linux_dsm_epyc7002/fs/f2fs/extent_cache.c
Chao Yu 54d7185642 f2fs: avoid accessing NULL pointer in f2fs_drop_largest_extent
If extent cache is disable, we will encounter oops when triggering direct
IO as below:

BUG: unable to handle kernel NULL pointer dereference at 0000000c
IP: [<f0b9c61e>] f2fs_drop_largest_extent+0xe/0x30 [f2fs]
*pdpt = 000000002bb9a001 *pde = 0000000000000000
Oops: 0000 [#1] SMP
Modules linked in: f2fs(O) fuse bnep rfcomm bluetooth nfsd dm_crypt nfs_acl auth_rpcgss oid_registry nfs binfmt_misc fscache lockd
sunrpc grace snd_intel8x0 snd_ac97_codec ac97_bus snd_pcm snd_seq_midi snd_rawmidi snd_seq_midi_event snd_seq snd_timer
snd_seq_device snd soundcore joydev psmouse hid_generic i2c_piix4 serio_raw ppdev mac_hid parport_pc lp parport ext4 jbd2 mbcache
usbhid hid e1000
CPU: 3 PID: 3608 Comm: dd Tainted: G           O    4.2.0-rc4 #12
Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
task: ef161600 ti: ebd5e000 task.ti: ebd5e000
EIP: 0060:[<f0b9c61e>] EFLAGS: 00010202 CPU: 3
EIP is at f2fs_drop_largest_extent+0xe/0x30 [f2fs]
EAX: 00000000 EBX: ddebc000 ECX: 00000000 EDX: 00000000
ESI: ebd5fdf8 EDI: 00000000 EBP: ebd5fd58 ESP: ebd5fd58
 DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
CR0: 80050033 CR2: 0000000c CR3: 2c24ee40 CR4: 000006f0
Stack:
 ebd5fda4 f0b8c005 00000000 00000001 00000000 f0b8c430 c816cd68 ddebc000
 ddebc088 00001000 00000555 00000555 ffffffff c160bb00 00055501 00000000
 00000000 00000100 00000000 ebd5fe20 f0b8c430 00000046 ef161600 00001000
Call Trace:
 [<f0b8c005>] __allocate_data_block+0x1a5/0x260 [f2fs]
 [<f0b8c430>] ? f2fs_direct_IO+0x370/0x440 [f2fs]
 [<c160bb00>] ? down_read+0x30/0x50
 [<f0b8c430>] f2fs_direct_IO+0x370/0x440 [f2fs]
 [<c113e115>] generic_file_direct_write+0xa5/0x260
 [<c10b53f8>] ? current_fs_time+0x18/0x50
 [<c113e38b>] __generic_file_write_iter+0xbb/0x210
 [<c113e50f>] ? generic_file_write_iter+0x2f/0x320
 [<c113e63c>] generic_file_write_iter+0x15c/0x320
 [<f0b77f29>] f2fs_file_write_iter+0x39/0x80 [f2fs]
 [<c11984d9>] __vfs_write+0xa9/0xe0
 [<c1199227>] vfs_write+0x97/0x180
 [<c119955b>] SyS_write+0x5b/0xd0
 [<c160dcd0>] sysenter_do_call+0x12/0x12
Code: 10 8b 50 1c 89 53 14 eb ca 8d 74 26 00 85 f6 74 86 eb a6 0f 0b 90 8d b4 26 00 00 00 00 55 89 e5 3e 8d 74 26 00 8b 80 d4 02 00
00 <8b> 48 0c 39 d1 77 0e 03 48 14 39 ca 73 07 c7 40 14 00 00 00 00
EIP: [<f0b9c61e>] f2fs_drop_largest_extent+0xe/0x30 [f2fs] SS:ESP 0068:ebd5fd58
CR2: 000000000000000c
---[ end trace a38c07026a1afffd ]---

This is because when extent cache is disable, extent_tree pointer in struct
f2fs_inode_info should be NULL, but in f2fs_drop_largest_extent we access
this NULL pointer directly without checking state of extent cache, then,
the oops occurs. Let's fix it by checking state of extent cache before
accessing.

Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2015-08-28 10:14:26 -07:00

792 lines
19 KiB
C

/*
* f2fs extent cache support
*
* Copyright (c) 2015 Motorola Mobility
* Copyright (c) 2015 Samsung Electronics
* Authors: Jaegeuk Kim <jaegeuk@kernel.org>
* Chao Yu <chao2.yu@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *extent_tree_slab;
static struct kmem_cache *extent_node_slab;
static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct rb_node *parent, struct rb_node **p)
{
struct extent_node *en;
en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
if (!en)
return NULL;
en->ei = *ei;
INIT_LIST_HEAD(&en->list);
rb_link_node(&en->rb_node, parent, p);
rb_insert_color(&en->rb_node, &et->root);
et->count++;
atomic_inc(&sbi->total_ext_node);
return en;
}
static void __detach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
rb_erase(&en->rb_node, &et->root);
et->count--;
atomic_dec(&sbi->total_ext_node);
if (et->cached_en == en)
et->cached_en = NULL;
}
static struct extent_tree *__grab_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
nid_t ino = inode->i_ino;
down_write(&sbi->extent_tree_lock);
et = radix_tree_lookup(&sbi->extent_tree_root, ino);
if (!et) {
et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
memset(et, 0, sizeof(struct extent_tree));
et->ino = ino;
et->root = RB_ROOT;
et->cached_en = NULL;
rwlock_init(&et->lock);
atomic_set(&et->refcount, 0);
et->count = 0;
sbi->total_ext_tree++;
}
atomic_inc(&et->refcount);
up_write(&sbi->extent_tree_lock);
/* never died until evict_inode */
F2FS_I(inode)->extent_tree = et;
return et;
}
static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, unsigned int fofs)
{
struct rb_node *node = et->root.rb_node;
struct extent_node *en = et->cached_en;
if (en) {
struct extent_info *cei = &en->ei;
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
stat_inc_cached_node_hit(sbi);
return en;
}
}
while (node) {
en = rb_entry(node, struct extent_node, rb_node);
if (fofs < en->ei.fofs) {
node = node->rb_left;
} else if (fofs >= en->ei.fofs + en->ei.len) {
node = node->rb_right;
} else {
stat_inc_rbtree_node_hit(sbi);
return en;
}
}
return NULL;
}
static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei)
{
struct rb_node **p = &et->root.rb_node;
struct extent_node *en;
en = __attach_extent_node(sbi, et, ei, NULL, p);
if (!en)
return NULL;
et->largest = en->ei;
et->cached_en = en;
return en;
}
static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, bool free_all)
{
struct rb_node *node, *next;
struct extent_node *en;
unsigned int count = et->count;
node = rb_first(&et->root);
while (node) {
next = rb_next(node);
en = rb_entry(node, struct extent_node, rb_node);
if (free_all) {
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list))
list_del_init(&en->list);
spin_unlock(&sbi->extent_lock);
}
if (free_all || list_empty(&en->list)) {
__detach_extent_node(sbi, et, en);
kmem_cache_free(extent_node_slab, en);
}
node = next;
}
return count - et->count;
}
static void __drop_largest_extent(struct inode *inode, pgoff_t fofs)
{
struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
if (largest->fofs <= fofs && largest->fofs + largest->len > fofs)
largest->len = 0;
}
void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs)
{
if (!f2fs_may_extent_tree(inode))
return;
__drop_largest_extent(inode, fofs);
}
void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
struct extent_node *en;
struct extent_info ei;
if (!f2fs_may_extent_tree(inode))
return;
et = __grab_extent_tree(inode);
if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
return;
set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
write_lock(&et->lock);
if (et->count)
goto out;
en = __init_extent_tree(sbi, et, &ei);
if (en) {
spin_lock(&sbi->extent_lock);
list_add_tail(&en->list, &sbi->extent_list);
spin_unlock(&sbi->extent_lock);
}
out:
write_unlock(&et->lock);
}
static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
struct extent_node *en;
bool ret = false;
f2fs_bug_on(sbi, !et);
trace_f2fs_lookup_extent_tree_start(inode, pgofs);
read_lock(&et->lock);
if (et->largest.fofs <= pgofs &&
et->largest.fofs + et->largest.len > pgofs) {
*ei = et->largest;
ret = true;
stat_inc_largest_node_hit(sbi);
goto out;
}
en = __lookup_extent_tree(sbi, et, pgofs);
if (en) {
*ei = en->ei;
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list))
list_move_tail(&en->list, &sbi->extent_list);
et->cached_en = en;
spin_unlock(&sbi->extent_lock);
ret = true;
}
out:
stat_inc_total_hit(sbi);
read_unlock(&et->lock);
trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
return ret;
}
/*
* lookup extent at @fofs, if hit, return the extent
* if not, return NULL and
* @prev_ex: extent before fofs
* @next_ex: extent after fofs
* @insert_p: insert point for new extent at fofs
* in order to simpfy the insertion after.
* tree must stay unchanged between lookup and insertion.
*/
static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
unsigned int fofs,
struct extent_node **prev_ex,
struct extent_node **next_ex,
struct rb_node ***insert_p,
struct rb_node **insert_parent)
{
struct rb_node **pnode = &et->root.rb_node;
struct rb_node *parent = NULL, *tmp_node;
struct extent_node *en = et->cached_en;
*insert_p = NULL;
*insert_parent = NULL;
*prev_ex = NULL;
*next_ex = NULL;
if (RB_EMPTY_ROOT(&et->root))
return NULL;
if (en) {
struct extent_info *cei = &en->ei;
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
goto lookup_neighbors;
}
while (*pnode) {
parent = *pnode;
en = rb_entry(*pnode, struct extent_node, rb_node);
if (fofs < en->ei.fofs)
pnode = &(*pnode)->rb_left;
else if (fofs >= en->ei.fofs + en->ei.len)
pnode = &(*pnode)->rb_right;
else
goto lookup_neighbors;
}
*insert_p = pnode;
*insert_parent = parent;
en = rb_entry(parent, struct extent_node, rb_node);
tmp_node = parent;
if (parent && fofs > en->ei.fofs)
tmp_node = rb_next(parent);
*next_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
tmp_node = parent;
if (parent && fofs < en->ei.fofs)
tmp_node = rb_prev(parent);
*prev_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
return NULL;
lookup_neighbors:
if (fofs == en->ei.fofs) {
/* lookup prev node for merging backward later */
tmp_node = rb_prev(&en->rb_node);
*prev_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
}
if (fofs == en->ei.fofs + en->ei.len - 1) {
/* lookup next node for merging frontward later */
tmp_node = rb_next(&en->rb_node);
*next_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
}
return en;
}
static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct extent_node **den,
struct extent_node *prev_ex,
struct extent_node *next_ex)
{
struct extent_node *en = NULL;
if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
prev_ex->ei.len += ei->len;
ei = &prev_ex->ei;
en = prev_ex;
}
if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
if (en) {
__detach_extent_node(sbi, et, prev_ex);
*den = prev_ex;
}
next_ex->ei.fofs = ei->fofs;
next_ex->ei.blk = ei->blk;
next_ex->ei.len += ei->len;
en = next_ex;
}
if (en) {
if (en->ei.len > et->largest.len)
et->largest = en->ei;
et->cached_en = en;
}
return en;
}
static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct rb_node **insert_p,
struct rb_node *insert_parent)
{
struct rb_node **p = &et->root.rb_node;
struct rb_node *parent = NULL;
struct extent_node *en = NULL;
if (insert_p && insert_parent) {
parent = insert_parent;
p = insert_p;
goto do_insert;
}
while (*p) {
parent = *p;
en = rb_entry(parent, struct extent_node, rb_node);
if (ei->fofs < en->ei.fofs)
p = &(*p)->rb_left;
else if (ei->fofs >= en->ei.fofs + en->ei.len)
p = &(*p)->rb_right;
else
f2fs_bug_on(sbi, 1);
}
do_insert:
en = __attach_extent_node(sbi, et, ei, parent, p);
if (!en)
return NULL;
if (en->ei.len > et->largest.len)
et->largest = en->ei;
et->cached_en = en;
return en;
}
unsigned int f2fs_update_extent_tree_range(struct inode *inode,
pgoff_t fofs, block_t blkaddr, unsigned int len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
struct extent_node *prev_en = NULL, *next_en = NULL;
struct extent_info ei, dei, prev;
struct rb_node **insert_p = NULL, *insert_parent = NULL;
unsigned int end = fofs + len;
unsigned int pos = (unsigned int)fofs;
if (!et)
return false;
write_lock(&et->lock);
if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
write_unlock(&et->lock);
return false;
}
prev = et->largest;
dei.len = 0;
/* we do not guarantee that the largest extent is cached all the time */
__drop_largest_extent(inode, fofs);
/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
&insert_p, &insert_parent);
if (!en) {
if (next_en) {
en = next_en;
f2fs_bug_on(sbi, en->ei.fofs <= pos);
pos = en->ei.fofs;
} else {
/*
* skip searching in the tree since there is no
* larger extent node in the cache.
*/
goto update_extent;
}
}
/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
while (en) {
struct rb_node *node;
if (pos >= end)
break;
dei = en->ei;
en1 = en2 = NULL;
node = rb_next(&en->rb_node);
/*
* 2.1 there are four cases when we invalidate blkaddr in extent
* node, |V: valid address, X: will be invalidated|
*/
/* case#1, invalidate right part of extent node |VVVVVXXXXX| */
if (pos > dei.fofs && end >= dei.fofs + dei.len) {
en->ei.len = pos - dei.fofs;
if (en->ei.len < F2FS_MIN_EXTENT_LEN) {
__detach_extent_node(sbi, et, en);
insert_p = NULL;
insert_parent = NULL;
goto update;
}
if (__is_extent_same(&dei, &et->largest))
et->largest = en->ei;
goto next;
}
/* case#2, invalidate left part of extent node |XXXXXVVVVV| */
if (pos <= dei.fofs && end < dei.fofs + dei.len) {
en->ei.fofs = end;
en->ei.blk += end - dei.fofs;
en->ei.len -= end - dei.fofs;
if (en->ei.len < F2FS_MIN_EXTENT_LEN) {
__detach_extent_node(sbi, et, en);
insert_p = NULL;
insert_parent = NULL;
goto update;
}
if (__is_extent_same(&dei, &et->largest))
et->largest = en->ei;
goto next;
}
__detach_extent_node(sbi, et, en);
/*
* if we remove node in rb-tree, our parent node pointer may
* point the wrong place, discard them.
*/
insert_p = NULL;
insert_parent = NULL;
/* case#3, invalidate entire extent node |XXXXXXXXXX| */
if (pos <= dei.fofs && end >= dei.fofs + dei.len) {
if (__is_extent_same(&dei, &et->largest))
et->largest.len = 0;
goto update;
}
/*
* case#4, invalidate data in the middle of extent node
* |VVVXXXXVVV|
*/
if (dei.len > F2FS_MIN_EXTENT_LEN) {
unsigned int endofs;
/* insert left part of split extent into cache */
if (pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
set_extent_info(&ei, dei.fofs, dei.blk,
pos - dei.fofs);
en1 = __insert_extent_tree(sbi, et, &ei,
NULL, NULL);
}
/* insert right part of split extent into cache */
endofs = dei.fofs + dei.len;
if (endofs - end >= F2FS_MIN_EXTENT_LEN) {
set_extent_info(&ei, end,
end - dei.fofs + dei.blk,
endofs - end);
en2 = __insert_extent_tree(sbi, et, &ei,
NULL, NULL);
}
}
update:
/* 2.2 update in global extent list */
spin_lock(&sbi->extent_lock);
if (en && !list_empty(&en->list))
list_del(&en->list);
if (en1)
list_add_tail(&en1->list, &sbi->extent_list);
if (en2)
list_add_tail(&en2->list, &sbi->extent_list);
spin_unlock(&sbi->extent_lock);
/* 2.3 release extent node */
if (en)
kmem_cache_free(extent_node_slab, en);
next:
en = node ? rb_entry(node, struct extent_node, rb_node) : NULL;
next_en = en;
if (en)
pos = en->ei.fofs;
}
update_extent:
/* 3. update extent in extent cache */
if (blkaddr) {
struct extent_node *den = NULL;
set_extent_info(&ei, fofs, blkaddr, len);
en3 = __try_merge_extent_node(sbi, et, &ei, &den,
prev_en, next_en);
if (!en3)
en3 = __insert_extent_tree(sbi, et, &ei,
insert_p, insert_parent);
/* give up extent_cache, if split and small updates happen */
if (dei.len >= 1 &&
prev.len < F2FS_MIN_EXTENT_LEN &&
et->largest.len < F2FS_MIN_EXTENT_LEN) {
et->largest.len = 0;
set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
}
spin_lock(&sbi->extent_lock);
if (en3) {
if (list_empty(&en3->list))
list_add_tail(&en3->list, &sbi->extent_list);
else
list_move_tail(&en3->list, &sbi->extent_list);
}
if (den && !list_empty(&den->list))
list_del(&den->list);
spin_unlock(&sbi->extent_lock);
if (den)
kmem_cache_free(extent_node_slab, den);
}
if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
__free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
return !__is_extent_same(&prev, &et->largest);
}
unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
{
struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
struct extent_node *en, *tmp;
unsigned long ino = F2FS_ROOT_INO(sbi);
struct radix_tree_root *root = &sbi->extent_tree_root;
unsigned int found;
unsigned int node_cnt = 0, tree_cnt = 0;
int remained;
if (!test_opt(sbi, EXTENT_CACHE))
return 0;
if (!down_write_trylock(&sbi->extent_tree_lock))
goto out;
/* 1. remove unreferenced extent tree */
while ((found = radix_tree_gang_lookup(root,
(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
unsigned i;
ino = treevec[found - 1]->ino + 1;
for (i = 0; i < found; i++) {
struct extent_tree *et = treevec[i];
if (!atomic_read(&et->refcount)) {
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
radix_tree_delete(root, et->ino);
kmem_cache_free(extent_tree_slab, et);
sbi->total_ext_tree--;
tree_cnt++;
if (node_cnt + tree_cnt >= nr_shrink)
goto unlock_out;
}
}
}
up_write(&sbi->extent_tree_lock);
/* 2. remove LRU extent entries */
if (!down_write_trylock(&sbi->extent_tree_lock))
goto out;
remained = nr_shrink - (node_cnt + tree_cnt);
spin_lock(&sbi->extent_lock);
list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
if (!remained--)
break;
list_del_init(&en->list);
}
spin_unlock(&sbi->extent_lock);
while ((found = radix_tree_gang_lookup(root,
(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
unsigned i;
ino = treevec[found - 1]->ino + 1;
for (i = 0; i < found; i++) {
struct extent_tree *et = treevec[i];
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et, false);
write_unlock(&et->lock);
if (node_cnt + tree_cnt >= nr_shrink)
break;
}
}
unlock_out:
up_write(&sbi->extent_tree_lock);
out:
trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
return node_cnt + tree_cnt;
}
unsigned int f2fs_destroy_extent_node(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
unsigned int node_cnt = 0;
if (!et)
return 0;
write_lock(&et->lock);
node_cnt = __free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
return node_cnt;
}
void f2fs_destroy_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
unsigned int node_cnt = 0;
if (!et)
return;
if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
atomic_dec(&et->refcount);
return;
}
/* free all extent info belong to this extent tree */
node_cnt = f2fs_destroy_extent_node(inode);
/* delete extent tree entry in radix tree */
down_write(&sbi->extent_tree_lock);
atomic_dec(&et->refcount);
f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
kmem_cache_free(extent_tree_slab, et);
sbi->total_ext_tree--;
up_write(&sbi->extent_tree_lock);
F2FS_I(inode)->extent_tree = NULL;
trace_f2fs_destroy_extent_tree(inode, node_cnt);
}
bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
if (!f2fs_may_extent_tree(inode))
return false;
return f2fs_lookup_extent_tree(inode, pgofs, ei);
}
void f2fs_update_extent_cache(struct dnode_of_data *dn)
{
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
pgoff_t fofs;
if (!f2fs_may_extent_tree(dn->inode))
return;
f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
dn->ofs_in_node;
if (f2fs_update_extent_tree_range(dn->inode, fofs, dn->data_blkaddr, 1))
sync_inode_page(dn);
}
void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
pgoff_t fofs, block_t blkaddr, unsigned int len)
{
if (!f2fs_may_extent_tree(dn->inode))
return;
if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len))
sync_inode_page(dn);
}
void init_extent_cache_info(struct f2fs_sb_info *sbi)
{
INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
init_rwsem(&sbi->extent_tree_lock);
INIT_LIST_HEAD(&sbi->extent_list);
spin_lock_init(&sbi->extent_lock);
sbi->total_ext_tree = 0;
atomic_set(&sbi->total_ext_node, 0);
}
int __init create_extent_cache(void)
{
extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
sizeof(struct extent_tree));
if (!extent_tree_slab)
return -ENOMEM;
extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
sizeof(struct extent_node));
if (!extent_node_slab) {
kmem_cache_destroy(extent_tree_slab);
return -ENOMEM;
}
return 0;
}
void destroy_extent_cache(void)
{
kmem_cache_destroy(extent_node_slab);
kmem_cache_destroy(extent_tree_slab);
}