mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-26 05:40:53 +07:00
9441cad99b
I encountered an issue that not to link up on cxgb3 fabric.
I bisected and found that this regression was introduced by
0f07c4ee8c
.
Correct to pass phy_addr to cphy_init() at t3_xaui_direct_phy_prep().
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Acked-by: Divy Le Ray <divy@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
942 lines
23 KiB
C
942 lines
23 KiB
C
/*
|
|
* Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "common.h"
|
|
#include "regs.h"
|
|
|
|
enum {
|
|
AEL100X_TX_CONFIG1 = 0xc002,
|
|
AEL1002_PWR_DOWN_HI = 0xc011,
|
|
AEL1002_PWR_DOWN_LO = 0xc012,
|
|
AEL1002_XFI_EQL = 0xc015,
|
|
AEL1002_LB_EN = 0xc017,
|
|
AEL_OPT_SETTINGS = 0xc017,
|
|
AEL_I2C_CTRL = 0xc30a,
|
|
AEL_I2C_DATA = 0xc30b,
|
|
AEL_I2C_STAT = 0xc30c,
|
|
AEL2005_GPIO_CTRL = 0xc214,
|
|
AEL2005_GPIO_STAT = 0xc215,
|
|
|
|
AEL2020_GPIO_INTR = 0xc103, /* Latch High (LH) */
|
|
AEL2020_GPIO_CTRL = 0xc108, /* Store Clear (SC) */
|
|
AEL2020_GPIO_STAT = 0xc10c, /* Read Only (RO) */
|
|
AEL2020_GPIO_CFG = 0xc110, /* Read Write (RW) */
|
|
|
|
AEL2020_GPIO_SDA = 0, /* IN: i2c serial data */
|
|
AEL2020_GPIO_MODDET = 1, /* IN: Module Detect */
|
|
AEL2020_GPIO_0 = 3, /* IN: unassigned */
|
|
AEL2020_GPIO_1 = 2, /* OUT: unassigned */
|
|
AEL2020_GPIO_LSTAT = AEL2020_GPIO_1, /* wired to link status LED */
|
|
};
|
|
|
|
enum { edc_none, edc_sr, edc_twinax };
|
|
|
|
/* PHY module I2C device address */
|
|
enum {
|
|
MODULE_DEV_ADDR = 0xa0,
|
|
SFF_DEV_ADDR = 0xa2,
|
|
};
|
|
|
|
/* PHY transceiver type */
|
|
enum {
|
|
phy_transtype_unknown = 0,
|
|
phy_transtype_sfp = 3,
|
|
phy_transtype_xfp = 6,
|
|
};
|
|
|
|
#define AEL2005_MODDET_IRQ 4
|
|
|
|
struct reg_val {
|
|
unsigned short mmd_addr;
|
|
unsigned short reg_addr;
|
|
unsigned short clear_bits;
|
|
unsigned short set_bits;
|
|
};
|
|
|
|
static int set_phy_regs(struct cphy *phy, const struct reg_val *rv)
|
|
{
|
|
int err;
|
|
|
|
for (err = 0; rv->mmd_addr && !err; rv++) {
|
|
if (rv->clear_bits == 0xffff)
|
|
err = t3_mdio_write(phy, rv->mmd_addr, rv->reg_addr,
|
|
rv->set_bits);
|
|
else
|
|
err = t3_mdio_change_bits(phy, rv->mmd_addr,
|
|
rv->reg_addr, rv->clear_bits,
|
|
rv->set_bits);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void ael100x_txon(struct cphy *phy)
|
|
{
|
|
int tx_on_gpio =
|
|
phy->mdio.prtad == 0 ? F_GPIO7_OUT_VAL : F_GPIO2_OUT_VAL;
|
|
|
|
msleep(100);
|
|
t3_set_reg_field(phy->adapter, A_T3DBG_GPIO_EN, 0, tx_on_gpio);
|
|
msleep(30);
|
|
}
|
|
|
|
/*
|
|
* Read an 8-bit word from a device attached to the PHY's i2c bus.
|
|
*/
|
|
static int ael_i2c_rd(struct cphy *phy, int dev_addr, int word_addr)
|
|
{
|
|
int i, err;
|
|
unsigned int stat, data;
|
|
|
|
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL_I2C_CTRL,
|
|
(dev_addr << 8) | (1 << 8) | word_addr);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < 200; i++) {
|
|
msleep(1);
|
|
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_STAT, &stat);
|
|
if (err)
|
|
return err;
|
|
if ((stat & 3) == 1) {
|
|
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_DATA,
|
|
&data);
|
|
if (err)
|
|
return err;
|
|
return data >> 8;
|
|
}
|
|
}
|
|
CH_WARN(phy->adapter, "PHY %u i2c read of dev.addr %#x.%#x timed out\n",
|
|
phy->mdio.prtad, dev_addr, word_addr);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int ael1002_power_down(struct cphy *phy, int enable)
|
|
{
|
|
int err;
|
|
|
|
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_TXDIS, !!enable);
|
|
if (!err)
|
|
err = mdio_set_flag(&phy->mdio, phy->mdio.prtad,
|
|
MDIO_MMD_PMAPMD, MDIO_CTRL1,
|
|
MDIO_CTRL1_LPOWER, enable);
|
|
return err;
|
|
}
|
|
|
|
static int ael1002_reset(struct cphy *phy, int wait)
|
|
{
|
|
int err;
|
|
|
|
if ((err = ael1002_power_down(phy, 0)) ||
|
|
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL100X_TX_CONFIG1, 1)) ||
|
|
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_HI, 0)) ||
|
|
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_LO, 0)) ||
|
|
(err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_XFI_EQL, 0x18)) ||
|
|
(err = t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL1002_LB_EN,
|
|
0, 1 << 5)))
|
|
return err;
|
|
return 0;
|
|
}
|
|
|
|
static int ael1002_intr_noop(struct cphy *phy)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get link status for a 10GBASE-R device.
|
|
*/
|
|
static int get_link_status_r(struct cphy *phy, int *link_ok, int *speed,
|
|
int *duplex, int *fc)
|
|
{
|
|
if (link_ok) {
|
|
unsigned int stat0, stat1, stat2;
|
|
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
|
|
MDIO_PMA_RXDET, &stat0);
|
|
|
|
if (!err)
|
|
err = t3_mdio_read(phy, MDIO_MMD_PCS,
|
|
MDIO_PCS_10GBRT_STAT1, &stat1);
|
|
if (!err)
|
|
err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
|
|
MDIO_PHYXS_LNSTAT, &stat2);
|
|
if (err)
|
|
return err;
|
|
*link_ok = (stat0 & stat1 & (stat2 >> 12)) & 1;
|
|
}
|
|
if (speed)
|
|
*speed = SPEED_10000;
|
|
if (duplex)
|
|
*duplex = DUPLEX_FULL;
|
|
return 0;
|
|
}
|
|
|
|
static struct cphy_ops ael1002_ops = {
|
|
.reset = ael1002_reset,
|
|
.intr_enable = ael1002_intr_noop,
|
|
.intr_disable = ael1002_intr_noop,
|
|
.intr_clear = ael1002_intr_noop,
|
|
.intr_handler = ael1002_intr_noop,
|
|
.get_link_status = get_link_status_r,
|
|
.power_down = ael1002_power_down,
|
|
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
|
|
};
|
|
|
|
int t3_ael1002_phy_prep(struct cphy *phy, struct adapter *adapter,
|
|
int phy_addr, const struct mdio_ops *mdio_ops)
|
|
{
|
|
cphy_init(phy, adapter, phy_addr, &ael1002_ops, mdio_ops,
|
|
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
|
|
"10GBASE-R");
|
|
ael100x_txon(phy);
|
|
return 0;
|
|
}
|
|
|
|
static int ael1006_reset(struct cphy *phy, int wait)
|
|
{
|
|
return t3_phy_reset(phy, MDIO_MMD_PMAPMD, wait);
|
|
}
|
|
|
|
static struct cphy_ops ael1006_ops = {
|
|
.reset = ael1006_reset,
|
|
.intr_enable = t3_phy_lasi_intr_enable,
|
|
.intr_disable = t3_phy_lasi_intr_disable,
|
|
.intr_clear = t3_phy_lasi_intr_clear,
|
|
.intr_handler = t3_phy_lasi_intr_handler,
|
|
.get_link_status = get_link_status_r,
|
|
.power_down = ael1002_power_down,
|
|
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
|
|
};
|
|
|
|
int t3_ael1006_phy_prep(struct cphy *phy, struct adapter *adapter,
|
|
int phy_addr, const struct mdio_ops *mdio_ops)
|
|
{
|
|
cphy_init(phy, adapter, phy_addr, &ael1006_ops, mdio_ops,
|
|
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE,
|
|
"10GBASE-SR");
|
|
ael100x_txon(phy);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Decode our module type.
|
|
*/
|
|
static int ael2xxx_get_module_type(struct cphy *phy, int delay_ms)
|
|
{
|
|
int v;
|
|
|
|
if (delay_ms)
|
|
msleep(delay_ms);
|
|
|
|
/* see SFF-8472 for below */
|
|
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 3);
|
|
if (v < 0)
|
|
return v;
|
|
|
|
if (v == 0x10)
|
|
return phy_modtype_sr;
|
|
if (v == 0x20)
|
|
return phy_modtype_lr;
|
|
if (v == 0x40)
|
|
return phy_modtype_lrm;
|
|
|
|
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 6);
|
|
if (v < 0)
|
|
return v;
|
|
if (v != 4)
|
|
goto unknown;
|
|
|
|
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 10);
|
|
if (v < 0)
|
|
return v;
|
|
|
|
if (v & 0x80) {
|
|
v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 0x12);
|
|
if (v < 0)
|
|
return v;
|
|
return v > 10 ? phy_modtype_twinax_long : phy_modtype_twinax;
|
|
}
|
|
unknown:
|
|
return phy_modtype_unknown;
|
|
}
|
|
|
|
/*
|
|
* Code to support the Aeluros/NetLogic 2005 10Gb PHY.
|
|
*/
|
|
static int ael2005_setup_sr_edc(struct cphy *phy)
|
|
{
|
|
static struct reg_val regs[] = {
|
|
{ MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x181 },
|
|
{ MDIO_MMD_PMAPMD, 0xc010, 0xffff, 0x448a },
|
|
{ MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5200 },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
|
|
int i, err;
|
|
|
|
err = set_phy_regs(phy, regs);
|
|
if (err)
|
|
return err;
|
|
|
|
msleep(50);
|
|
|
|
if (phy->priv != edc_sr)
|
|
err = t3_get_edc_fw(phy, EDC_OPT_AEL2005,
|
|
EDC_OPT_AEL2005_SIZE);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < EDC_OPT_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
|
|
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
|
|
phy->phy_cache[i],
|
|
phy->phy_cache[i + 1]);
|
|
if (!err)
|
|
phy->priv = edc_sr;
|
|
return err;
|
|
}
|
|
|
|
static int ael2005_setup_twinax_edc(struct cphy *phy, int modtype)
|
|
{
|
|
static struct reg_val regs[] = {
|
|
{ MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5a00 },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
static struct reg_val preemphasis[] = {
|
|
{ MDIO_MMD_PMAPMD, 0xc014, 0xffff, 0xfe16 },
|
|
{ MDIO_MMD_PMAPMD, 0xc015, 0xffff, 0xa000 },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
int i, err;
|
|
|
|
err = set_phy_regs(phy, regs);
|
|
if (!err && modtype == phy_modtype_twinax_long)
|
|
err = set_phy_regs(phy, preemphasis);
|
|
if (err)
|
|
return err;
|
|
|
|
msleep(50);
|
|
|
|
if (phy->priv != edc_twinax)
|
|
err = t3_get_edc_fw(phy, EDC_TWX_AEL2005,
|
|
EDC_TWX_AEL2005_SIZE);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < EDC_TWX_AEL2005_SIZE / sizeof(u16) && !err; i += 2)
|
|
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
|
|
phy->phy_cache[i],
|
|
phy->phy_cache[i + 1]);
|
|
if (!err)
|
|
phy->priv = edc_twinax;
|
|
return err;
|
|
}
|
|
|
|
static int ael2005_get_module_type(struct cphy *phy, int delay_ms)
|
|
{
|
|
int v;
|
|
unsigned int stat;
|
|
|
|
v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, &stat);
|
|
if (v)
|
|
return v;
|
|
|
|
if (stat & (1 << 8)) /* module absent */
|
|
return phy_modtype_none;
|
|
|
|
return ael2xxx_get_module_type(phy, delay_ms);
|
|
}
|
|
|
|
static int ael2005_intr_enable(struct cphy *phy)
|
|
{
|
|
int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x200);
|
|
return err ? err : t3_phy_lasi_intr_enable(phy);
|
|
}
|
|
|
|
static int ael2005_intr_disable(struct cphy *phy)
|
|
{
|
|
int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x100);
|
|
return err ? err : t3_phy_lasi_intr_disable(phy);
|
|
}
|
|
|
|
static int ael2005_intr_clear(struct cphy *phy)
|
|
{
|
|
int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0xd00);
|
|
return err ? err : t3_phy_lasi_intr_clear(phy);
|
|
}
|
|
|
|
static int ael2005_reset(struct cphy *phy, int wait)
|
|
{
|
|
static struct reg_val regs0[] = {
|
|
{ MDIO_MMD_PMAPMD, 0xc001, 0, 1 << 5 },
|
|
{ MDIO_MMD_PMAPMD, 0xc017, 0, 1 << 5 },
|
|
{ MDIO_MMD_PMAPMD, 0xc013, 0xffff, 0xf341 },
|
|
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
|
|
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8100 },
|
|
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 },
|
|
{ MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0 },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
static struct reg_val regs1[] = {
|
|
{ MDIO_MMD_PMAPMD, 0xca00, 0xffff, 0x0080 },
|
|
{ MDIO_MMD_PMAPMD, 0xca12, 0xffff, 0 },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
|
|
int err;
|
|
unsigned int lasi_ctrl;
|
|
|
|
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
|
|
&lasi_ctrl);
|
|
if (err)
|
|
return err;
|
|
|
|
err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
msleep(125);
|
|
phy->priv = edc_none;
|
|
err = set_phy_regs(phy, regs0);
|
|
if (err)
|
|
return err;
|
|
|
|
msleep(50);
|
|
|
|
err = ael2005_get_module_type(phy, 0);
|
|
if (err < 0)
|
|
return err;
|
|
phy->modtype = err;
|
|
|
|
if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
|
|
err = ael2005_setup_twinax_edc(phy, err);
|
|
else
|
|
err = ael2005_setup_sr_edc(phy);
|
|
if (err)
|
|
return err;
|
|
|
|
err = set_phy_regs(phy, regs1);
|
|
if (err)
|
|
return err;
|
|
|
|
/* reset wipes out interrupts, reenable them if they were on */
|
|
if (lasi_ctrl & 1)
|
|
err = ael2005_intr_enable(phy);
|
|
return err;
|
|
}
|
|
|
|
static int ael2005_intr_handler(struct cphy *phy)
|
|
{
|
|
unsigned int stat;
|
|
int ret, edc_needed, cause = 0;
|
|
|
|
ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_STAT, &stat);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (stat & AEL2005_MODDET_IRQ) {
|
|
ret = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL,
|
|
0xd00);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* modules have max 300 ms init time after hot plug */
|
|
ret = ael2005_get_module_type(phy, 300);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
phy->modtype = ret;
|
|
if (ret == phy_modtype_none)
|
|
edc_needed = phy->priv; /* on unplug retain EDC */
|
|
else if (ret == phy_modtype_twinax ||
|
|
ret == phy_modtype_twinax_long)
|
|
edc_needed = edc_twinax;
|
|
else
|
|
edc_needed = edc_sr;
|
|
|
|
if (edc_needed != phy->priv) {
|
|
ret = ael2005_reset(phy, 0);
|
|
return ret ? ret : cphy_cause_module_change;
|
|
}
|
|
cause = cphy_cause_module_change;
|
|
}
|
|
|
|
ret = t3_phy_lasi_intr_handler(phy);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret |= cause;
|
|
return ret ? ret : cphy_cause_link_change;
|
|
}
|
|
|
|
static struct cphy_ops ael2005_ops = {
|
|
.reset = ael2005_reset,
|
|
.intr_enable = ael2005_intr_enable,
|
|
.intr_disable = ael2005_intr_disable,
|
|
.intr_clear = ael2005_intr_clear,
|
|
.intr_handler = ael2005_intr_handler,
|
|
.get_link_status = get_link_status_r,
|
|
.power_down = ael1002_power_down,
|
|
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
|
|
};
|
|
|
|
int t3_ael2005_phy_prep(struct cphy *phy, struct adapter *adapter,
|
|
int phy_addr, const struct mdio_ops *mdio_ops)
|
|
{
|
|
cphy_init(phy, adapter, phy_addr, &ael2005_ops, mdio_ops,
|
|
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
|
|
SUPPORTED_IRQ, "10GBASE-R");
|
|
msleep(125);
|
|
return t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL_OPT_SETTINGS, 0,
|
|
1 << 5);
|
|
}
|
|
|
|
/*
|
|
* Setup EDC and other parameters for operation with an optical module.
|
|
*/
|
|
static int ael2020_setup_sr_edc(struct cphy *phy)
|
|
{
|
|
static struct reg_val regs[] = {
|
|
/* set CDR offset to 10 */
|
|
{ MDIO_MMD_PMAPMD, 0xcc01, 0xffff, 0x488a },
|
|
|
|
/* adjust 10G RX bias current */
|
|
{ MDIO_MMD_PMAPMD, 0xcb1b, 0xffff, 0x0200 },
|
|
{ MDIO_MMD_PMAPMD, 0xcb1c, 0xffff, 0x00f0 },
|
|
{ MDIO_MMD_PMAPMD, 0xcc06, 0xffff, 0x00e0 },
|
|
|
|
/* end */
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
int err;
|
|
|
|
err = set_phy_regs(phy, regs);
|
|
msleep(50);
|
|
if (err)
|
|
return err;
|
|
|
|
phy->priv = edc_sr;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Setup EDC and other parameters for operation with an TWINAX module.
|
|
*/
|
|
static int ael2020_setup_twinax_edc(struct cphy *phy, int modtype)
|
|
{
|
|
/* set uC to 40MHz */
|
|
static struct reg_val uCclock40MHz[] = {
|
|
{ MDIO_MMD_PMAPMD, 0xff28, 0xffff, 0x4001 },
|
|
{ MDIO_MMD_PMAPMD, 0xff2a, 0xffff, 0x0002 },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
|
|
/* activate uC clock */
|
|
static struct reg_val uCclockActivate[] = {
|
|
{ MDIO_MMD_PMAPMD, 0xd000, 0xffff, 0x5200 },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
|
|
/* set PC to start of SRAM and activate uC */
|
|
static struct reg_val uCactivate[] = {
|
|
{ MDIO_MMD_PMAPMD, 0xd080, 0xffff, 0x0100 },
|
|
{ MDIO_MMD_PMAPMD, 0xd092, 0xffff, 0x0000 },
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
int i, err;
|
|
|
|
/* set uC clock and activate it */
|
|
err = set_phy_regs(phy, uCclock40MHz);
|
|
msleep(500);
|
|
if (err)
|
|
return err;
|
|
err = set_phy_regs(phy, uCclockActivate);
|
|
msleep(500);
|
|
if (err)
|
|
return err;
|
|
|
|
if (phy->priv != edc_twinax)
|
|
err = t3_get_edc_fw(phy, EDC_TWX_AEL2020,
|
|
EDC_TWX_AEL2020_SIZE);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < EDC_TWX_AEL2020_SIZE / sizeof(u16) && !err; i += 2)
|
|
err = t3_mdio_write(phy, MDIO_MMD_PMAPMD,
|
|
phy->phy_cache[i],
|
|
phy->phy_cache[i + 1]);
|
|
/* activate uC */
|
|
err = set_phy_regs(phy, uCactivate);
|
|
if (!err)
|
|
phy->priv = edc_twinax;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Return Module Type.
|
|
*/
|
|
static int ael2020_get_module_type(struct cphy *phy, int delay_ms)
|
|
{
|
|
int v;
|
|
unsigned int stat;
|
|
|
|
v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_STAT, &stat);
|
|
if (v)
|
|
return v;
|
|
|
|
if (stat & (0x1 << (AEL2020_GPIO_MODDET*4))) {
|
|
/* module absent */
|
|
return phy_modtype_none;
|
|
}
|
|
|
|
return ael2xxx_get_module_type(phy, delay_ms);
|
|
}
|
|
|
|
/*
|
|
* Enable PHY interrupts. We enable "Module Detection" interrupts (on any
|
|
* state transition) and then generic Link Alarm Status Interrupt (LASI).
|
|
*/
|
|
static int ael2020_intr_enable(struct cphy *phy)
|
|
{
|
|
struct reg_val regs[] = {
|
|
/* output Module's Loss Of Signal (LOS) to LED */
|
|
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CFG+AEL2020_GPIO_LSTAT,
|
|
0xffff, 0x4 },
|
|
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
|
|
0xffff, 0x8 << (AEL2020_GPIO_LSTAT*4) },
|
|
|
|
/* enable module detect status change interrupts */
|
|
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
|
|
0xffff, 0x2 << (AEL2020_GPIO_MODDET*4) },
|
|
|
|
/* end */
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
int err, link_ok = 0;
|
|
|
|
/* set up "link status" LED and enable module change interrupts */
|
|
err = set_phy_regs(phy, regs);
|
|
if (err)
|
|
return err;
|
|
|
|
err = get_link_status_r(phy, &link_ok, NULL, NULL, NULL);
|
|
if (err)
|
|
return err;
|
|
if (link_ok)
|
|
t3_link_changed(phy->adapter,
|
|
phy2portid(phy));
|
|
|
|
err = t3_phy_lasi_intr_enable(phy);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Disable PHY interrupts. The mirror of the above ...
|
|
*/
|
|
static int ael2020_intr_disable(struct cphy *phy)
|
|
{
|
|
struct reg_val regs[] = {
|
|
/* reset "link status" LED to "off" */
|
|
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
|
|
0xffff, 0xb << (AEL2020_GPIO_LSTAT*4) },
|
|
|
|
/* disable module detect status change interrupts */
|
|
{ MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL,
|
|
0xffff, 0x1 << (AEL2020_GPIO_MODDET*4) },
|
|
|
|
/* end */
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
int err;
|
|
|
|
/* turn off "link status" LED and disable module change interrupts */
|
|
err = set_phy_regs(phy, regs);
|
|
if (err)
|
|
return err;
|
|
|
|
return t3_phy_lasi_intr_disable(phy);
|
|
}
|
|
|
|
/*
|
|
* Clear PHY interrupt state.
|
|
*/
|
|
static int ael2020_intr_clear(struct cphy *phy)
|
|
{
|
|
/*
|
|
* The GPIO Interrupt register on the AEL2020 is a "Latching High"
|
|
* (LH) register which is cleared to the current state when it's read.
|
|
* Thus, we simply read the register and discard the result.
|
|
*/
|
|
unsigned int stat;
|
|
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
|
|
return err ? err : t3_phy_lasi_intr_clear(phy);
|
|
}
|
|
|
|
static struct reg_val ael2020_reset_regs[] = {
|
|
/* Erratum #2: CDRLOL asserted, causing PMA link down status */
|
|
{ MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x3101 },
|
|
|
|
/* force XAUI to send LF when RX_LOS is asserted */
|
|
{ MDIO_MMD_PMAPMD, 0xcd40, 0xffff, 0x0001 },
|
|
|
|
/* allow writes to transceiver module EEPROM on i2c bus */
|
|
{ MDIO_MMD_PMAPMD, 0xff02, 0xffff, 0x0023 },
|
|
{ MDIO_MMD_PMAPMD, 0xff03, 0xffff, 0x0000 },
|
|
{ MDIO_MMD_PMAPMD, 0xff04, 0xffff, 0x0000 },
|
|
|
|
/* end */
|
|
{ 0, 0, 0, 0 }
|
|
};
|
|
/*
|
|
* Reset the PHY and put it into a canonical operating state.
|
|
*/
|
|
static int ael2020_reset(struct cphy *phy, int wait)
|
|
{
|
|
int err;
|
|
unsigned int lasi_ctrl;
|
|
|
|
/* grab current interrupt state */
|
|
err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
|
|
&lasi_ctrl);
|
|
if (err)
|
|
return err;
|
|
|
|
err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 125);
|
|
if (err)
|
|
return err;
|
|
msleep(100);
|
|
|
|
/* basic initialization for all module types */
|
|
phy->priv = edc_none;
|
|
err = set_phy_regs(phy, ael2020_reset_regs);
|
|
if (err)
|
|
return err;
|
|
|
|
/* determine module type and perform appropriate initialization */
|
|
err = ael2020_get_module_type(phy, 0);
|
|
if (err < 0)
|
|
return err;
|
|
phy->modtype = (u8)err;
|
|
if (err == phy_modtype_twinax || err == phy_modtype_twinax_long)
|
|
err = ael2020_setup_twinax_edc(phy, err);
|
|
else
|
|
err = ael2020_setup_sr_edc(phy);
|
|
if (err)
|
|
return err;
|
|
|
|
/* reset wipes out interrupts, reenable them if they were on */
|
|
if (lasi_ctrl & 1)
|
|
err = ael2005_intr_enable(phy);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Handle a PHY interrupt.
|
|
*/
|
|
static int ael2020_intr_handler(struct cphy *phy)
|
|
{
|
|
unsigned int stat;
|
|
int ret, edc_needed, cause = 0;
|
|
|
|
ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (stat & (0x1 << AEL2020_GPIO_MODDET)) {
|
|
/* modules have max 300 ms init time after hot plug */
|
|
ret = ael2020_get_module_type(phy, 300);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
phy->modtype = (u8)ret;
|
|
if (ret == phy_modtype_none)
|
|
edc_needed = phy->priv; /* on unplug retain EDC */
|
|
else if (ret == phy_modtype_twinax ||
|
|
ret == phy_modtype_twinax_long)
|
|
edc_needed = edc_twinax;
|
|
else
|
|
edc_needed = edc_sr;
|
|
|
|
if (edc_needed != phy->priv) {
|
|
ret = ael2020_reset(phy, 0);
|
|
return ret ? ret : cphy_cause_module_change;
|
|
}
|
|
cause = cphy_cause_module_change;
|
|
}
|
|
|
|
ret = t3_phy_lasi_intr_handler(phy);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret |= cause;
|
|
return ret ? ret : cphy_cause_link_change;
|
|
}
|
|
|
|
static struct cphy_ops ael2020_ops = {
|
|
.reset = ael2020_reset,
|
|
.intr_enable = ael2020_intr_enable,
|
|
.intr_disable = ael2020_intr_disable,
|
|
.intr_clear = ael2020_intr_clear,
|
|
.intr_handler = ael2020_intr_handler,
|
|
.get_link_status = get_link_status_r,
|
|
.power_down = ael1002_power_down,
|
|
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
|
|
};
|
|
|
|
int t3_ael2020_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr,
|
|
const struct mdio_ops *mdio_ops)
|
|
{
|
|
int err;
|
|
|
|
cphy_init(phy, adapter, phy_addr, &ael2020_ops, mdio_ops,
|
|
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE |
|
|
SUPPORTED_IRQ, "10GBASE-R");
|
|
msleep(125);
|
|
|
|
err = set_phy_regs(phy, ael2020_reset_regs);
|
|
if (err)
|
|
return err;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get link status for a 10GBASE-X device.
|
|
*/
|
|
static int get_link_status_x(struct cphy *phy, int *link_ok, int *speed,
|
|
int *duplex, int *fc)
|
|
{
|
|
if (link_ok) {
|
|
unsigned int stat0, stat1, stat2;
|
|
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD,
|
|
MDIO_PMA_RXDET, &stat0);
|
|
|
|
if (!err)
|
|
err = t3_mdio_read(phy, MDIO_MMD_PCS,
|
|
MDIO_PCS_10GBX_STAT1, &stat1);
|
|
if (!err)
|
|
err = t3_mdio_read(phy, MDIO_MMD_PHYXS,
|
|
MDIO_PHYXS_LNSTAT, &stat2);
|
|
if (err)
|
|
return err;
|
|
*link_ok = (stat0 & (stat1 >> 12) & (stat2 >> 12)) & 1;
|
|
}
|
|
if (speed)
|
|
*speed = SPEED_10000;
|
|
if (duplex)
|
|
*duplex = DUPLEX_FULL;
|
|
return 0;
|
|
}
|
|
|
|
static struct cphy_ops qt2045_ops = {
|
|
.reset = ael1006_reset,
|
|
.intr_enable = t3_phy_lasi_intr_enable,
|
|
.intr_disable = t3_phy_lasi_intr_disable,
|
|
.intr_clear = t3_phy_lasi_intr_clear,
|
|
.intr_handler = t3_phy_lasi_intr_handler,
|
|
.get_link_status = get_link_status_x,
|
|
.power_down = ael1002_power_down,
|
|
.mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS,
|
|
};
|
|
|
|
int t3_qt2045_phy_prep(struct cphy *phy, struct adapter *adapter,
|
|
int phy_addr, const struct mdio_ops *mdio_ops)
|
|
{
|
|
unsigned int stat;
|
|
|
|
cphy_init(phy, adapter, phy_addr, &qt2045_ops, mdio_ops,
|
|
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
|
|
"10GBASE-CX4");
|
|
|
|
/*
|
|
* Some cards where the PHY is supposed to be at address 0 actually
|
|
* have it at 1.
|
|
*/
|
|
if (!phy_addr &&
|
|
!t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_STAT1, &stat) &&
|
|
stat == 0xffff)
|
|
phy->mdio.prtad = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int xaui_direct_reset(struct cphy *phy, int wait)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int xaui_direct_get_link_status(struct cphy *phy, int *link_ok,
|
|
int *speed, int *duplex, int *fc)
|
|
{
|
|
if (link_ok) {
|
|
unsigned int status;
|
|
int prtad = phy->mdio.prtad;
|
|
|
|
status = t3_read_reg(phy->adapter,
|
|
XGM_REG(A_XGM_SERDES_STAT0, prtad)) |
|
|
t3_read_reg(phy->adapter,
|
|
XGM_REG(A_XGM_SERDES_STAT1, prtad)) |
|
|
t3_read_reg(phy->adapter,
|
|
XGM_REG(A_XGM_SERDES_STAT2, prtad)) |
|
|
t3_read_reg(phy->adapter,
|
|
XGM_REG(A_XGM_SERDES_STAT3, prtad));
|
|
*link_ok = !(status & F_LOWSIG0);
|
|
}
|
|
if (speed)
|
|
*speed = SPEED_10000;
|
|
if (duplex)
|
|
*duplex = DUPLEX_FULL;
|
|
return 0;
|
|
}
|
|
|
|
static int xaui_direct_power_down(struct cphy *phy, int enable)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct cphy_ops xaui_direct_ops = {
|
|
.reset = xaui_direct_reset,
|
|
.intr_enable = ael1002_intr_noop,
|
|
.intr_disable = ael1002_intr_noop,
|
|
.intr_clear = ael1002_intr_noop,
|
|
.intr_handler = ael1002_intr_noop,
|
|
.get_link_status = xaui_direct_get_link_status,
|
|
.power_down = xaui_direct_power_down,
|
|
};
|
|
|
|
int t3_xaui_direct_phy_prep(struct cphy *phy, struct adapter *adapter,
|
|
int phy_addr, const struct mdio_ops *mdio_ops)
|
|
{
|
|
cphy_init(phy, adapter, phy_addr, &xaui_direct_ops, mdio_ops,
|
|
SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP,
|
|
"10GBASE-CX4");
|
|
return 0;
|
|
}
|