mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 20:27:23 +07:00
050e9baa9d
The changes to automatically test for working stack protector compiler support in the Kconfig files removed the special STACKPROTECTOR_AUTO option that picked the strongest stack protector that the compiler supported. That was all a nice cleanup - it makes no sense to have the AUTO case now that the Kconfig phase can just determine the compiler support directly. HOWEVER. It also meant that doing "make oldconfig" would now _disable_ the strong stackprotector if you had AUTO enabled, because in a legacy config file, the sane stack protector configuration would look like CONFIG_HAVE_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_NONE is not set # CONFIG_CC_STACKPROTECTOR_REGULAR is not set # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_STACKPROTECTOR_AUTO=y and when you ran this through "make oldconfig" with the Kbuild changes, it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version used to be disabled (because it was really enabled by AUTO), and would disable it in the new config, resulting in: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_HAS_SANE_STACKPROTECTOR=y That's dangerously subtle - people could suddenly find themselves with the weaker stack protector setup without even realizing. The solution here is to just rename not just the old RECULAR stack protector option, but also the strong one. This does that by just removing the CC_ prefix entirely for the user choices, because it really is not about the compiler support (the compiler support now instead automatially impacts _visibility_ of the options to users). This results in "make oldconfig" actually asking the user for their choice, so that we don't have any silent subtle security model changes. The end result would generally look like this: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_STACKPROTECTOR=y CONFIG_STACKPROTECTOR_STRONG=y CONFIG_CC_HAS_SANE_STACKPROTECTOR=y where the "CC_" versions really are about internal compiler infrastructure, not the user selections. Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1691 lines
46 KiB
ArmAsm
1691 lines
46 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* linux/arch/x86_64/entry.S
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
|
|
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
|
|
*
|
|
* entry.S contains the system-call and fault low-level handling routines.
|
|
*
|
|
* Some of this is documented in Documentation/x86/entry_64.txt
|
|
*
|
|
* A note on terminology:
|
|
* - iret frame: Architecture defined interrupt frame from SS to RIP
|
|
* at the top of the kernel process stack.
|
|
*
|
|
* Some macro usage:
|
|
* - ENTRY/END: Define functions in the symbol table.
|
|
* - TRACE_IRQ_*: Trace hardirq state for lock debugging.
|
|
* - idtentry: Define exception entry points.
|
|
*/
|
|
#include <linux/linkage.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/page_types.h>
|
|
#include <asm/irqflags.h>
|
|
#include <asm/paravirt.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/smap.h>
|
|
#include <asm/pgtable_types.h>
|
|
#include <asm/export.h>
|
|
#include <asm/frame.h>
|
|
#include <asm/nospec-branch.h>
|
|
#include <linux/err.h>
|
|
|
|
#include "calling.h"
|
|
|
|
.code64
|
|
.section .entry.text, "ax"
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
ENTRY(native_usergs_sysret64)
|
|
UNWIND_HINT_EMPTY
|
|
swapgs
|
|
sysretq
|
|
END(native_usergs_sysret64)
|
|
#endif /* CONFIG_PARAVIRT */
|
|
|
|
.macro TRACE_IRQS_FLAGS flags:req
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
btl $9, \flags /* interrupts off? */
|
|
jnc 1f
|
|
TRACE_IRQS_ON
|
|
1:
|
|
#endif
|
|
.endm
|
|
|
|
.macro TRACE_IRQS_IRETQ
|
|
TRACE_IRQS_FLAGS EFLAGS(%rsp)
|
|
.endm
|
|
|
|
/*
|
|
* When dynamic function tracer is enabled it will add a breakpoint
|
|
* to all locations that it is about to modify, sync CPUs, update
|
|
* all the code, sync CPUs, then remove the breakpoints. In this time
|
|
* if lockdep is enabled, it might jump back into the debug handler
|
|
* outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
|
|
*
|
|
* We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
|
|
* make sure the stack pointer does not get reset back to the top
|
|
* of the debug stack, and instead just reuses the current stack.
|
|
*/
|
|
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
|
|
|
|
.macro TRACE_IRQS_OFF_DEBUG
|
|
call debug_stack_set_zero
|
|
TRACE_IRQS_OFF
|
|
call debug_stack_reset
|
|
.endm
|
|
|
|
.macro TRACE_IRQS_ON_DEBUG
|
|
call debug_stack_set_zero
|
|
TRACE_IRQS_ON
|
|
call debug_stack_reset
|
|
.endm
|
|
|
|
.macro TRACE_IRQS_IRETQ_DEBUG
|
|
bt $9, EFLAGS(%rsp) /* interrupts off? */
|
|
jnc 1f
|
|
TRACE_IRQS_ON_DEBUG
|
|
1:
|
|
.endm
|
|
|
|
#else
|
|
# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
|
|
# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
|
|
# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
|
|
#endif
|
|
|
|
/*
|
|
* 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
|
|
*
|
|
* This is the only entry point used for 64-bit system calls. The
|
|
* hardware interface is reasonably well designed and the register to
|
|
* argument mapping Linux uses fits well with the registers that are
|
|
* available when SYSCALL is used.
|
|
*
|
|
* SYSCALL instructions can be found inlined in libc implementations as
|
|
* well as some other programs and libraries. There are also a handful
|
|
* of SYSCALL instructions in the vDSO used, for example, as a
|
|
* clock_gettimeofday fallback.
|
|
*
|
|
* 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
|
|
* then loads new ss, cs, and rip from previously programmed MSRs.
|
|
* rflags gets masked by a value from another MSR (so CLD and CLAC
|
|
* are not needed). SYSCALL does not save anything on the stack
|
|
* and does not change rsp.
|
|
*
|
|
* Registers on entry:
|
|
* rax system call number
|
|
* rcx return address
|
|
* r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
|
|
* rdi arg0
|
|
* rsi arg1
|
|
* rdx arg2
|
|
* r10 arg3 (needs to be moved to rcx to conform to C ABI)
|
|
* r8 arg4
|
|
* r9 arg5
|
|
* (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
|
|
*
|
|
* Only called from user space.
|
|
*
|
|
* When user can change pt_regs->foo always force IRET. That is because
|
|
* it deals with uncanonical addresses better. SYSRET has trouble
|
|
* with them due to bugs in both AMD and Intel CPUs.
|
|
*/
|
|
|
|
.pushsection .entry_trampoline, "ax"
|
|
|
|
/*
|
|
* The code in here gets remapped into cpu_entry_area's trampoline. This means
|
|
* that the assembler and linker have the wrong idea as to where this code
|
|
* lives (and, in fact, it's mapped more than once, so it's not even at a
|
|
* fixed address). So we can't reference any symbols outside the entry
|
|
* trampoline and expect it to work.
|
|
*
|
|
* Instead, we carefully abuse %rip-relative addressing.
|
|
* _entry_trampoline(%rip) refers to the start of the remapped) entry
|
|
* trampoline. We can thus find cpu_entry_area with this macro:
|
|
*/
|
|
|
|
#define CPU_ENTRY_AREA \
|
|
_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
|
|
|
|
/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
|
|
#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
|
|
SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
|
|
|
|
ENTRY(entry_SYSCALL_64_trampoline)
|
|
UNWIND_HINT_EMPTY
|
|
swapgs
|
|
|
|
/* Stash the user RSP. */
|
|
movq %rsp, RSP_SCRATCH
|
|
|
|
/* Note: using %rsp as a scratch reg. */
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
|
|
|
|
/* Load the top of the task stack into RSP */
|
|
movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
|
|
|
|
/* Start building the simulated IRET frame. */
|
|
pushq $__USER_DS /* pt_regs->ss */
|
|
pushq RSP_SCRATCH /* pt_regs->sp */
|
|
pushq %r11 /* pt_regs->flags */
|
|
pushq $__USER_CS /* pt_regs->cs */
|
|
pushq %rcx /* pt_regs->ip */
|
|
|
|
/*
|
|
* x86 lacks a near absolute jump, and we can't jump to the real
|
|
* entry text with a relative jump. We could push the target
|
|
* address and then use retq, but this destroys the pipeline on
|
|
* many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
|
|
* spill RDI and restore it in a second-stage trampoline.
|
|
*/
|
|
pushq %rdi
|
|
movq $entry_SYSCALL_64_stage2, %rdi
|
|
JMP_NOSPEC %rdi
|
|
END(entry_SYSCALL_64_trampoline)
|
|
|
|
.popsection
|
|
|
|
ENTRY(entry_SYSCALL_64_stage2)
|
|
UNWIND_HINT_EMPTY
|
|
popq %rdi
|
|
jmp entry_SYSCALL_64_after_hwframe
|
|
END(entry_SYSCALL_64_stage2)
|
|
|
|
ENTRY(entry_SYSCALL_64)
|
|
UNWIND_HINT_EMPTY
|
|
/*
|
|
* Interrupts are off on entry.
|
|
* We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
|
|
* it is too small to ever cause noticeable irq latency.
|
|
*/
|
|
|
|
swapgs
|
|
/*
|
|
* This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
|
|
* is not required to switch CR3.
|
|
*/
|
|
movq %rsp, PER_CPU_VAR(rsp_scratch)
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
|
|
|
/* Construct struct pt_regs on stack */
|
|
pushq $__USER_DS /* pt_regs->ss */
|
|
pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
|
|
pushq %r11 /* pt_regs->flags */
|
|
pushq $__USER_CS /* pt_regs->cs */
|
|
pushq %rcx /* pt_regs->ip */
|
|
GLOBAL(entry_SYSCALL_64_after_hwframe)
|
|
pushq %rax /* pt_regs->orig_ax */
|
|
|
|
PUSH_AND_CLEAR_REGS rax=$-ENOSYS
|
|
|
|
TRACE_IRQS_OFF
|
|
|
|
/* IRQs are off. */
|
|
movq %rax, %rdi
|
|
movq %rsp, %rsi
|
|
call do_syscall_64 /* returns with IRQs disabled */
|
|
|
|
TRACE_IRQS_IRETQ /* we're about to change IF */
|
|
|
|
/*
|
|
* Try to use SYSRET instead of IRET if we're returning to
|
|
* a completely clean 64-bit userspace context. If we're not,
|
|
* go to the slow exit path.
|
|
*/
|
|
movq RCX(%rsp), %rcx
|
|
movq RIP(%rsp), %r11
|
|
|
|
cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
/*
|
|
* On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
|
|
* in kernel space. This essentially lets the user take over
|
|
* the kernel, since userspace controls RSP.
|
|
*
|
|
* If width of "canonical tail" ever becomes variable, this will need
|
|
* to be updated to remain correct on both old and new CPUs.
|
|
*
|
|
* Change top bits to match most significant bit (47th or 56th bit
|
|
* depending on paging mode) in the address.
|
|
*/
|
|
#ifdef CONFIG_X86_5LEVEL
|
|
ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
|
|
"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
|
|
#else
|
|
shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
|
|
sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
|
|
#endif
|
|
|
|
/* If this changed %rcx, it was not canonical */
|
|
cmpq %rcx, %r11
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
movq R11(%rsp), %r11
|
|
cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
/*
|
|
* SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
|
|
* restore RF properly. If the slowpath sets it for whatever reason, we
|
|
* need to restore it correctly.
|
|
*
|
|
* SYSRET can restore TF, but unlike IRET, restoring TF results in a
|
|
* trap from userspace immediately after SYSRET. This would cause an
|
|
* infinite loop whenever #DB happens with register state that satisfies
|
|
* the opportunistic SYSRET conditions. For example, single-stepping
|
|
* this user code:
|
|
*
|
|
* movq $stuck_here, %rcx
|
|
* pushfq
|
|
* popq %r11
|
|
* stuck_here:
|
|
*
|
|
* would never get past 'stuck_here'.
|
|
*/
|
|
testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
|
|
jnz swapgs_restore_regs_and_return_to_usermode
|
|
|
|
/* nothing to check for RSP */
|
|
|
|
cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
/*
|
|
* We win! This label is here just for ease of understanding
|
|
* perf profiles. Nothing jumps here.
|
|
*/
|
|
syscall_return_via_sysret:
|
|
/* rcx and r11 are already restored (see code above) */
|
|
UNWIND_HINT_EMPTY
|
|
POP_REGS pop_rdi=0 skip_r11rcx=1
|
|
|
|
/*
|
|
* Now all regs are restored except RSP and RDI.
|
|
* Save old stack pointer and switch to trampoline stack.
|
|
*/
|
|
movq %rsp, %rdi
|
|
movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
|
|
|
|
pushq RSP-RDI(%rdi) /* RSP */
|
|
pushq (%rdi) /* RDI */
|
|
|
|
/*
|
|
* We are on the trampoline stack. All regs except RDI are live.
|
|
* We can do future final exit work right here.
|
|
*/
|
|
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
|
|
|
|
popq %rdi
|
|
popq %rsp
|
|
USERGS_SYSRET64
|
|
END(entry_SYSCALL_64)
|
|
|
|
/*
|
|
* %rdi: prev task
|
|
* %rsi: next task
|
|
*/
|
|
ENTRY(__switch_to_asm)
|
|
UNWIND_HINT_FUNC
|
|
/*
|
|
* Save callee-saved registers
|
|
* This must match the order in inactive_task_frame
|
|
*/
|
|
pushq %rbp
|
|
pushq %rbx
|
|
pushq %r12
|
|
pushq %r13
|
|
pushq %r14
|
|
pushq %r15
|
|
|
|
/* switch stack */
|
|
movq %rsp, TASK_threadsp(%rdi)
|
|
movq TASK_threadsp(%rsi), %rsp
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
movq TASK_stack_canary(%rsi), %rbx
|
|
movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
|
|
#endif
|
|
|
|
#ifdef CONFIG_RETPOLINE
|
|
/*
|
|
* When switching from a shallower to a deeper call stack
|
|
* the RSB may either underflow or use entries populated
|
|
* with userspace addresses. On CPUs where those concerns
|
|
* exist, overwrite the RSB with entries which capture
|
|
* speculative execution to prevent attack.
|
|
*/
|
|
FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
|
|
#endif
|
|
|
|
/* restore callee-saved registers */
|
|
popq %r15
|
|
popq %r14
|
|
popq %r13
|
|
popq %r12
|
|
popq %rbx
|
|
popq %rbp
|
|
|
|
jmp __switch_to
|
|
END(__switch_to_asm)
|
|
|
|
/*
|
|
* A newly forked process directly context switches into this address.
|
|
*
|
|
* rax: prev task we switched from
|
|
* rbx: kernel thread func (NULL for user thread)
|
|
* r12: kernel thread arg
|
|
*/
|
|
ENTRY(ret_from_fork)
|
|
UNWIND_HINT_EMPTY
|
|
movq %rax, %rdi
|
|
call schedule_tail /* rdi: 'prev' task parameter */
|
|
|
|
testq %rbx, %rbx /* from kernel_thread? */
|
|
jnz 1f /* kernel threads are uncommon */
|
|
|
|
2:
|
|
UNWIND_HINT_REGS
|
|
movq %rsp, %rdi
|
|
call syscall_return_slowpath /* returns with IRQs disabled */
|
|
TRACE_IRQS_ON /* user mode is traced as IRQS on */
|
|
jmp swapgs_restore_regs_and_return_to_usermode
|
|
|
|
1:
|
|
/* kernel thread */
|
|
movq %r12, %rdi
|
|
CALL_NOSPEC %rbx
|
|
/*
|
|
* A kernel thread is allowed to return here after successfully
|
|
* calling do_execve(). Exit to userspace to complete the execve()
|
|
* syscall.
|
|
*/
|
|
movq $0, RAX(%rsp)
|
|
jmp 2b
|
|
END(ret_from_fork)
|
|
|
|
/*
|
|
* Build the entry stubs with some assembler magic.
|
|
* We pack 1 stub into every 8-byte block.
|
|
*/
|
|
.align 8
|
|
ENTRY(irq_entries_start)
|
|
vector=FIRST_EXTERNAL_VECTOR
|
|
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
|
|
UNWIND_HINT_IRET_REGS
|
|
pushq $(~vector+0x80) /* Note: always in signed byte range */
|
|
jmp common_interrupt
|
|
.align 8
|
|
vector=vector+1
|
|
.endr
|
|
END(irq_entries_start)
|
|
|
|
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
pushq %rax
|
|
SAVE_FLAGS(CLBR_RAX)
|
|
testl $X86_EFLAGS_IF, %eax
|
|
jz .Lokay_\@
|
|
ud2
|
|
.Lokay_\@:
|
|
popq %rax
|
|
#endif
|
|
.endm
|
|
|
|
/*
|
|
* Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
|
|
* flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
|
|
* Requires kernel GSBASE.
|
|
*
|
|
* The invariant is that, if irq_count != -1, then the IRQ stack is in use.
|
|
*/
|
|
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
|
|
DEBUG_ENTRY_ASSERT_IRQS_OFF
|
|
|
|
.if \save_ret
|
|
/*
|
|
* If save_ret is set, the original stack contains one additional
|
|
* entry -- the return address. Therefore, move the address one
|
|
* entry below %rsp to \old_rsp.
|
|
*/
|
|
leaq 8(%rsp), \old_rsp
|
|
.else
|
|
movq %rsp, \old_rsp
|
|
.endif
|
|
|
|
.if \regs
|
|
UNWIND_HINT_REGS base=\old_rsp
|
|
.endif
|
|
|
|
incl PER_CPU_VAR(irq_count)
|
|
jnz .Lirq_stack_push_old_rsp_\@
|
|
|
|
/*
|
|
* Right now, if we just incremented irq_count to zero, we've
|
|
* claimed the IRQ stack but we haven't switched to it yet.
|
|
*
|
|
* If anything is added that can interrupt us here without using IST,
|
|
* it must be *extremely* careful to limit its stack usage. This
|
|
* could include kprobes and a hypothetical future IST-less #DB
|
|
* handler.
|
|
*
|
|
* The OOPS unwinder relies on the word at the top of the IRQ
|
|
* stack linking back to the previous RSP for the entire time we're
|
|
* on the IRQ stack. For this to work reliably, we need to write
|
|
* it before we actually move ourselves to the IRQ stack.
|
|
*/
|
|
|
|
movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
|
|
movq PER_CPU_VAR(irq_stack_ptr), %rsp
|
|
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/*
|
|
* If the first movq above becomes wrong due to IRQ stack layout
|
|
* changes, the only way we'll notice is if we try to unwind right
|
|
* here. Assert that we set up the stack right to catch this type
|
|
* of bug quickly.
|
|
*/
|
|
cmpq -8(%rsp), \old_rsp
|
|
je .Lirq_stack_okay\@
|
|
ud2
|
|
.Lirq_stack_okay\@:
|
|
#endif
|
|
|
|
.Lirq_stack_push_old_rsp_\@:
|
|
pushq \old_rsp
|
|
|
|
.if \regs
|
|
UNWIND_HINT_REGS indirect=1
|
|
.endif
|
|
|
|
.if \save_ret
|
|
/*
|
|
* Push the return address to the stack. This return address can
|
|
* be found at the "real" original RSP, which was offset by 8 at
|
|
* the beginning of this macro.
|
|
*/
|
|
pushq -8(\old_rsp)
|
|
.endif
|
|
.endm
|
|
|
|
/*
|
|
* Undoes ENTER_IRQ_STACK.
|
|
*/
|
|
.macro LEAVE_IRQ_STACK regs=1
|
|
DEBUG_ENTRY_ASSERT_IRQS_OFF
|
|
/* We need to be off the IRQ stack before decrementing irq_count. */
|
|
popq %rsp
|
|
|
|
.if \regs
|
|
UNWIND_HINT_REGS
|
|
.endif
|
|
|
|
/*
|
|
* As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
|
|
* the irq stack but we're not on it.
|
|
*/
|
|
|
|
decl PER_CPU_VAR(irq_count)
|
|
.endm
|
|
|
|
/*
|
|
* Interrupt entry helper function.
|
|
*
|
|
* Entry runs with interrupts off. Stack layout at entry:
|
|
* +----------------------------------------------------+
|
|
* | regs->ss |
|
|
* | regs->rsp |
|
|
* | regs->eflags |
|
|
* | regs->cs |
|
|
* | regs->ip |
|
|
* +----------------------------------------------------+
|
|
* | regs->orig_ax = ~(interrupt number) |
|
|
* +----------------------------------------------------+
|
|
* | return address |
|
|
* +----------------------------------------------------+
|
|
*/
|
|
ENTRY(interrupt_entry)
|
|
UNWIND_HINT_FUNC
|
|
ASM_CLAC
|
|
cld
|
|
|
|
testb $3, CS-ORIG_RAX+8(%rsp)
|
|
jz 1f
|
|
SWAPGS
|
|
|
|
/*
|
|
* Switch to the thread stack. The IRET frame and orig_ax are
|
|
* on the stack, as well as the return address. RDI..R12 are
|
|
* not (yet) on the stack and space has not (yet) been
|
|
* allocated for them.
|
|
*/
|
|
pushq %rdi
|
|
|
|
/* Need to switch before accessing the thread stack. */
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
|
|
movq %rsp, %rdi
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
|
|
|
/*
|
|
* We have RDI, return address, and orig_ax on the stack on
|
|
* top of the IRET frame. That means offset=24
|
|
*/
|
|
UNWIND_HINT_IRET_REGS base=%rdi offset=24
|
|
|
|
pushq 7*8(%rdi) /* regs->ss */
|
|
pushq 6*8(%rdi) /* regs->rsp */
|
|
pushq 5*8(%rdi) /* regs->eflags */
|
|
pushq 4*8(%rdi) /* regs->cs */
|
|
pushq 3*8(%rdi) /* regs->ip */
|
|
pushq 2*8(%rdi) /* regs->orig_ax */
|
|
pushq 8(%rdi) /* return address */
|
|
UNWIND_HINT_FUNC
|
|
|
|
movq (%rdi), %rdi
|
|
1:
|
|
|
|
PUSH_AND_CLEAR_REGS save_ret=1
|
|
ENCODE_FRAME_POINTER 8
|
|
|
|
testb $3, CS+8(%rsp)
|
|
jz 1f
|
|
|
|
/*
|
|
* IRQ from user mode.
|
|
*
|
|
* We need to tell lockdep that IRQs are off. We can't do this until
|
|
* we fix gsbase, and we should do it before enter_from_user_mode
|
|
* (which can take locks). Since TRACE_IRQS_OFF is idempotent,
|
|
* the simplest way to handle it is to just call it twice if
|
|
* we enter from user mode. There's no reason to optimize this since
|
|
* TRACE_IRQS_OFF is a no-op if lockdep is off.
|
|
*/
|
|
TRACE_IRQS_OFF
|
|
|
|
CALL_enter_from_user_mode
|
|
|
|
1:
|
|
ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
|
|
/* We entered an interrupt context - irqs are off: */
|
|
TRACE_IRQS_OFF
|
|
|
|
ret
|
|
END(interrupt_entry)
|
|
|
|
|
|
/* Interrupt entry/exit. */
|
|
|
|
/*
|
|
* The interrupt stubs push (~vector+0x80) onto the stack and
|
|
* then jump to common_interrupt.
|
|
*/
|
|
.p2align CONFIG_X86_L1_CACHE_SHIFT
|
|
common_interrupt:
|
|
addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
|
|
call interrupt_entry
|
|
UNWIND_HINT_REGS indirect=1
|
|
call do_IRQ /* rdi points to pt_regs */
|
|
/* 0(%rsp): old RSP */
|
|
ret_from_intr:
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
TRACE_IRQS_OFF
|
|
|
|
LEAVE_IRQ_STACK
|
|
|
|
testb $3, CS(%rsp)
|
|
jz retint_kernel
|
|
|
|
/* Interrupt came from user space */
|
|
GLOBAL(retint_user)
|
|
mov %rsp,%rdi
|
|
call prepare_exit_to_usermode
|
|
TRACE_IRQS_IRETQ
|
|
|
|
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/* Assert that pt_regs indicates user mode. */
|
|
testb $3, CS(%rsp)
|
|
jnz 1f
|
|
ud2
|
|
1:
|
|
#endif
|
|
POP_REGS pop_rdi=0
|
|
|
|
/*
|
|
* The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
|
|
* Save old stack pointer and switch to trampoline stack.
|
|
*/
|
|
movq %rsp, %rdi
|
|
movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
|
|
|
|
/* Copy the IRET frame to the trampoline stack. */
|
|
pushq 6*8(%rdi) /* SS */
|
|
pushq 5*8(%rdi) /* RSP */
|
|
pushq 4*8(%rdi) /* EFLAGS */
|
|
pushq 3*8(%rdi) /* CS */
|
|
pushq 2*8(%rdi) /* RIP */
|
|
|
|
/* Push user RDI on the trampoline stack. */
|
|
pushq (%rdi)
|
|
|
|
/*
|
|
* We are on the trampoline stack. All regs except RDI are live.
|
|
* We can do future final exit work right here.
|
|
*/
|
|
|
|
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
|
|
|
|
/* Restore RDI. */
|
|
popq %rdi
|
|
SWAPGS
|
|
INTERRUPT_RETURN
|
|
|
|
|
|
/* Returning to kernel space */
|
|
retint_kernel:
|
|
#ifdef CONFIG_PREEMPT
|
|
/* Interrupts are off */
|
|
/* Check if we need preemption */
|
|
bt $9, EFLAGS(%rsp) /* were interrupts off? */
|
|
jnc 1f
|
|
0: cmpl $0, PER_CPU_VAR(__preempt_count)
|
|
jnz 1f
|
|
call preempt_schedule_irq
|
|
jmp 0b
|
|
1:
|
|
#endif
|
|
/*
|
|
* The iretq could re-enable interrupts:
|
|
*/
|
|
TRACE_IRQS_IRETQ
|
|
|
|
GLOBAL(restore_regs_and_return_to_kernel)
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/* Assert that pt_regs indicates kernel mode. */
|
|
testb $3, CS(%rsp)
|
|
jz 1f
|
|
ud2
|
|
1:
|
|
#endif
|
|
POP_REGS
|
|
addq $8, %rsp /* skip regs->orig_ax */
|
|
/*
|
|
* ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
|
|
* when returning from IPI handler.
|
|
*/
|
|
INTERRUPT_RETURN
|
|
|
|
ENTRY(native_iret)
|
|
UNWIND_HINT_IRET_REGS
|
|
/*
|
|
* Are we returning to a stack segment from the LDT? Note: in
|
|
* 64-bit mode SS:RSP on the exception stack is always valid.
|
|
*/
|
|
#ifdef CONFIG_X86_ESPFIX64
|
|
testb $4, (SS-RIP)(%rsp)
|
|
jnz native_irq_return_ldt
|
|
#endif
|
|
|
|
.global native_irq_return_iret
|
|
native_irq_return_iret:
|
|
/*
|
|
* This may fault. Non-paranoid faults on return to userspace are
|
|
* handled by fixup_bad_iret. These include #SS, #GP, and #NP.
|
|
* Double-faults due to espfix64 are handled in do_double_fault.
|
|
* Other faults here are fatal.
|
|
*/
|
|
iretq
|
|
|
|
#ifdef CONFIG_X86_ESPFIX64
|
|
native_irq_return_ldt:
|
|
/*
|
|
* We are running with user GSBASE. All GPRs contain their user
|
|
* values. We have a percpu ESPFIX stack that is eight slots
|
|
* long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
|
|
* of the ESPFIX stack.
|
|
*
|
|
* We clobber RAX and RDI in this code. We stash RDI on the
|
|
* normal stack and RAX on the ESPFIX stack.
|
|
*
|
|
* The ESPFIX stack layout we set up looks like this:
|
|
*
|
|
* --- top of ESPFIX stack ---
|
|
* SS
|
|
* RSP
|
|
* RFLAGS
|
|
* CS
|
|
* RIP <-- RSP points here when we're done
|
|
* RAX <-- espfix_waddr points here
|
|
* --- bottom of ESPFIX stack ---
|
|
*/
|
|
|
|
pushq %rdi /* Stash user RDI */
|
|
SWAPGS /* to kernel GS */
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
|
|
|
|
movq PER_CPU_VAR(espfix_waddr), %rdi
|
|
movq %rax, (0*8)(%rdi) /* user RAX */
|
|
movq (1*8)(%rsp), %rax /* user RIP */
|
|
movq %rax, (1*8)(%rdi)
|
|
movq (2*8)(%rsp), %rax /* user CS */
|
|
movq %rax, (2*8)(%rdi)
|
|
movq (3*8)(%rsp), %rax /* user RFLAGS */
|
|
movq %rax, (3*8)(%rdi)
|
|
movq (5*8)(%rsp), %rax /* user SS */
|
|
movq %rax, (5*8)(%rdi)
|
|
movq (4*8)(%rsp), %rax /* user RSP */
|
|
movq %rax, (4*8)(%rdi)
|
|
/* Now RAX == RSP. */
|
|
|
|
andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
|
|
|
|
/*
|
|
* espfix_stack[31:16] == 0. The page tables are set up such that
|
|
* (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
|
|
* espfix_waddr for any X. That is, there are 65536 RO aliases of
|
|
* the same page. Set up RSP so that RSP[31:16] contains the
|
|
* respective 16 bits of the /userspace/ RSP and RSP nonetheless
|
|
* still points to an RO alias of the ESPFIX stack.
|
|
*/
|
|
orq PER_CPU_VAR(espfix_stack), %rax
|
|
|
|
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
|
|
SWAPGS /* to user GS */
|
|
popq %rdi /* Restore user RDI */
|
|
|
|
movq %rax, %rsp
|
|
UNWIND_HINT_IRET_REGS offset=8
|
|
|
|
/*
|
|
* At this point, we cannot write to the stack any more, but we can
|
|
* still read.
|
|
*/
|
|
popq %rax /* Restore user RAX */
|
|
|
|
/*
|
|
* RSP now points to an ordinary IRET frame, except that the page
|
|
* is read-only and RSP[31:16] are preloaded with the userspace
|
|
* values. We can now IRET back to userspace.
|
|
*/
|
|
jmp native_irq_return_iret
|
|
#endif
|
|
END(common_interrupt)
|
|
|
|
/*
|
|
* APIC interrupts.
|
|
*/
|
|
.macro apicinterrupt3 num sym do_sym
|
|
ENTRY(\sym)
|
|
UNWIND_HINT_IRET_REGS
|
|
pushq $~(\num)
|
|
.Lcommon_\sym:
|
|
call interrupt_entry
|
|
UNWIND_HINT_REGS indirect=1
|
|
call \do_sym /* rdi points to pt_regs */
|
|
jmp ret_from_intr
|
|
END(\sym)
|
|
.endm
|
|
|
|
/* Make sure APIC interrupt handlers end up in the irqentry section: */
|
|
#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
|
|
#define POP_SECTION_IRQENTRY .popsection
|
|
|
|
.macro apicinterrupt num sym do_sym
|
|
PUSH_SECTION_IRQENTRY
|
|
apicinterrupt3 \num \sym \do_sym
|
|
POP_SECTION_IRQENTRY
|
|
.endm
|
|
|
|
#ifdef CONFIG_SMP
|
|
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
|
|
apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_UV
|
|
apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
|
|
#endif
|
|
|
|
apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
|
|
apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
|
|
|
|
#ifdef CONFIG_HAVE_KVM
|
|
apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
|
|
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
|
|
apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE_THRESHOLD
|
|
apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE_AMD
|
|
apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_THERMAL_VECTOR
|
|
apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
|
|
apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
|
|
apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
|
|
#endif
|
|
|
|
apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
|
|
apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
|
|
|
|
#ifdef CONFIG_IRQ_WORK
|
|
apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
|
|
#endif
|
|
|
|
/*
|
|
* Exception entry points.
|
|
*/
|
|
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
|
|
|
|
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
|
|
ENTRY(\sym)
|
|
UNWIND_HINT_IRET_REGS offset=\has_error_code*8
|
|
|
|
/* Sanity check */
|
|
.if \shift_ist != -1 && \paranoid == 0
|
|
.error "using shift_ist requires paranoid=1"
|
|
.endif
|
|
|
|
ASM_CLAC
|
|
|
|
.if \has_error_code == 0
|
|
pushq $-1 /* ORIG_RAX: no syscall to restart */
|
|
.endif
|
|
|
|
.if \paranoid == 1
|
|
testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
|
|
jnz .Lfrom_usermode_switch_stack_\@
|
|
.endif
|
|
|
|
.if \paranoid
|
|
call paranoid_entry
|
|
.else
|
|
call error_entry
|
|
.endif
|
|
UNWIND_HINT_REGS
|
|
/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
|
|
|
|
.if \paranoid
|
|
.if \shift_ist != -1
|
|
TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
|
|
.else
|
|
TRACE_IRQS_OFF
|
|
.endif
|
|
.endif
|
|
|
|
movq %rsp, %rdi /* pt_regs pointer */
|
|
|
|
.if \has_error_code
|
|
movq ORIG_RAX(%rsp), %rsi /* get error code */
|
|
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
|
|
.else
|
|
xorl %esi, %esi /* no error code */
|
|
.endif
|
|
|
|
.if \shift_ist != -1
|
|
subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
|
|
.endif
|
|
|
|
call \do_sym
|
|
|
|
.if \shift_ist != -1
|
|
addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
|
|
.endif
|
|
|
|
/* these procedures expect "no swapgs" flag in ebx */
|
|
.if \paranoid
|
|
jmp paranoid_exit
|
|
.else
|
|
jmp error_exit
|
|
.endif
|
|
|
|
.if \paranoid == 1
|
|
/*
|
|
* Entry from userspace. Switch stacks and treat it
|
|
* as a normal entry. This means that paranoid handlers
|
|
* run in real process context if user_mode(regs).
|
|
*/
|
|
.Lfrom_usermode_switch_stack_\@:
|
|
call error_entry
|
|
|
|
movq %rsp, %rdi /* pt_regs pointer */
|
|
|
|
.if \has_error_code
|
|
movq ORIG_RAX(%rsp), %rsi /* get error code */
|
|
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
|
|
.else
|
|
xorl %esi, %esi /* no error code */
|
|
.endif
|
|
|
|
call \do_sym
|
|
|
|
jmp error_exit /* %ebx: no swapgs flag */
|
|
.endif
|
|
END(\sym)
|
|
.endm
|
|
|
|
idtentry divide_error do_divide_error has_error_code=0
|
|
idtentry overflow do_overflow has_error_code=0
|
|
idtentry bounds do_bounds has_error_code=0
|
|
idtentry invalid_op do_invalid_op has_error_code=0
|
|
idtentry device_not_available do_device_not_available has_error_code=0
|
|
idtentry double_fault do_double_fault has_error_code=1 paranoid=2
|
|
idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
|
|
idtentry invalid_TSS do_invalid_TSS has_error_code=1
|
|
idtentry segment_not_present do_segment_not_present has_error_code=1
|
|
idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
|
|
idtentry coprocessor_error do_coprocessor_error has_error_code=0
|
|
idtentry alignment_check do_alignment_check has_error_code=1
|
|
idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
|
|
|
|
|
|
/*
|
|
* Reload gs selector with exception handling
|
|
* edi: new selector
|
|
*/
|
|
ENTRY(native_load_gs_index)
|
|
FRAME_BEGIN
|
|
pushfq
|
|
DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
|
|
TRACE_IRQS_OFF
|
|
SWAPGS
|
|
.Lgs_change:
|
|
movl %edi, %gs
|
|
2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
|
|
SWAPGS
|
|
TRACE_IRQS_FLAGS (%rsp)
|
|
popfq
|
|
FRAME_END
|
|
ret
|
|
ENDPROC(native_load_gs_index)
|
|
EXPORT_SYMBOL(native_load_gs_index)
|
|
|
|
_ASM_EXTABLE(.Lgs_change, bad_gs)
|
|
.section .fixup, "ax"
|
|
/* running with kernelgs */
|
|
bad_gs:
|
|
SWAPGS /* switch back to user gs */
|
|
.macro ZAP_GS
|
|
/* This can't be a string because the preprocessor needs to see it. */
|
|
movl $__USER_DS, %eax
|
|
movl %eax, %gs
|
|
.endm
|
|
ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
|
|
xorl %eax, %eax
|
|
movl %eax, %gs
|
|
jmp 2b
|
|
.previous
|
|
|
|
/* Call softirq on interrupt stack. Interrupts are off. */
|
|
ENTRY(do_softirq_own_stack)
|
|
pushq %rbp
|
|
mov %rsp, %rbp
|
|
ENTER_IRQ_STACK regs=0 old_rsp=%r11
|
|
call __do_softirq
|
|
LEAVE_IRQ_STACK regs=0
|
|
leaveq
|
|
ret
|
|
ENDPROC(do_softirq_own_stack)
|
|
|
|
#ifdef CONFIG_XEN
|
|
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
|
|
|
|
/*
|
|
* A note on the "critical region" in our callback handler.
|
|
* We want to avoid stacking callback handlers due to events occurring
|
|
* during handling of the last event. To do this, we keep events disabled
|
|
* until we've done all processing. HOWEVER, we must enable events before
|
|
* popping the stack frame (can't be done atomically) and so it would still
|
|
* be possible to get enough handler activations to overflow the stack.
|
|
* Although unlikely, bugs of that kind are hard to track down, so we'd
|
|
* like to avoid the possibility.
|
|
* So, on entry to the handler we detect whether we interrupted an
|
|
* existing activation in its critical region -- if so, we pop the current
|
|
* activation and restart the handler using the previous one.
|
|
*/
|
|
ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
|
|
|
|
/*
|
|
* Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
|
|
* see the correct pointer to the pt_regs
|
|
*/
|
|
UNWIND_HINT_FUNC
|
|
movq %rdi, %rsp /* we don't return, adjust the stack frame */
|
|
UNWIND_HINT_REGS
|
|
|
|
ENTER_IRQ_STACK old_rsp=%r10
|
|
call xen_evtchn_do_upcall
|
|
LEAVE_IRQ_STACK
|
|
|
|
#ifndef CONFIG_PREEMPT
|
|
call xen_maybe_preempt_hcall
|
|
#endif
|
|
jmp error_exit
|
|
END(xen_do_hypervisor_callback)
|
|
|
|
/*
|
|
* Hypervisor uses this for application faults while it executes.
|
|
* We get here for two reasons:
|
|
* 1. Fault while reloading DS, ES, FS or GS
|
|
* 2. Fault while executing IRET
|
|
* Category 1 we do not need to fix up as Xen has already reloaded all segment
|
|
* registers that could be reloaded and zeroed the others.
|
|
* Category 2 we fix up by killing the current process. We cannot use the
|
|
* normal Linux return path in this case because if we use the IRET hypercall
|
|
* to pop the stack frame we end up in an infinite loop of failsafe callbacks.
|
|
* We distinguish between categories by comparing each saved segment register
|
|
* with its current contents: any discrepancy means we in category 1.
|
|
*/
|
|
ENTRY(xen_failsafe_callback)
|
|
UNWIND_HINT_EMPTY
|
|
movl %ds, %ecx
|
|
cmpw %cx, 0x10(%rsp)
|
|
jne 1f
|
|
movl %es, %ecx
|
|
cmpw %cx, 0x18(%rsp)
|
|
jne 1f
|
|
movl %fs, %ecx
|
|
cmpw %cx, 0x20(%rsp)
|
|
jne 1f
|
|
movl %gs, %ecx
|
|
cmpw %cx, 0x28(%rsp)
|
|
jne 1f
|
|
/* All segments match their saved values => Category 2 (Bad IRET). */
|
|
movq (%rsp), %rcx
|
|
movq 8(%rsp), %r11
|
|
addq $0x30, %rsp
|
|
pushq $0 /* RIP */
|
|
UNWIND_HINT_IRET_REGS offset=8
|
|
jmp general_protection
|
|
1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
|
|
movq (%rsp), %rcx
|
|
movq 8(%rsp), %r11
|
|
addq $0x30, %rsp
|
|
UNWIND_HINT_IRET_REGS
|
|
pushq $-1 /* orig_ax = -1 => not a system call */
|
|
PUSH_AND_CLEAR_REGS
|
|
ENCODE_FRAME_POINTER
|
|
jmp error_exit
|
|
END(xen_failsafe_callback)
|
|
|
|
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
|
|
xen_hvm_callback_vector xen_evtchn_do_upcall
|
|
|
|
#endif /* CONFIG_XEN */
|
|
|
|
#if IS_ENABLED(CONFIG_HYPERV)
|
|
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
|
|
hyperv_callback_vector hyperv_vector_handler
|
|
|
|
apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
|
|
hyperv_reenlightenment_vector hyperv_reenlightenment_intr
|
|
|
|
apicinterrupt3 HYPERV_STIMER0_VECTOR \
|
|
hv_stimer0_callback_vector hv_stimer0_vector_handler
|
|
#endif /* CONFIG_HYPERV */
|
|
|
|
idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
|
|
idtentry int3 do_int3 has_error_code=0
|
|
idtentry stack_segment do_stack_segment has_error_code=1
|
|
|
|
#ifdef CONFIG_XEN
|
|
idtentry xennmi do_nmi has_error_code=0
|
|
idtentry xendebug do_debug has_error_code=0
|
|
idtentry xenint3 do_int3 has_error_code=0
|
|
#endif
|
|
|
|
idtentry general_protection do_general_protection has_error_code=1
|
|
idtentry page_fault do_page_fault has_error_code=1
|
|
|
|
#ifdef CONFIG_KVM_GUEST
|
|
idtentry async_page_fault do_async_page_fault has_error_code=1
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE
|
|
idtentry machine_check do_mce has_error_code=0 paranoid=1
|
|
#endif
|
|
|
|
/*
|
|
* Save all registers in pt_regs, and switch gs if needed.
|
|
* Use slow, but surefire "are we in kernel?" check.
|
|
* Return: ebx=0: need swapgs on exit, ebx=1: otherwise
|
|
*/
|
|
ENTRY(paranoid_entry)
|
|
UNWIND_HINT_FUNC
|
|
cld
|
|
PUSH_AND_CLEAR_REGS save_ret=1
|
|
ENCODE_FRAME_POINTER 8
|
|
movl $1, %ebx
|
|
movl $MSR_GS_BASE, %ecx
|
|
rdmsr
|
|
testl %edx, %edx
|
|
js 1f /* negative -> in kernel */
|
|
SWAPGS
|
|
xorl %ebx, %ebx
|
|
|
|
1:
|
|
SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
|
|
|
|
ret
|
|
END(paranoid_entry)
|
|
|
|
/*
|
|
* "Paranoid" exit path from exception stack. This is invoked
|
|
* only on return from non-NMI IST interrupts that came
|
|
* from kernel space.
|
|
*
|
|
* We may be returning to very strange contexts (e.g. very early
|
|
* in syscall entry), so checking for preemption here would
|
|
* be complicated. Fortunately, we there's no good reason
|
|
* to try to handle preemption here.
|
|
*
|
|
* On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
|
|
*/
|
|
ENTRY(paranoid_exit)
|
|
UNWIND_HINT_REGS
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
TRACE_IRQS_OFF_DEBUG
|
|
testl %ebx, %ebx /* swapgs needed? */
|
|
jnz .Lparanoid_exit_no_swapgs
|
|
TRACE_IRQS_IRETQ
|
|
RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
|
|
SWAPGS_UNSAFE_STACK
|
|
jmp .Lparanoid_exit_restore
|
|
.Lparanoid_exit_no_swapgs:
|
|
TRACE_IRQS_IRETQ_DEBUG
|
|
RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
|
|
.Lparanoid_exit_restore:
|
|
jmp restore_regs_and_return_to_kernel
|
|
END(paranoid_exit)
|
|
|
|
/*
|
|
* Save all registers in pt_regs, and switch GS if needed.
|
|
* Return: EBX=0: came from user mode; EBX=1: otherwise
|
|
*/
|
|
ENTRY(error_entry)
|
|
UNWIND_HINT_FUNC
|
|
cld
|
|
PUSH_AND_CLEAR_REGS save_ret=1
|
|
ENCODE_FRAME_POINTER 8
|
|
testb $3, CS+8(%rsp)
|
|
jz .Lerror_kernelspace
|
|
|
|
/*
|
|
* We entered from user mode or we're pretending to have entered
|
|
* from user mode due to an IRET fault.
|
|
*/
|
|
SWAPGS
|
|
/* We have user CR3. Change to kernel CR3. */
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
|
|
|
|
.Lerror_entry_from_usermode_after_swapgs:
|
|
/* Put us onto the real thread stack. */
|
|
popq %r12 /* save return addr in %12 */
|
|
movq %rsp, %rdi /* arg0 = pt_regs pointer */
|
|
call sync_regs
|
|
movq %rax, %rsp /* switch stack */
|
|
ENCODE_FRAME_POINTER
|
|
pushq %r12
|
|
|
|
/*
|
|
* We need to tell lockdep that IRQs are off. We can't do this until
|
|
* we fix gsbase, and we should do it before enter_from_user_mode
|
|
* (which can take locks).
|
|
*/
|
|
TRACE_IRQS_OFF
|
|
CALL_enter_from_user_mode
|
|
ret
|
|
|
|
.Lerror_entry_done:
|
|
TRACE_IRQS_OFF
|
|
ret
|
|
|
|
/*
|
|
* There are two places in the kernel that can potentially fault with
|
|
* usergs. Handle them here. B stepping K8s sometimes report a
|
|
* truncated RIP for IRET exceptions returning to compat mode. Check
|
|
* for these here too.
|
|
*/
|
|
.Lerror_kernelspace:
|
|
incl %ebx
|
|
leaq native_irq_return_iret(%rip), %rcx
|
|
cmpq %rcx, RIP+8(%rsp)
|
|
je .Lerror_bad_iret
|
|
movl %ecx, %eax /* zero extend */
|
|
cmpq %rax, RIP+8(%rsp)
|
|
je .Lbstep_iret
|
|
cmpq $.Lgs_change, RIP+8(%rsp)
|
|
jne .Lerror_entry_done
|
|
|
|
/*
|
|
* hack: .Lgs_change can fail with user gsbase. If this happens, fix up
|
|
* gsbase and proceed. We'll fix up the exception and land in
|
|
* .Lgs_change's error handler with kernel gsbase.
|
|
*/
|
|
SWAPGS
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
|
|
jmp .Lerror_entry_done
|
|
|
|
.Lbstep_iret:
|
|
/* Fix truncated RIP */
|
|
movq %rcx, RIP+8(%rsp)
|
|
/* fall through */
|
|
|
|
.Lerror_bad_iret:
|
|
/*
|
|
* We came from an IRET to user mode, so we have user
|
|
* gsbase and CR3. Switch to kernel gsbase and CR3:
|
|
*/
|
|
SWAPGS
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
|
|
|
|
/*
|
|
* Pretend that the exception came from user mode: set up pt_regs
|
|
* as if we faulted immediately after IRET and clear EBX so that
|
|
* error_exit knows that we will be returning to user mode.
|
|
*/
|
|
mov %rsp, %rdi
|
|
call fixup_bad_iret
|
|
mov %rax, %rsp
|
|
decl %ebx
|
|
jmp .Lerror_entry_from_usermode_after_swapgs
|
|
END(error_entry)
|
|
|
|
|
|
/*
|
|
* On entry, EBX is a "return to kernel mode" flag:
|
|
* 1: already in kernel mode, don't need SWAPGS
|
|
* 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
|
|
*/
|
|
ENTRY(error_exit)
|
|
UNWIND_HINT_REGS
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
TRACE_IRQS_OFF
|
|
testl %ebx, %ebx
|
|
jnz retint_kernel
|
|
jmp retint_user
|
|
END(error_exit)
|
|
|
|
/*
|
|
* Runs on exception stack. Xen PV does not go through this path at all,
|
|
* so we can use real assembly here.
|
|
*
|
|
* Registers:
|
|
* %r14: Used to save/restore the CR3 of the interrupted context
|
|
* when PAGE_TABLE_ISOLATION is in use. Do not clobber.
|
|
*/
|
|
ENTRY(nmi)
|
|
UNWIND_HINT_IRET_REGS
|
|
|
|
/*
|
|
* We allow breakpoints in NMIs. If a breakpoint occurs, then
|
|
* the iretq it performs will take us out of NMI context.
|
|
* This means that we can have nested NMIs where the next
|
|
* NMI is using the top of the stack of the previous NMI. We
|
|
* can't let it execute because the nested NMI will corrupt the
|
|
* stack of the previous NMI. NMI handlers are not re-entrant
|
|
* anyway.
|
|
*
|
|
* To handle this case we do the following:
|
|
* Check the a special location on the stack that contains
|
|
* a variable that is set when NMIs are executing.
|
|
* The interrupted task's stack is also checked to see if it
|
|
* is an NMI stack.
|
|
* If the variable is not set and the stack is not the NMI
|
|
* stack then:
|
|
* o Set the special variable on the stack
|
|
* o Copy the interrupt frame into an "outermost" location on the
|
|
* stack
|
|
* o Copy the interrupt frame into an "iret" location on the stack
|
|
* o Continue processing the NMI
|
|
* If the variable is set or the previous stack is the NMI stack:
|
|
* o Modify the "iret" location to jump to the repeat_nmi
|
|
* o return back to the first NMI
|
|
*
|
|
* Now on exit of the first NMI, we first clear the stack variable
|
|
* The NMI stack will tell any nested NMIs at that point that it is
|
|
* nested. Then we pop the stack normally with iret, and if there was
|
|
* a nested NMI that updated the copy interrupt stack frame, a
|
|
* jump will be made to the repeat_nmi code that will handle the second
|
|
* NMI.
|
|
*
|
|
* However, espfix prevents us from directly returning to userspace
|
|
* with a single IRET instruction. Similarly, IRET to user mode
|
|
* can fault. We therefore handle NMIs from user space like
|
|
* other IST entries.
|
|
*/
|
|
|
|
ASM_CLAC
|
|
|
|
/* Use %rdx as our temp variable throughout */
|
|
pushq %rdx
|
|
|
|
testb $3, CS-RIP+8(%rsp)
|
|
jz .Lnmi_from_kernel
|
|
|
|
/*
|
|
* NMI from user mode. We need to run on the thread stack, but we
|
|
* can't go through the normal entry paths: NMIs are masked, and
|
|
* we don't want to enable interrupts, because then we'll end
|
|
* up in an awkward situation in which IRQs are on but NMIs
|
|
* are off.
|
|
*
|
|
* We also must not push anything to the stack before switching
|
|
* stacks lest we corrupt the "NMI executing" variable.
|
|
*/
|
|
|
|
swapgs
|
|
cld
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
|
|
movq %rsp, %rdx
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
|
UNWIND_HINT_IRET_REGS base=%rdx offset=8
|
|
pushq 5*8(%rdx) /* pt_regs->ss */
|
|
pushq 4*8(%rdx) /* pt_regs->rsp */
|
|
pushq 3*8(%rdx) /* pt_regs->flags */
|
|
pushq 2*8(%rdx) /* pt_regs->cs */
|
|
pushq 1*8(%rdx) /* pt_regs->rip */
|
|
UNWIND_HINT_IRET_REGS
|
|
pushq $-1 /* pt_regs->orig_ax */
|
|
PUSH_AND_CLEAR_REGS rdx=(%rdx)
|
|
ENCODE_FRAME_POINTER
|
|
|
|
/*
|
|
* At this point we no longer need to worry about stack damage
|
|
* due to nesting -- we're on the normal thread stack and we're
|
|
* done with the NMI stack.
|
|
*/
|
|
|
|
movq %rsp, %rdi
|
|
movq $-1, %rsi
|
|
call do_nmi
|
|
|
|
/*
|
|
* Return back to user mode. We must *not* do the normal exit
|
|
* work, because we don't want to enable interrupts.
|
|
*/
|
|
jmp swapgs_restore_regs_and_return_to_usermode
|
|
|
|
.Lnmi_from_kernel:
|
|
/*
|
|
* Here's what our stack frame will look like:
|
|
* +---------------------------------------------------------+
|
|
* | original SS |
|
|
* | original Return RSP |
|
|
* | original RFLAGS |
|
|
* | original CS |
|
|
* | original RIP |
|
|
* +---------------------------------------------------------+
|
|
* | temp storage for rdx |
|
|
* +---------------------------------------------------------+
|
|
* | "NMI executing" variable |
|
|
* +---------------------------------------------------------+
|
|
* | iret SS } Copied from "outermost" frame |
|
|
* | iret Return RSP } on each loop iteration; overwritten |
|
|
* | iret RFLAGS } by a nested NMI to force another |
|
|
* | iret CS } iteration if needed. |
|
|
* | iret RIP } |
|
|
* +---------------------------------------------------------+
|
|
* | outermost SS } initialized in first_nmi; |
|
|
* | outermost Return RSP } will not be changed before |
|
|
* | outermost RFLAGS } NMI processing is done. |
|
|
* | outermost CS } Copied to "iret" frame on each |
|
|
* | outermost RIP } iteration. |
|
|
* +---------------------------------------------------------+
|
|
* | pt_regs |
|
|
* +---------------------------------------------------------+
|
|
*
|
|
* The "original" frame is used by hardware. Before re-enabling
|
|
* NMIs, we need to be done with it, and we need to leave enough
|
|
* space for the asm code here.
|
|
*
|
|
* We return by executing IRET while RSP points to the "iret" frame.
|
|
* That will either return for real or it will loop back into NMI
|
|
* processing.
|
|
*
|
|
* The "outermost" frame is copied to the "iret" frame on each
|
|
* iteration of the loop, so each iteration starts with the "iret"
|
|
* frame pointing to the final return target.
|
|
*/
|
|
|
|
/*
|
|
* Determine whether we're a nested NMI.
|
|
*
|
|
* If we interrupted kernel code between repeat_nmi and
|
|
* end_repeat_nmi, then we are a nested NMI. We must not
|
|
* modify the "iret" frame because it's being written by
|
|
* the outer NMI. That's okay; the outer NMI handler is
|
|
* about to about to call do_nmi anyway, so we can just
|
|
* resume the outer NMI.
|
|
*/
|
|
|
|
movq $repeat_nmi, %rdx
|
|
cmpq 8(%rsp), %rdx
|
|
ja 1f
|
|
movq $end_repeat_nmi, %rdx
|
|
cmpq 8(%rsp), %rdx
|
|
ja nested_nmi_out
|
|
1:
|
|
|
|
/*
|
|
* Now check "NMI executing". If it's set, then we're nested.
|
|
* This will not detect if we interrupted an outer NMI just
|
|
* before IRET.
|
|
*/
|
|
cmpl $1, -8(%rsp)
|
|
je nested_nmi
|
|
|
|
/*
|
|
* Now test if the previous stack was an NMI stack. This covers
|
|
* the case where we interrupt an outer NMI after it clears
|
|
* "NMI executing" but before IRET. We need to be careful, though:
|
|
* there is one case in which RSP could point to the NMI stack
|
|
* despite there being no NMI active: naughty userspace controls
|
|
* RSP at the very beginning of the SYSCALL targets. We can
|
|
* pull a fast one on naughty userspace, though: we program
|
|
* SYSCALL to mask DF, so userspace cannot cause DF to be set
|
|
* if it controls the kernel's RSP. We set DF before we clear
|
|
* "NMI executing".
|
|
*/
|
|
lea 6*8(%rsp), %rdx
|
|
/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
|
|
cmpq %rdx, 4*8(%rsp)
|
|
/* If the stack pointer is above the NMI stack, this is a normal NMI */
|
|
ja first_nmi
|
|
|
|
subq $EXCEPTION_STKSZ, %rdx
|
|
cmpq %rdx, 4*8(%rsp)
|
|
/* If it is below the NMI stack, it is a normal NMI */
|
|
jb first_nmi
|
|
|
|
/* Ah, it is within the NMI stack. */
|
|
|
|
testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
|
|
jz first_nmi /* RSP was user controlled. */
|
|
|
|
/* This is a nested NMI. */
|
|
|
|
nested_nmi:
|
|
/*
|
|
* Modify the "iret" frame to point to repeat_nmi, forcing another
|
|
* iteration of NMI handling.
|
|
*/
|
|
subq $8, %rsp
|
|
leaq -10*8(%rsp), %rdx
|
|
pushq $__KERNEL_DS
|
|
pushq %rdx
|
|
pushfq
|
|
pushq $__KERNEL_CS
|
|
pushq $repeat_nmi
|
|
|
|
/* Put stack back */
|
|
addq $(6*8), %rsp
|
|
|
|
nested_nmi_out:
|
|
popq %rdx
|
|
|
|
/* We are returning to kernel mode, so this cannot result in a fault. */
|
|
iretq
|
|
|
|
first_nmi:
|
|
/* Restore rdx. */
|
|
movq (%rsp), %rdx
|
|
|
|
/* Make room for "NMI executing". */
|
|
pushq $0
|
|
|
|
/* Leave room for the "iret" frame */
|
|
subq $(5*8), %rsp
|
|
|
|
/* Copy the "original" frame to the "outermost" frame */
|
|
.rept 5
|
|
pushq 11*8(%rsp)
|
|
.endr
|
|
UNWIND_HINT_IRET_REGS
|
|
|
|
/* Everything up to here is safe from nested NMIs */
|
|
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/*
|
|
* For ease of testing, unmask NMIs right away. Disabled by
|
|
* default because IRET is very expensive.
|
|
*/
|
|
pushq $0 /* SS */
|
|
pushq %rsp /* RSP (minus 8 because of the previous push) */
|
|
addq $8, (%rsp) /* Fix up RSP */
|
|
pushfq /* RFLAGS */
|
|
pushq $__KERNEL_CS /* CS */
|
|
pushq $1f /* RIP */
|
|
iretq /* continues at repeat_nmi below */
|
|
UNWIND_HINT_IRET_REGS
|
|
1:
|
|
#endif
|
|
|
|
repeat_nmi:
|
|
/*
|
|
* If there was a nested NMI, the first NMI's iret will return
|
|
* here. But NMIs are still enabled and we can take another
|
|
* nested NMI. The nested NMI checks the interrupted RIP to see
|
|
* if it is between repeat_nmi and end_repeat_nmi, and if so
|
|
* it will just return, as we are about to repeat an NMI anyway.
|
|
* This makes it safe to copy to the stack frame that a nested
|
|
* NMI will update.
|
|
*
|
|
* RSP is pointing to "outermost RIP". gsbase is unknown, but, if
|
|
* we're repeating an NMI, gsbase has the same value that it had on
|
|
* the first iteration. paranoid_entry will load the kernel
|
|
* gsbase if needed before we call do_nmi. "NMI executing"
|
|
* is zero.
|
|
*/
|
|
movq $1, 10*8(%rsp) /* Set "NMI executing". */
|
|
|
|
/*
|
|
* Copy the "outermost" frame to the "iret" frame. NMIs that nest
|
|
* here must not modify the "iret" frame while we're writing to
|
|
* it or it will end up containing garbage.
|
|
*/
|
|
addq $(10*8), %rsp
|
|
.rept 5
|
|
pushq -6*8(%rsp)
|
|
.endr
|
|
subq $(5*8), %rsp
|
|
end_repeat_nmi:
|
|
|
|
/*
|
|
* Everything below this point can be preempted by a nested NMI.
|
|
* If this happens, then the inner NMI will change the "iret"
|
|
* frame to point back to repeat_nmi.
|
|
*/
|
|
pushq $-1 /* ORIG_RAX: no syscall to restart */
|
|
|
|
/*
|
|
* Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
|
|
* as we should not be calling schedule in NMI context.
|
|
* Even with normal interrupts enabled. An NMI should not be
|
|
* setting NEED_RESCHED or anything that normal interrupts and
|
|
* exceptions might do.
|
|
*/
|
|
call paranoid_entry
|
|
UNWIND_HINT_REGS
|
|
|
|
/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
|
|
movq %rsp, %rdi
|
|
movq $-1, %rsi
|
|
call do_nmi
|
|
|
|
RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
|
|
|
|
testl %ebx, %ebx /* swapgs needed? */
|
|
jnz nmi_restore
|
|
nmi_swapgs:
|
|
SWAPGS_UNSAFE_STACK
|
|
nmi_restore:
|
|
POP_REGS
|
|
|
|
/*
|
|
* Skip orig_ax and the "outermost" frame to point RSP at the "iret"
|
|
* at the "iret" frame.
|
|
*/
|
|
addq $6*8, %rsp
|
|
|
|
/*
|
|
* Clear "NMI executing". Set DF first so that we can easily
|
|
* distinguish the remaining code between here and IRET from
|
|
* the SYSCALL entry and exit paths.
|
|
*
|
|
* We arguably should just inspect RIP instead, but I (Andy) wrote
|
|
* this code when I had the misapprehension that Xen PV supported
|
|
* NMIs, and Xen PV would break that approach.
|
|
*/
|
|
std
|
|
movq $0, 5*8(%rsp) /* clear "NMI executing" */
|
|
|
|
/*
|
|
* iretq reads the "iret" frame and exits the NMI stack in a
|
|
* single instruction. We are returning to kernel mode, so this
|
|
* cannot result in a fault. Similarly, we don't need to worry
|
|
* about espfix64 on the way back to kernel mode.
|
|
*/
|
|
iretq
|
|
END(nmi)
|
|
|
|
ENTRY(ignore_sysret)
|
|
UNWIND_HINT_EMPTY
|
|
mov $-ENOSYS, %eax
|
|
sysret
|
|
END(ignore_sysret)
|
|
|
|
ENTRY(rewind_stack_do_exit)
|
|
UNWIND_HINT_FUNC
|
|
/* Prevent any naive code from trying to unwind to our caller. */
|
|
xorl %ebp, %ebp
|
|
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
|
|
leaq -PTREGS_SIZE(%rax), %rsp
|
|
UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
|
|
|
|
call do_exit
|
|
END(rewind_stack_do_exit)
|