linux_dsm_epyc7002/arch/s390/kernel/time.c
Nicolai Stange 06c546110b s390/time: Set ->min_delta_ticks and ->max_delta_ticks
In preparation for making the clockevents core NTP correction aware,
all clockevent device drivers must set ->min_delta_ticks and
->max_delta_ticks rather than ->min_delta_ns and ->max_delta_ns: a
clockevent device's rate is going to change dynamically and thus, the
ratio of ns to ticks ceases to stay invariant.

Currently, the s390's CPU timer clockevent device is initialized as
follows:

  cd->min_delta_ns    = 1;
  cd->max_delta_ns    = LONG_MAX;

Note that the device's time to cycle conversion factor, i.e.
cd->mult / (2^cd->shift), is approx. equal to 4.

Hence, this would translate to

  cd->min_delta_ticks = 4;
  cd->max_delta_ticks = 4 * LONG_MAX;

However, a minimum value of 1ns is in the range of noise anyway and the
clockevent core will take care of this by increasing it to 1us or so.
Furthermore, 4*LONG_MAX would overflow the unsigned long argument the
clockevent devices gets programmed with.

Thus, initialize ->min_delta_ticks with 1 and ->max_delta_ticks with
ULONG_MAX.

This patch alone doesn't introduce any change in functionality as the
clockevents core still looks exclusively at the (untouched) ->min_delta_ns
and ->max_delta_ns. As soon as this has changed, a followup patch will
purge the initialization of ->min_delta_ns and ->max_delta_ns from this
driver.

Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Cc: linux-s390@vger.kernel.org
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
2017-04-14 13:11:20 -07:00

840 lines
21 KiB
C

/*
* Time of day based timer functions.
*
* S390 version
* Copyright IBM Corp. 1999, 2008
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com),
* Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
*
* Derived from "arch/i386/kernel/time.c"
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
*/
#define KMSG_COMPONENT "time"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel_stat.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/stop_machine.h>
#include <linux/time.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <linux/profile.h>
#include <linux/timex.h>
#include <linux/notifier.h>
#include <linux/timekeeper_internal.h>
#include <linux/clockchips.h>
#include <linux/gfp.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <asm/facility.h>
#include <asm/delay.h>
#include <asm/div64.h>
#include <asm/vdso.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/vtimer.h>
#include <asm/stp.h>
#include <asm/cio.h>
#include "entry.h"
u64 sched_clock_base_cc = -1; /* Force to data section. */
EXPORT_SYMBOL_GPL(sched_clock_base_cc);
static DEFINE_PER_CPU(struct clock_event_device, comparators);
ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
EXPORT_SYMBOL(s390_epoch_delta_notifier);
unsigned char ptff_function_mask[16];
static unsigned long long lpar_offset;
static unsigned long long initial_leap_seconds;
static unsigned long long tod_steering_end;
static long long tod_steering_delta;
/*
* Get time offsets with PTFF
*/
void __init time_early_init(void)
{
struct ptff_qto qto;
struct ptff_qui qui;
/* Initialize TOD steering parameters */
tod_steering_end = sched_clock_base_cc;
vdso_data->ts_end = tod_steering_end;
if (!test_facility(28))
return;
ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
/* get LPAR offset */
if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
lpar_offset = qto.tod_epoch_difference;
/* get initial leap seconds */
if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
initial_leap_seconds = (unsigned long long)
((long) qui.old_leap * 4096000000L);
}
/*
* Scheduler clock - returns current time in nanosec units.
*/
unsigned long long notrace sched_clock(void)
{
return tod_to_ns(get_tod_clock_monotonic());
}
NOKPROBE_SYMBOL(sched_clock);
/*
* Monotonic_clock - returns # of nanoseconds passed since time_init()
*/
unsigned long long monotonic_clock(void)
{
return sched_clock();
}
EXPORT_SYMBOL(monotonic_clock);
static void tod_to_timeval(__u64 todval, struct timespec64 *xt)
{
unsigned long long sec;
sec = todval >> 12;
do_div(sec, 1000000);
xt->tv_sec = sec;
todval -= (sec * 1000000) << 12;
xt->tv_nsec = ((todval * 1000) >> 12);
}
void clock_comparator_work(void)
{
struct clock_event_device *cd;
S390_lowcore.clock_comparator = -1ULL;
cd = this_cpu_ptr(&comparators);
cd->event_handler(cd);
}
static int s390_next_event(unsigned long delta,
struct clock_event_device *evt)
{
S390_lowcore.clock_comparator = get_tod_clock() + delta;
set_clock_comparator(S390_lowcore.clock_comparator);
return 0;
}
/*
* Set up lowcore and control register of the current cpu to
* enable TOD clock and clock comparator interrupts.
*/
void init_cpu_timer(void)
{
struct clock_event_device *cd;
int cpu;
S390_lowcore.clock_comparator = -1ULL;
set_clock_comparator(S390_lowcore.clock_comparator);
cpu = smp_processor_id();
cd = &per_cpu(comparators, cpu);
cd->name = "comparator";
cd->features = CLOCK_EVT_FEAT_ONESHOT;
cd->mult = 16777;
cd->shift = 12;
cd->min_delta_ns = 1;
cd->min_delta_ticks = 1;
cd->max_delta_ns = LONG_MAX;
cd->max_delta_ticks = ULONG_MAX;
cd->rating = 400;
cd->cpumask = cpumask_of(cpu);
cd->set_next_event = s390_next_event;
clockevents_register_device(cd);
/* Enable clock comparator timer interrupt. */
__ctl_set_bit(0,11);
/* Always allow the timing alert external interrupt. */
__ctl_set_bit(0, 4);
}
static void clock_comparator_interrupt(struct ext_code ext_code,
unsigned int param32,
unsigned long param64)
{
inc_irq_stat(IRQEXT_CLK);
if (S390_lowcore.clock_comparator == -1ULL)
set_clock_comparator(S390_lowcore.clock_comparator);
}
static void stp_timing_alert(struct stp_irq_parm *);
static void timing_alert_interrupt(struct ext_code ext_code,
unsigned int param32, unsigned long param64)
{
inc_irq_stat(IRQEXT_TLA);
if (param32 & 0x00038000)
stp_timing_alert((struct stp_irq_parm *) &param32);
}
static void stp_reset(void);
void read_persistent_clock64(struct timespec64 *ts)
{
__u64 clock;
clock = get_tod_clock() - initial_leap_seconds;
tod_to_timeval(clock - TOD_UNIX_EPOCH, ts);
}
void read_boot_clock64(struct timespec64 *ts)
{
__u64 clock;
clock = sched_clock_base_cc - initial_leap_seconds;
tod_to_timeval(clock - TOD_UNIX_EPOCH, ts);
}
static u64 read_tod_clock(struct clocksource *cs)
{
unsigned long long now, adj;
preempt_disable(); /* protect from changes to steering parameters */
now = get_tod_clock();
adj = tod_steering_end - now;
if (unlikely((s64) adj >= 0))
/*
* manually steer by 1 cycle every 2^16 cycles. This
* corresponds to shifting the tod delta by 15. 1s is
* therefore steered in ~9h. The adjust will decrease
* over time, until it finally reaches 0.
*/
now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
preempt_enable();
return now;
}
static struct clocksource clocksource_tod = {
.name = "tod",
.rating = 400,
.read = read_tod_clock,
.mask = -1ULL,
.mult = 1000,
.shift = 12,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
struct clocksource * __init clocksource_default_clock(void)
{
return &clocksource_tod;
}
void update_vsyscall(struct timekeeper *tk)
{
u64 nsecps;
if (tk->tkr_mono.clock != &clocksource_tod)
return;
/* Make userspace gettimeofday spin until we're done. */
++vdso_data->tb_update_count;
smp_wmb();
vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
vdso_data->xtime_clock_sec = tk->xtime_sec;
vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
vdso_data->wtom_clock_sec =
tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
while (vdso_data->wtom_clock_nsec >= nsecps) {
vdso_data->wtom_clock_nsec -= nsecps;
vdso_data->wtom_clock_sec++;
}
vdso_data->xtime_coarse_sec = tk->xtime_sec;
vdso_data->xtime_coarse_nsec =
(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
vdso_data->wtom_coarse_sec =
vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
vdso_data->wtom_coarse_nsec =
vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
vdso_data->wtom_coarse_sec++;
}
vdso_data->tk_mult = tk->tkr_mono.mult;
vdso_data->tk_shift = tk->tkr_mono.shift;
smp_wmb();
++vdso_data->tb_update_count;
}
extern struct timezone sys_tz;
void update_vsyscall_tz(void)
{
vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
vdso_data->tz_dsttime = sys_tz.tz_dsttime;
}
/*
* Initialize the TOD clock and the CPU timer of
* the boot cpu.
*/
void __init time_init(void)
{
/* Reset time synchronization interfaces. */
stp_reset();
/* request the clock comparator external interrupt */
if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
panic("Couldn't request external interrupt 0x1004");
/* request the timing alert external interrupt */
if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
panic("Couldn't request external interrupt 0x1406");
if (__clocksource_register(&clocksource_tod) != 0)
panic("Could not register TOD clock source");
/* Enable TOD clock interrupts on the boot cpu. */
init_cpu_timer();
/* Enable cpu timer interrupts on the boot cpu. */
vtime_init();
}
static DEFINE_PER_CPU(atomic_t, clock_sync_word);
static DEFINE_MUTEX(clock_sync_mutex);
static unsigned long clock_sync_flags;
#define CLOCK_SYNC_HAS_STP 0
#define CLOCK_SYNC_STP 1
/*
* The get_clock function for the physical clock. It will get the current
* TOD clock, subtract the LPAR offset and write the result to *clock.
* The function returns 0 if the clock is in sync with the external time
* source. If the clock mode is local it will return -EOPNOTSUPP and
* -EAGAIN if the clock is not in sync with the external reference.
*/
int get_phys_clock(unsigned long long *clock)
{
atomic_t *sw_ptr;
unsigned int sw0, sw1;
sw_ptr = &get_cpu_var(clock_sync_word);
sw0 = atomic_read(sw_ptr);
*clock = get_tod_clock() - lpar_offset;
sw1 = atomic_read(sw_ptr);
put_cpu_var(clock_sync_word);
if (sw0 == sw1 && (sw0 & 0x80000000U))
/* Success: time is in sync. */
return 0;
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
return -EOPNOTSUPP;
if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
return -EACCES;
return -EAGAIN;
}
EXPORT_SYMBOL(get_phys_clock);
/*
* Make get_phys_clock() return -EAGAIN.
*/
static void disable_sync_clock(void *dummy)
{
atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
/*
* Clear the in-sync bit 2^31. All get_phys_clock calls will
* fail until the sync bit is turned back on. In addition
* increase the "sequence" counter to avoid the race of an
* stp event and the complete recovery against get_phys_clock.
*/
atomic_andnot(0x80000000, sw_ptr);
atomic_inc(sw_ptr);
}
/*
* Make get_phys_clock() return 0 again.
* Needs to be called from a context disabled for preemption.
*/
static void enable_sync_clock(void)
{
atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
atomic_or(0x80000000, sw_ptr);
}
/*
* Function to check if the clock is in sync.
*/
static inline int check_sync_clock(void)
{
atomic_t *sw_ptr;
int rc;
sw_ptr = &get_cpu_var(clock_sync_word);
rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
put_cpu_var(clock_sync_word);
return rc;
}
/*
* Apply clock delta to the global data structures.
* This is called once on the CPU that performed the clock sync.
*/
static void clock_sync_global(unsigned long long delta)
{
unsigned long now, adj;
struct ptff_qto qto;
/* Fixup the monotonic sched clock. */
sched_clock_base_cc += delta;
/* Adjust TOD steering parameters. */
vdso_data->tb_update_count++;
now = get_tod_clock();
adj = tod_steering_end - now;
if (unlikely((s64) adj >= 0))
/* Calculate how much of the old adjustment is left. */
tod_steering_delta = (tod_steering_delta < 0) ?
-(adj >> 15) : (adj >> 15);
tod_steering_delta += delta;
if ((abs(tod_steering_delta) >> 48) != 0)
panic("TOD clock sync offset %lli is too large to drift\n",
tod_steering_delta);
tod_steering_end = now + (abs(tod_steering_delta) << 15);
vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
vdso_data->ts_end = tod_steering_end;
vdso_data->tb_update_count++;
/* Update LPAR offset. */
if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
lpar_offset = qto.tod_epoch_difference;
/* Call the TOD clock change notifier. */
atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
}
/*
* Apply clock delta to the per-CPU data structures of this CPU.
* This is called for each online CPU after the call to clock_sync_global.
*/
static void clock_sync_local(unsigned long long delta)
{
/* Add the delta to the clock comparator. */
if (S390_lowcore.clock_comparator != -1ULL) {
S390_lowcore.clock_comparator += delta;
set_clock_comparator(S390_lowcore.clock_comparator);
}
/* Adjust the last_update_clock time-stamp. */
S390_lowcore.last_update_clock += delta;
}
/* Single threaded workqueue used for stp sync events */
static struct workqueue_struct *time_sync_wq;
static void __init time_init_wq(void)
{
if (time_sync_wq)
return;
time_sync_wq = create_singlethread_workqueue("timesync");
}
struct clock_sync_data {
atomic_t cpus;
int in_sync;
unsigned long long clock_delta;
};
/*
* Server Time Protocol (STP) code.
*/
static bool stp_online;
static struct stp_sstpi stp_info;
static void *stp_page;
static void stp_work_fn(struct work_struct *work);
static DEFINE_MUTEX(stp_work_mutex);
static DECLARE_WORK(stp_work, stp_work_fn);
static struct timer_list stp_timer;
static int __init early_parse_stp(char *p)
{
return kstrtobool(p, &stp_online);
}
early_param("stp", early_parse_stp);
/*
* Reset STP attachment.
*/
static void __init stp_reset(void)
{
int rc;
stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
if (rc == 0)
set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
else if (stp_online) {
pr_warn("The real or virtual hardware system does not provide an STP interface\n");
free_page((unsigned long) stp_page);
stp_page = NULL;
stp_online = false;
}
}
static void stp_timeout(unsigned long dummy)
{
queue_work(time_sync_wq, &stp_work);
}
static int __init stp_init(void)
{
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
return 0;
setup_timer(&stp_timer, stp_timeout, 0UL);
time_init_wq();
if (!stp_online)
return 0;
queue_work(time_sync_wq, &stp_work);
return 0;
}
arch_initcall(stp_init);
/*
* STP timing alert. There are three causes:
* 1) timing status change
* 2) link availability change
* 3) time control parameter change
* In all three cases we are only interested in the clock source state.
* If a STP clock source is now available use it.
*/
static void stp_timing_alert(struct stp_irq_parm *intparm)
{
if (intparm->tsc || intparm->lac || intparm->tcpc)
queue_work(time_sync_wq, &stp_work);
}
/*
* STP sync check machine check. This is called when the timing state
* changes from the synchronized state to the unsynchronized state.
* After a STP sync check the clock is not in sync. The machine check
* is broadcasted to all cpus at the same time.
*/
int stp_sync_check(void)
{
disable_sync_clock(NULL);
return 1;
}
/*
* STP island condition machine check. This is called when an attached
* server attempts to communicate over an STP link and the servers
* have matching CTN ids and have a valid stratum-1 configuration
* but the configurations do not match.
*/
int stp_island_check(void)
{
disable_sync_clock(NULL);
return 1;
}
void stp_queue_work(void)
{
queue_work(time_sync_wq, &stp_work);
}
static int stp_sync_clock(void *data)
{
struct clock_sync_data *sync = data;
unsigned long long clock_delta;
static int first;
int rc;
enable_sync_clock();
if (xchg(&first, 1) == 0) {
/* Wait until all other cpus entered the sync function. */
while (atomic_read(&sync->cpus) != 0)
cpu_relax();
rc = 0;
if (stp_info.todoff[0] || stp_info.todoff[1] ||
stp_info.todoff[2] || stp_info.todoff[3] ||
stp_info.tmd != 2) {
rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
&clock_delta);
if (rc == 0) {
sync->clock_delta = clock_delta;
clock_sync_global(clock_delta);
rc = chsc_sstpi(stp_page, &stp_info,
sizeof(struct stp_sstpi));
if (rc == 0 && stp_info.tmd != 2)
rc = -EAGAIN;
}
}
sync->in_sync = rc ? -EAGAIN : 1;
xchg(&first, 0);
} else {
/* Slave */
atomic_dec(&sync->cpus);
/* Wait for in_sync to be set. */
while (READ_ONCE(sync->in_sync) == 0)
__udelay(1);
}
if (sync->in_sync != 1)
/* Didn't work. Clear per-cpu in sync bit again. */
disable_sync_clock(NULL);
/* Apply clock delta to per-CPU fields of this CPU. */
clock_sync_local(sync->clock_delta);
return 0;
}
/*
* STP work. Check for the STP state and take over the clock
* synchronization if the STP clock source is usable.
*/
static void stp_work_fn(struct work_struct *work)
{
struct clock_sync_data stp_sync;
int rc;
/* prevent multiple execution. */
mutex_lock(&stp_work_mutex);
if (!stp_online) {
chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
del_timer_sync(&stp_timer);
goto out_unlock;
}
rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
if (rc)
goto out_unlock;
rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
if (rc || stp_info.c == 0)
goto out_unlock;
/* Skip synchronization if the clock is already in sync. */
if (check_sync_clock())
goto out_unlock;
memset(&stp_sync, 0, sizeof(stp_sync));
get_online_cpus();
atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
put_online_cpus();
if (!check_sync_clock())
/*
* There is a usable clock but the synchonization failed.
* Retry after a second.
*/
mod_timer(&stp_timer, jiffies + HZ);
out_unlock:
mutex_unlock(&stp_work_mutex);
}
/*
* STP subsys sysfs interface functions
*/
static struct bus_type stp_subsys = {
.name = "stp",
.dev_name = "stp",
};
static ssize_t stp_ctn_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%016llx\n",
*(unsigned long long *) stp_info.ctnid);
}
static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
static ssize_t stp_ctn_type_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%i\n", stp_info.ctn);
}
static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
static ssize_t stp_dst_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!stp_online || !(stp_info.vbits & 0x2000))
return -ENODATA;
return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
}
static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
static ssize_t stp_leap_seconds_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!stp_online || !(stp_info.vbits & 0x8000))
return -ENODATA;
return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
}
static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
static ssize_t stp_stratum_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
}
static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
static ssize_t stp_time_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!stp_online || !(stp_info.vbits & 0x0800))
return -ENODATA;
return sprintf(buf, "%i\n", (int) stp_info.tto);
}
static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
static ssize_t stp_time_zone_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!stp_online || !(stp_info.vbits & 0x4000))
return -ENODATA;
return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
}
static DEVICE_ATTR(time_zone_offset, 0400,
stp_time_zone_offset_show, NULL);
static ssize_t stp_timing_mode_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%i\n", stp_info.tmd);
}
static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
static ssize_t stp_timing_state_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
if (!stp_online)
return -ENODATA;
return sprintf(buf, "%i\n", stp_info.tst);
}
static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
static ssize_t stp_online_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%i\n", stp_online);
}
static ssize_t stp_online_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int value;
value = simple_strtoul(buf, NULL, 0);
if (value != 0 && value != 1)
return -EINVAL;
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
return -EOPNOTSUPP;
mutex_lock(&clock_sync_mutex);
stp_online = value;
if (stp_online)
set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
else
clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
queue_work(time_sync_wq, &stp_work);
mutex_unlock(&clock_sync_mutex);
return count;
}
/*
* Can't use DEVICE_ATTR because the attribute should be named
* stp/online but dev_attr_online already exists in this file ..
*/
static struct device_attribute dev_attr_stp_online = {
.attr = { .name = "online", .mode = 0600 },
.show = stp_online_show,
.store = stp_online_store,
};
static struct device_attribute *stp_attributes[] = {
&dev_attr_ctn_id,
&dev_attr_ctn_type,
&dev_attr_dst_offset,
&dev_attr_leap_seconds,
&dev_attr_stp_online,
&dev_attr_stratum,
&dev_attr_time_offset,
&dev_attr_time_zone_offset,
&dev_attr_timing_mode,
&dev_attr_timing_state,
NULL
};
static int __init stp_init_sysfs(void)
{
struct device_attribute **attr;
int rc;
rc = subsys_system_register(&stp_subsys, NULL);
if (rc)
goto out;
for (attr = stp_attributes; *attr; attr++) {
rc = device_create_file(stp_subsys.dev_root, *attr);
if (rc)
goto out_unreg;
}
return 0;
out_unreg:
for (; attr >= stp_attributes; attr--)
device_remove_file(stp_subsys.dev_root, *attr);
bus_unregister(&stp_subsys);
out:
return rc;
}
device_initcall(stp_init_sysfs);