mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 19:31:09 +07:00
8aba7e0a2c
The SLUB cache merges caches with the same size and alignment and there was long standing bug with this behavior: - create the cache named "foo" - create the cache named "bar" (which is merged with "foo") - delete the cache named "foo" (but it stays allocated because "bar" uses it) - create the cache named "foo" again - it fails because the name "foo" is already used That bug was fixed in commit694617474e
("slab_common: fix the check for duplicate slab names") by not warning on duplicate cache names when the SLUB subsystem is used. Recently, cache merging was implemented the with SLAB subsystem too, in12220dea07
("mm/slab: support slab merge")). Therefore we need stop checking for duplicate names even for the SLAB subsystem. This patch fixes the bug by removing the check. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1051 lines
24 KiB
C
1051 lines
24 KiB
C
/*
|
|
* Slab allocator functions that are independent of the allocator strategy
|
|
*
|
|
* (C) 2012 Christoph Lameter <cl@linux.com>
|
|
*/
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/module.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/page.h>
|
|
#include <linux/memcontrol.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/kmem.h>
|
|
|
|
#include "slab.h"
|
|
|
|
enum slab_state slab_state;
|
|
LIST_HEAD(slab_caches);
|
|
DEFINE_MUTEX(slab_mutex);
|
|
struct kmem_cache *kmem_cache;
|
|
|
|
/*
|
|
* Set of flags that will prevent slab merging
|
|
*/
|
|
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
|
|
SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
|
|
SLAB_FAILSLAB)
|
|
|
|
#define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
|
|
SLAB_CACHE_DMA | SLAB_NOTRACK)
|
|
|
|
/*
|
|
* Merge control. If this is set then no merging of slab caches will occur.
|
|
* (Could be removed. This was introduced to pacify the merge skeptics.)
|
|
*/
|
|
static int slab_nomerge;
|
|
|
|
static int __init setup_slab_nomerge(char *str)
|
|
{
|
|
slab_nomerge = 1;
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_SLUB
|
|
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
|
|
#endif
|
|
|
|
__setup("slab_nomerge", setup_slab_nomerge);
|
|
|
|
/*
|
|
* Determine the size of a slab object
|
|
*/
|
|
unsigned int kmem_cache_size(struct kmem_cache *s)
|
|
{
|
|
return s->object_size;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_size);
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
static int kmem_cache_sanity_check(const char *name, size_t size)
|
|
{
|
|
struct kmem_cache *s = NULL;
|
|
|
|
if (!name || in_interrupt() || size < sizeof(void *) ||
|
|
size > KMALLOC_MAX_SIZE) {
|
|
pr_err("kmem_cache_create(%s) integrity check failed\n", name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
list_for_each_entry(s, &slab_caches, list) {
|
|
char tmp;
|
|
int res;
|
|
|
|
/*
|
|
* This happens when the module gets unloaded and doesn't
|
|
* destroy its slab cache and no-one else reuses the vmalloc
|
|
* area of the module. Print a warning.
|
|
*/
|
|
res = probe_kernel_address(s->name, tmp);
|
|
if (res) {
|
|
pr_err("Slab cache with size %d has lost its name\n",
|
|
s->object_size);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int kmem_cache_sanity_check(const char *name, size_t size)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
static int memcg_alloc_cache_params(struct mem_cgroup *memcg,
|
|
struct kmem_cache *s, struct kmem_cache *root_cache)
|
|
{
|
|
size_t size;
|
|
|
|
if (!memcg_kmem_enabled())
|
|
return 0;
|
|
|
|
if (!memcg) {
|
|
size = offsetof(struct memcg_cache_params, memcg_caches);
|
|
size += memcg_limited_groups_array_size * sizeof(void *);
|
|
} else
|
|
size = sizeof(struct memcg_cache_params);
|
|
|
|
s->memcg_params = kzalloc(size, GFP_KERNEL);
|
|
if (!s->memcg_params)
|
|
return -ENOMEM;
|
|
|
|
if (memcg) {
|
|
s->memcg_params->memcg = memcg;
|
|
s->memcg_params->root_cache = root_cache;
|
|
} else
|
|
s->memcg_params->is_root_cache = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void memcg_free_cache_params(struct kmem_cache *s)
|
|
{
|
|
kfree(s->memcg_params);
|
|
}
|
|
|
|
static int memcg_update_cache_params(struct kmem_cache *s, int num_memcgs)
|
|
{
|
|
int size;
|
|
struct memcg_cache_params *new_params, *cur_params;
|
|
|
|
BUG_ON(!is_root_cache(s));
|
|
|
|
size = offsetof(struct memcg_cache_params, memcg_caches);
|
|
size += num_memcgs * sizeof(void *);
|
|
|
|
new_params = kzalloc(size, GFP_KERNEL);
|
|
if (!new_params)
|
|
return -ENOMEM;
|
|
|
|
cur_params = s->memcg_params;
|
|
memcpy(new_params->memcg_caches, cur_params->memcg_caches,
|
|
memcg_limited_groups_array_size * sizeof(void *));
|
|
|
|
new_params->is_root_cache = true;
|
|
|
|
rcu_assign_pointer(s->memcg_params, new_params);
|
|
if (cur_params)
|
|
kfree_rcu(cur_params, rcu_head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int memcg_update_all_caches(int num_memcgs)
|
|
{
|
|
struct kmem_cache *s;
|
|
int ret = 0;
|
|
mutex_lock(&slab_mutex);
|
|
|
|
list_for_each_entry(s, &slab_caches, list) {
|
|
if (!is_root_cache(s))
|
|
continue;
|
|
|
|
ret = memcg_update_cache_params(s, num_memcgs);
|
|
/*
|
|
* Instead of freeing the memory, we'll just leave the caches
|
|
* up to this point in an updated state.
|
|
*/
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
memcg_update_array_size(num_memcgs);
|
|
out:
|
|
mutex_unlock(&slab_mutex);
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg,
|
|
struct kmem_cache *s, struct kmem_cache *root_cache)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void memcg_free_cache_params(struct kmem_cache *s)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMCG_KMEM */
|
|
|
|
/*
|
|
* Find a mergeable slab cache
|
|
*/
|
|
int slab_unmergeable(struct kmem_cache *s)
|
|
{
|
|
if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
|
|
return 1;
|
|
|
|
if (!is_root_cache(s))
|
|
return 1;
|
|
|
|
if (s->ctor)
|
|
return 1;
|
|
|
|
/*
|
|
* We may have set a slab to be unmergeable during bootstrap.
|
|
*/
|
|
if (s->refcount < 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct kmem_cache *find_mergeable(size_t size, size_t align,
|
|
unsigned long flags, const char *name, void (*ctor)(void *))
|
|
{
|
|
struct kmem_cache *s;
|
|
|
|
if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
|
|
return NULL;
|
|
|
|
if (ctor)
|
|
return NULL;
|
|
|
|
size = ALIGN(size, sizeof(void *));
|
|
align = calculate_alignment(flags, align, size);
|
|
size = ALIGN(size, align);
|
|
flags = kmem_cache_flags(size, flags, name, NULL);
|
|
|
|
list_for_each_entry(s, &slab_caches, list) {
|
|
if (slab_unmergeable(s))
|
|
continue;
|
|
|
|
if (size > s->size)
|
|
continue;
|
|
|
|
if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
|
|
continue;
|
|
/*
|
|
* Check if alignment is compatible.
|
|
* Courtesy of Adrian Drzewiecki
|
|
*/
|
|
if ((s->size & ~(align - 1)) != s->size)
|
|
continue;
|
|
|
|
if (s->size - size >= sizeof(void *))
|
|
continue;
|
|
|
|
return s;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Figure out what the alignment of the objects will be given a set of
|
|
* flags, a user specified alignment and the size of the objects.
|
|
*/
|
|
unsigned long calculate_alignment(unsigned long flags,
|
|
unsigned long align, unsigned long size)
|
|
{
|
|
/*
|
|
* If the user wants hardware cache aligned objects then follow that
|
|
* suggestion if the object is sufficiently large.
|
|
*
|
|
* The hardware cache alignment cannot override the specified
|
|
* alignment though. If that is greater then use it.
|
|
*/
|
|
if (flags & SLAB_HWCACHE_ALIGN) {
|
|
unsigned long ralign = cache_line_size();
|
|
while (size <= ralign / 2)
|
|
ralign /= 2;
|
|
align = max(align, ralign);
|
|
}
|
|
|
|
if (align < ARCH_SLAB_MINALIGN)
|
|
align = ARCH_SLAB_MINALIGN;
|
|
|
|
return ALIGN(align, sizeof(void *));
|
|
}
|
|
|
|
static struct kmem_cache *
|
|
do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
|
|
unsigned long flags, void (*ctor)(void *),
|
|
struct mem_cgroup *memcg, struct kmem_cache *root_cache)
|
|
{
|
|
struct kmem_cache *s;
|
|
int err;
|
|
|
|
err = -ENOMEM;
|
|
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
|
|
if (!s)
|
|
goto out;
|
|
|
|
s->name = name;
|
|
s->object_size = object_size;
|
|
s->size = size;
|
|
s->align = align;
|
|
s->ctor = ctor;
|
|
|
|
err = memcg_alloc_cache_params(memcg, s, root_cache);
|
|
if (err)
|
|
goto out_free_cache;
|
|
|
|
err = __kmem_cache_create(s, flags);
|
|
if (err)
|
|
goto out_free_cache;
|
|
|
|
s->refcount = 1;
|
|
list_add(&s->list, &slab_caches);
|
|
out:
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
return s;
|
|
|
|
out_free_cache:
|
|
memcg_free_cache_params(s);
|
|
kfree(s);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* kmem_cache_create - Create a cache.
|
|
* @name: A string which is used in /proc/slabinfo to identify this cache.
|
|
* @size: The size of objects to be created in this cache.
|
|
* @align: The required alignment for the objects.
|
|
* @flags: SLAB flags
|
|
* @ctor: A constructor for the objects.
|
|
*
|
|
* Returns a ptr to the cache on success, NULL on failure.
|
|
* Cannot be called within a interrupt, but can be interrupted.
|
|
* The @ctor is run when new pages are allocated by the cache.
|
|
*
|
|
* The flags are
|
|
*
|
|
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
|
|
* to catch references to uninitialised memory.
|
|
*
|
|
* %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
|
|
* for buffer overruns.
|
|
*
|
|
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
|
|
* cacheline. This can be beneficial if you're counting cycles as closely
|
|
* as davem.
|
|
*/
|
|
struct kmem_cache *
|
|
kmem_cache_create(const char *name, size_t size, size_t align,
|
|
unsigned long flags, void (*ctor)(void *))
|
|
{
|
|
struct kmem_cache *s;
|
|
char *cache_name;
|
|
int err;
|
|
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
|
|
mutex_lock(&slab_mutex);
|
|
|
|
err = kmem_cache_sanity_check(name, size);
|
|
if (err) {
|
|
s = NULL; /* suppress uninit var warning */
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Some allocators will constraint the set of valid flags to a subset
|
|
* of all flags. We expect them to define CACHE_CREATE_MASK in this
|
|
* case, and we'll just provide them with a sanitized version of the
|
|
* passed flags.
|
|
*/
|
|
flags &= CACHE_CREATE_MASK;
|
|
|
|
s = __kmem_cache_alias(name, size, align, flags, ctor);
|
|
if (s)
|
|
goto out_unlock;
|
|
|
|
cache_name = kstrdup(name, GFP_KERNEL);
|
|
if (!cache_name) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
s = do_kmem_cache_create(cache_name, size, size,
|
|
calculate_alignment(flags, align, size),
|
|
flags, ctor, NULL, NULL);
|
|
if (IS_ERR(s)) {
|
|
err = PTR_ERR(s);
|
|
kfree(cache_name);
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&slab_mutex);
|
|
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
|
|
if (err) {
|
|
if (flags & SLAB_PANIC)
|
|
panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
|
|
name, err);
|
|
else {
|
|
printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
|
|
name, err);
|
|
dump_stack();
|
|
}
|
|
return NULL;
|
|
}
|
|
return s;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_create);
|
|
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
/*
|
|
* memcg_create_kmem_cache - Create a cache for a memory cgroup.
|
|
* @memcg: The memory cgroup the new cache is for.
|
|
* @root_cache: The parent of the new cache.
|
|
* @memcg_name: The name of the memory cgroup (used for naming the new cache).
|
|
*
|
|
* This function attempts to create a kmem cache that will serve allocation
|
|
* requests going from @memcg to @root_cache. The new cache inherits properties
|
|
* from its parent.
|
|
*/
|
|
struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
|
|
struct kmem_cache *root_cache,
|
|
const char *memcg_name)
|
|
{
|
|
struct kmem_cache *s = NULL;
|
|
char *cache_name;
|
|
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
|
|
mutex_lock(&slab_mutex);
|
|
|
|
cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
|
|
memcg_cache_id(memcg), memcg_name);
|
|
if (!cache_name)
|
|
goto out_unlock;
|
|
|
|
s = do_kmem_cache_create(cache_name, root_cache->object_size,
|
|
root_cache->size, root_cache->align,
|
|
root_cache->flags, root_cache->ctor,
|
|
memcg, root_cache);
|
|
if (IS_ERR(s)) {
|
|
kfree(cache_name);
|
|
s = NULL;
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&slab_mutex);
|
|
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
|
|
return s;
|
|
}
|
|
|
|
static int memcg_cleanup_cache_params(struct kmem_cache *s)
|
|
{
|
|
int rc;
|
|
|
|
if (!s->memcg_params ||
|
|
!s->memcg_params->is_root_cache)
|
|
return 0;
|
|
|
|
mutex_unlock(&slab_mutex);
|
|
rc = __memcg_cleanup_cache_params(s);
|
|
mutex_lock(&slab_mutex);
|
|
|
|
return rc;
|
|
}
|
|
#else
|
|
static int memcg_cleanup_cache_params(struct kmem_cache *s)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_MEMCG_KMEM */
|
|
|
|
void slab_kmem_cache_release(struct kmem_cache *s)
|
|
{
|
|
kfree(s->name);
|
|
kmem_cache_free(kmem_cache, s);
|
|
}
|
|
|
|
void kmem_cache_destroy(struct kmem_cache *s)
|
|
{
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
|
|
mutex_lock(&slab_mutex);
|
|
|
|
s->refcount--;
|
|
if (s->refcount)
|
|
goto out_unlock;
|
|
|
|
if (memcg_cleanup_cache_params(s) != 0)
|
|
goto out_unlock;
|
|
|
|
if (__kmem_cache_shutdown(s) != 0) {
|
|
printk(KERN_ERR "kmem_cache_destroy %s: "
|
|
"Slab cache still has objects\n", s->name);
|
|
dump_stack();
|
|
goto out_unlock;
|
|
}
|
|
|
|
list_del(&s->list);
|
|
|
|
mutex_unlock(&slab_mutex);
|
|
if (s->flags & SLAB_DESTROY_BY_RCU)
|
|
rcu_barrier();
|
|
|
|
memcg_free_cache_params(s);
|
|
#ifdef SLAB_SUPPORTS_SYSFS
|
|
sysfs_slab_remove(s);
|
|
#else
|
|
slab_kmem_cache_release(s);
|
|
#endif
|
|
goto out;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&slab_mutex);
|
|
out:
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_destroy);
|
|
|
|
/**
|
|
* kmem_cache_shrink - Shrink a cache.
|
|
* @cachep: The cache to shrink.
|
|
*
|
|
* Releases as many slabs as possible for a cache.
|
|
* To help debugging, a zero exit status indicates all slabs were released.
|
|
*/
|
|
int kmem_cache_shrink(struct kmem_cache *cachep)
|
|
{
|
|
int ret;
|
|
|
|
get_online_cpus();
|
|
get_online_mems();
|
|
ret = __kmem_cache_shrink(cachep);
|
|
put_online_mems();
|
|
put_online_cpus();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_shrink);
|
|
|
|
int slab_is_available(void)
|
|
{
|
|
return slab_state >= UP;
|
|
}
|
|
|
|
#ifndef CONFIG_SLOB
|
|
/* Create a cache during boot when no slab services are available yet */
|
|
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
|
|
unsigned long flags)
|
|
{
|
|
int err;
|
|
|
|
s->name = name;
|
|
s->size = s->object_size = size;
|
|
s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
|
|
err = __kmem_cache_create(s, flags);
|
|
|
|
if (err)
|
|
panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
|
|
name, size, err);
|
|
|
|
s->refcount = -1; /* Exempt from merging for now */
|
|
}
|
|
|
|
struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
|
|
unsigned long flags)
|
|
{
|
|
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
|
|
|
|
if (!s)
|
|
panic("Out of memory when creating slab %s\n", name);
|
|
|
|
create_boot_cache(s, name, size, flags);
|
|
list_add(&s->list, &slab_caches);
|
|
s->refcount = 1;
|
|
return s;
|
|
}
|
|
|
|
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
|
|
EXPORT_SYMBOL(kmalloc_caches);
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
|
|
EXPORT_SYMBOL(kmalloc_dma_caches);
|
|
#endif
|
|
|
|
/*
|
|
* Conversion table for small slabs sizes / 8 to the index in the
|
|
* kmalloc array. This is necessary for slabs < 192 since we have non power
|
|
* of two cache sizes there. The size of larger slabs can be determined using
|
|
* fls.
|
|
*/
|
|
static s8 size_index[24] = {
|
|
3, /* 8 */
|
|
4, /* 16 */
|
|
5, /* 24 */
|
|
5, /* 32 */
|
|
6, /* 40 */
|
|
6, /* 48 */
|
|
6, /* 56 */
|
|
6, /* 64 */
|
|
1, /* 72 */
|
|
1, /* 80 */
|
|
1, /* 88 */
|
|
1, /* 96 */
|
|
7, /* 104 */
|
|
7, /* 112 */
|
|
7, /* 120 */
|
|
7, /* 128 */
|
|
2, /* 136 */
|
|
2, /* 144 */
|
|
2, /* 152 */
|
|
2, /* 160 */
|
|
2, /* 168 */
|
|
2, /* 176 */
|
|
2, /* 184 */
|
|
2 /* 192 */
|
|
};
|
|
|
|
static inline int size_index_elem(size_t bytes)
|
|
{
|
|
return (bytes - 1) / 8;
|
|
}
|
|
|
|
/*
|
|
* Find the kmem_cache structure that serves a given size of
|
|
* allocation
|
|
*/
|
|
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
|
|
{
|
|
int index;
|
|
|
|
if (unlikely(size > KMALLOC_MAX_SIZE)) {
|
|
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
|
|
return NULL;
|
|
}
|
|
|
|
if (size <= 192) {
|
|
if (!size)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
index = size_index[size_index_elem(size)];
|
|
} else
|
|
index = fls(size - 1);
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
if (unlikely((flags & GFP_DMA)))
|
|
return kmalloc_dma_caches[index];
|
|
|
|
#endif
|
|
return kmalloc_caches[index];
|
|
}
|
|
|
|
/*
|
|
* Create the kmalloc array. Some of the regular kmalloc arrays
|
|
* may already have been created because they were needed to
|
|
* enable allocations for slab creation.
|
|
*/
|
|
void __init create_kmalloc_caches(unsigned long flags)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Patch up the size_index table if we have strange large alignment
|
|
* requirements for the kmalloc array. This is only the case for
|
|
* MIPS it seems. The standard arches will not generate any code here.
|
|
*
|
|
* Largest permitted alignment is 256 bytes due to the way we
|
|
* handle the index determination for the smaller caches.
|
|
*
|
|
* Make sure that nothing crazy happens if someone starts tinkering
|
|
* around with ARCH_KMALLOC_MINALIGN
|
|
*/
|
|
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
|
|
(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
|
|
|
|
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
|
|
int elem = size_index_elem(i);
|
|
|
|
if (elem >= ARRAY_SIZE(size_index))
|
|
break;
|
|
size_index[elem] = KMALLOC_SHIFT_LOW;
|
|
}
|
|
|
|
if (KMALLOC_MIN_SIZE >= 64) {
|
|
/*
|
|
* The 96 byte size cache is not used if the alignment
|
|
* is 64 byte.
|
|
*/
|
|
for (i = 64 + 8; i <= 96; i += 8)
|
|
size_index[size_index_elem(i)] = 7;
|
|
|
|
}
|
|
|
|
if (KMALLOC_MIN_SIZE >= 128) {
|
|
/*
|
|
* The 192 byte sized cache is not used if the alignment
|
|
* is 128 byte. Redirect kmalloc to use the 256 byte cache
|
|
* instead.
|
|
*/
|
|
for (i = 128 + 8; i <= 192; i += 8)
|
|
size_index[size_index_elem(i)] = 8;
|
|
}
|
|
for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
|
|
if (!kmalloc_caches[i]) {
|
|
kmalloc_caches[i] = create_kmalloc_cache(NULL,
|
|
1 << i, flags);
|
|
}
|
|
|
|
/*
|
|
* Caches that are not of the two-to-the-power-of size.
|
|
* These have to be created immediately after the
|
|
* earlier power of two caches
|
|
*/
|
|
if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
|
|
kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
|
|
|
|
if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
|
|
kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
|
|
}
|
|
|
|
/* Kmalloc array is now usable */
|
|
slab_state = UP;
|
|
|
|
for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
|
|
struct kmem_cache *s = kmalloc_caches[i];
|
|
char *n;
|
|
|
|
if (s) {
|
|
n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
|
|
|
|
BUG_ON(!n);
|
|
s->name = n;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
|
|
struct kmem_cache *s = kmalloc_caches[i];
|
|
|
|
if (s) {
|
|
int size = kmalloc_size(i);
|
|
char *n = kasprintf(GFP_NOWAIT,
|
|
"dma-kmalloc-%d", size);
|
|
|
|
BUG_ON(!n);
|
|
kmalloc_dma_caches[i] = create_kmalloc_cache(n,
|
|
size, SLAB_CACHE_DMA | flags);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif /* !CONFIG_SLOB */
|
|
|
|
/*
|
|
* To avoid unnecessary overhead, we pass through large allocation requests
|
|
* directly to the page allocator. We use __GFP_COMP, because we will need to
|
|
* know the allocation order to free the pages properly in kfree.
|
|
*/
|
|
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
|
|
{
|
|
void *ret;
|
|
struct page *page;
|
|
|
|
flags |= __GFP_COMP;
|
|
page = alloc_kmem_pages(flags, order);
|
|
ret = page ? page_address(page) : NULL;
|
|
kmemleak_alloc(ret, size, 1, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kmalloc_order);
|
|
|
|
#ifdef CONFIG_TRACING
|
|
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
|
|
{
|
|
void *ret = kmalloc_order(size, flags, order);
|
|
trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kmalloc_order_trace);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLABINFO
|
|
|
|
#ifdef CONFIG_SLAB
|
|
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
|
|
#else
|
|
#define SLABINFO_RIGHTS S_IRUSR
|
|
#endif
|
|
|
|
void print_slabinfo_header(struct seq_file *m)
|
|
{
|
|
/*
|
|
* Output format version, so at least we can change it
|
|
* without _too_ many complaints.
|
|
*/
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
|
|
#else
|
|
seq_puts(m, "slabinfo - version: 2.1\n");
|
|
#endif
|
|
seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
|
|
"<objperslab> <pagesperslab>");
|
|
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
|
|
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
|
|
"<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
|
|
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
|
|
#endif
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
static void *s_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
loff_t n = *pos;
|
|
|
|
mutex_lock(&slab_mutex);
|
|
if (!n)
|
|
print_slabinfo_header(m);
|
|
|
|
return seq_list_start(&slab_caches, *pos);
|
|
}
|
|
|
|
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
|
|
{
|
|
return seq_list_next(p, &slab_caches, pos);
|
|
}
|
|
|
|
void slab_stop(struct seq_file *m, void *p)
|
|
{
|
|
mutex_unlock(&slab_mutex);
|
|
}
|
|
|
|
static void
|
|
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
|
|
{
|
|
struct kmem_cache *c;
|
|
struct slabinfo sinfo;
|
|
int i;
|
|
|
|
if (!is_root_cache(s))
|
|
return;
|
|
|
|
for_each_memcg_cache_index(i) {
|
|
c = cache_from_memcg_idx(s, i);
|
|
if (!c)
|
|
continue;
|
|
|
|
memset(&sinfo, 0, sizeof(sinfo));
|
|
get_slabinfo(c, &sinfo);
|
|
|
|
info->active_slabs += sinfo.active_slabs;
|
|
info->num_slabs += sinfo.num_slabs;
|
|
info->shared_avail += sinfo.shared_avail;
|
|
info->active_objs += sinfo.active_objs;
|
|
info->num_objs += sinfo.num_objs;
|
|
}
|
|
}
|
|
|
|
int cache_show(struct kmem_cache *s, struct seq_file *m)
|
|
{
|
|
struct slabinfo sinfo;
|
|
|
|
memset(&sinfo, 0, sizeof(sinfo));
|
|
get_slabinfo(s, &sinfo);
|
|
|
|
memcg_accumulate_slabinfo(s, &sinfo);
|
|
|
|
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
|
|
cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
|
|
sinfo.objects_per_slab, (1 << sinfo.cache_order));
|
|
|
|
seq_printf(m, " : tunables %4u %4u %4u",
|
|
sinfo.limit, sinfo.batchcount, sinfo.shared);
|
|
seq_printf(m, " : slabdata %6lu %6lu %6lu",
|
|
sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
|
|
slabinfo_show_stats(m, s);
|
|
seq_putc(m, '\n');
|
|
return 0;
|
|
}
|
|
|
|
static int s_show(struct seq_file *m, void *p)
|
|
{
|
|
struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
|
|
|
|
if (!is_root_cache(s))
|
|
return 0;
|
|
return cache_show(s, m);
|
|
}
|
|
|
|
/*
|
|
* slabinfo_op - iterator that generates /proc/slabinfo
|
|
*
|
|
* Output layout:
|
|
* cache-name
|
|
* num-active-objs
|
|
* total-objs
|
|
* object size
|
|
* num-active-slabs
|
|
* total-slabs
|
|
* num-pages-per-slab
|
|
* + further values on SMP and with statistics enabled
|
|
*/
|
|
static const struct seq_operations slabinfo_op = {
|
|
.start = s_start,
|
|
.next = slab_next,
|
|
.stop = slab_stop,
|
|
.show = s_show,
|
|
};
|
|
|
|
static int slabinfo_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &slabinfo_op);
|
|
}
|
|
|
|
static const struct file_operations proc_slabinfo_operations = {
|
|
.open = slabinfo_open,
|
|
.read = seq_read,
|
|
.write = slabinfo_write,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static int __init slab_proc_init(void)
|
|
{
|
|
proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
|
|
&proc_slabinfo_operations);
|
|
return 0;
|
|
}
|
|
module_init(slab_proc_init);
|
|
#endif /* CONFIG_SLABINFO */
|
|
|
|
static __always_inline void *__do_krealloc(const void *p, size_t new_size,
|
|
gfp_t flags)
|
|
{
|
|
void *ret;
|
|
size_t ks = 0;
|
|
|
|
if (p)
|
|
ks = ksize(p);
|
|
|
|
if (ks >= new_size)
|
|
return (void *)p;
|
|
|
|
ret = kmalloc_track_caller(new_size, flags);
|
|
if (ret && p)
|
|
memcpy(ret, p, ks);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* __krealloc - like krealloc() but don't free @p.
|
|
* @p: object to reallocate memory for.
|
|
* @new_size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate.
|
|
*
|
|
* This function is like krealloc() except it never frees the originally
|
|
* allocated buffer. Use this if you don't want to free the buffer immediately
|
|
* like, for example, with RCU.
|
|
*/
|
|
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
|
|
{
|
|
if (unlikely(!new_size))
|
|
return ZERO_SIZE_PTR;
|
|
|
|
return __do_krealloc(p, new_size, flags);
|
|
|
|
}
|
|
EXPORT_SYMBOL(__krealloc);
|
|
|
|
/**
|
|
* krealloc - reallocate memory. The contents will remain unchanged.
|
|
* @p: object to reallocate memory for.
|
|
* @new_size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate.
|
|
*
|
|
* The contents of the object pointed to are preserved up to the
|
|
* lesser of the new and old sizes. If @p is %NULL, krealloc()
|
|
* behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
|
|
* %NULL pointer, the object pointed to is freed.
|
|
*/
|
|
void *krealloc(const void *p, size_t new_size, gfp_t flags)
|
|
{
|
|
void *ret;
|
|
|
|
if (unlikely(!new_size)) {
|
|
kfree(p);
|
|
return ZERO_SIZE_PTR;
|
|
}
|
|
|
|
ret = __do_krealloc(p, new_size, flags);
|
|
if (ret && p != ret)
|
|
kfree(p);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(krealloc);
|
|
|
|
/**
|
|
* kzfree - like kfree but zero memory
|
|
* @p: object to free memory of
|
|
*
|
|
* The memory of the object @p points to is zeroed before freed.
|
|
* If @p is %NULL, kzfree() does nothing.
|
|
*
|
|
* Note: this function zeroes the whole allocated buffer which can be a good
|
|
* deal bigger than the requested buffer size passed to kmalloc(). So be
|
|
* careful when using this function in performance sensitive code.
|
|
*/
|
|
void kzfree(const void *p)
|
|
{
|
|
size_t ks;
|
|
void *mem = (void *)p;
|
|
|
|
if (unlikely(ZERO_OR_NULL_PTR(mem)))
|
|
return;
|
|
ks = ksize(mem);
|
|
memset(mem, 0, ks);
|
|
kfree(mem);
|
|
}
|
|
EXPORT_SYMBOL(kzfree);
|
|
|
|
/* Tracepoints definitions. */
|
|
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
|
|
EXPORT_TRACEPOINT_SYMBOL(kfree);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
|