT) */
|
|
#define IXTT_RRSP_TO_SHFT 55 /* read response timeout */
|
|
#define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT)
|
|
#define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */
|
|
#define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
|
|
#define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */
|
|
#define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
|
|
|
|
/*
|
|
* The IO LLP control status register and widget control register
|
|
*/
|
|
|
|
typedef union hubii_wcr_u {
|
|
u64 wcr_reg_value;
|
|
struct {
|
|
u64 wcr_widget_id:4, /* LLP crossbar credit */
|
|
wcr_tag_mode:1, /* Tag mode */
|
|
wcr_rsvd1:8, /* Reserved */
|
|
wcr_xbar_crd:3, /* LLP crossbar credit */
|
|
wcr_f_bad_pkt:1, /* Force bad llp pkt enable */
|
|
wcr_dir_con:1, /* widget direct connect */
|
|
wcr_e_thresh:5, /* elasticity threshold */
|
|
wcr_rsvd:41; /* unused */
|
|
} wcr_fields_s;
|
|
} hubii_wcr_t;
|
|
|
|
#define iwcr_dir_con wcr_fields_s.wcr_dir_con
|
|
|
|
/* The structures below are defined to extract and modify the ii
|
|
performance registers */
|
|
|
|
/* io_perf_sel allows the caller to specify what tests will be
|
|
performed */
|
|
|
|
typedef union io_perf_sel {
|
|
u64 perf_sel_reg;
|
|
struct {
|
|
u64 perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
|
|
} perf_sel_bits;
|
|
} io_perf_sel_t;
|
|
|
|
/* io_perf_cnt is to extract the count from the shub registers. Due to
|
|
hardware problems there is only one counter, not two. */
|
|
|
|
typedef union io_perf_cnt {
|
|
u64 perf_cnt;
|
|
struct {
|
|
u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
|
|
} perf_cnt_bits;
|
|
|
|
} io_perf_cnt_t;
|
|
|
|
typedef union iprte_a {
|
|
u64 entry;
|
|
struct {
|
|
u64 i_rsvd_1:3;
|
|
u64 i_addr:38;
|
|
u64 i_init:3;
|
|
u64 i_source:8;
|
|
u64 i_rsvd:2;
|
|
u64 i_widget:4;
|
|
u64 i_to_cnt:5;
|
|
u64 i_vld:1;
|
|
} iprte_fields;
|
|
} iprte_a_t;
|
|
|
|
#endif /* _ASM_IA64_SN_SHUBIO_H */
|