mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 06:55:07 +07:00
45a2005e93
When I2C communication fails, it tends to always fail. Rather than continuously issue an error message (once per second in most cases), change the message to be issued just once. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: David S. Miller <davem@davemloft.net>
3047 lines
81 KiB
C
3047 lines
81 KiB
C
/*
|
|
* AMD 10Gb Ethernet driver
|
|
*
|
|
* This file is available to you under your choice of the following two
|
|
* licenses:
|
|
*
|
|
* License 1: GPLv2
|
|
*
|
|
* Copyright (c) 2016 Advanced Micro Devices, Inc.
|
|
*
|
|
* This file is free software; you may copy, redistribute and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* This file incorporates work covered by the following copyright and
|
|
* permission notice:
|
|
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
|
|
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
|
|
* Inc. unless otherwise expressly agreed to in writing between Synopsys
|
|
* and you.
|
|
*
|
|
* The Software IS NOT an item of Licensed Software or Licensed Product
|
|
* under any End User Software License Agreement or Agreement for Licensed
|
|
* Product with Synopsys or any supplement thereto. Permission is hereby
|
|
* granted, free of charge, to any person obtaining a copy of this software
|
|
* annotated with this license and the Software, to deal in the Software
|
|
* without restriction, including without limitation the rights to use,
|
|
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
* of the Software, and to permit persons to whom the Software is furnished
|
|
* to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
|
|
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*
|
|
* License 2: Modified BSD
|
|
*
|
|
* Copyright (c) 2016 Advanced Micro Devices, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Advanced Micro Devices, Inc. nor the
|
|
* names of its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* This file incorporates work covered by the following copyright and
|
|
* permission notice:
|
|
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
|
|
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
|
|
* Inc. unless otherwise expressly agreed to in writing between Synopsys
|
|
* and you.
|
|
*
|
|
* The Software IS NOT an item of Licensed Software or Licensed Product
|
|
* under any End User Software License Agreement or Agreement for Licensed
|
|
* Product with Synopsys or any supplement thereto. Permission is hereby
|
|
* granted, free of charge, to any person obtaining a copy of this software
|
|
* annotated with this license and the Software, to deal in the Software
|
|
* without restriction, including without limitation the rights to use,
|
|
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
* of the Software, and to permit persons to whom the Software is furnished
|
|
* to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
|
|
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/mdio.h>
|
|
#include <linux/phy.h>
|
|
|
|
#include "xgbe.h"
|
|
#include "xgbe-common.h"
|
|
|
|
#define XGBE_PHY_PORT_SPEED_100 BIT(0)
|
|
#define XGBE_PHY_PORT_SPEED_1000 BIT(1)
|
|
#define XGBE_PHY_PORT_SPEED_2500 BIT(2)
|
|
#define XGBE_PHY_PORT_SPEED_10000 BIT(3)
|
|
|
|
#define XGBE_MUTEX_RELEASE 0x80000000
|
|
|
|
#define XGBE_SFP_DIRECT 7
|
|
|
|
/* I2C target addresses */
|
|
#define XGBE_SFP_SERIAL_ID_ADDRESS 0x50
|
|
#define XGBE_SFP_DIAG_INFO_ADDRESS 0x51
|
|
#define XGBE_SFP_PHY_ADDRESS 0x56
|
|
#define XGBE_GPIO_ADDRESS_PCA9555 0x20
|
|
|
|
/* SFP sideband signal indicators */
|
|
#define XGBE_GPIO_NO_TX_FAULT BIT(0)
|
|
#define XGBE_GPIO_NO_RATE_SELECT BIT(1)
|
|
#define XGBE_GPIO_NO_MOD_ABSENT BIT(2)
|
|
#define XGBE_GPIO_NO_RX_LOS BIT(3)
|
|
|
|
/* Rate-change complete wait/retry count */
|
|
#define XGBE_RATECHANGE_COUNT 500
|
|
|
|
enum xgbe_port_mode {
|
|
XGBE_PORT_MODE_RSVD = 0,
|
|
XGBE_PORT_MODE_BACKPLANE,
|
|
XGBE_PORT_MODE_BACKPLANE_2500,
|
|
XGBE_PORT_MODE_1000BASE_T,
|
|
XGBE_PORT_MODE_1000BASE_X,
|
|
XGBE_PORT_MODE_NBASE_T,
|
|
XGBE_PORT_MODE_10GBASE_T,
|
|
XGBE_PORT_MODE_10GBASE_R,
|
|
XGBE_PORT_MODE_SFP,
|
|
XGBE_PORT_MODE_MAX,
|
|
};
|
|
|
|
enum xgbe_conn_type {
|
|
XGBE_CONN_TYPE_NONE = 0,
|
|
XGBE_CONN_TYPE_SFP,
|
|
XGBE_CONN_TYPE_MDIO,
|
|
XGBE_CONN_TYPE_RSVD1,
|
|
XGBE_CONN_TYPE_BACKPLANE,
|
|
XGBE_CONN_TYPE_MAX,
|
|
};
|
|
|
|
/* SFP/SFP+ related definitions */
|
|
enum xgbe_sfp_comm {
|
|
XGBE_SFP_COMM_DIRECT = 0,
|
|
XGBE_SFP_COMM_PCA9545,
|
|
};
|
|
|
|
enum xgbe_sfp_cable {
|
|
XGBE_SFP_CABLE_UNKNOWN = 0,
|
|
XGBE_SFP_CABLE_ACTIVE,
|
|
XGBE_SFP_CABLE_PASSIVE,
|
|
};
|
|
|
|
enum xgbe_sfp_base {
|
|
XGBE_SFP_BASE_UNKNOWN = 0,
|
|
XGBE_SFP_BASE_1000_T,
|
|
XGBE_SFP_BASE_1000_SX,
|
|
XGBE_SFP_BASE_1000_LX,
|
|
XGBE_SFP_BASE_1000_CX,
|
|
XGBE_SFP_BASE_10000_SR,
|
|
XGBE_SFP_BASE_10000_LR,
|
|
XGBE_SFP_BASE_10000_LRM,
|
|
XGBE_SFP_BASE_10000_ER,
|
|
XGBE_SFP_BASE_10000_CR,
|
|
};
|
|
|
|
enum xgbe_sfp_speed {
|
|
XGBE_SFP_SPEED_UNKNOWN = 0,
|
|
XGBE_SFP_SPEED_100_1000,
|
|
XGBE_SFP_SPEED_1000,
|
|
XGBE_SFP_SPEED_10000,
|
|
};
|
|
|
|
/* SFP Serial ID Base ID values relative to an offset of 0 */
|
|
#define XGBE_SFP_BASE_ID 0
|
|
#define XGBE_SFP_ID_SFP 0x03
|
|
|
|
#define XGBE_SFP_BASE_EXT_ID 1
|
|
#define XGBE_SFP_EXT_ID_SFP 0x04
|
|
|
|
#define XGBE_SFP_BASE_10GBE_CC 3
|
|
#define XGBE_SFP_BASE_10GBE_CC_SR BIT(4)
|
|
#define XGBE_SFP_BASE_10GBE_CC_LR BIT(5)
|
|
#define XGBE_SFP_BASE_10GBE_CC_LRM BIT(6)
|
|
#define XGBE_SFP_BASE_10GBE_CC_ER BIT(7)
|
|
|
|
#define XGBE_SFP_BASE_1GBE_CC 6
|
|
#define XGBE_SFP_BASE_1GBE_CC_SX BIT(0)
|
|
#define XGBE_SFP_BASE_1GBE_CC_LX BIT(1)
|
|
#define XGBE_SFP_BASE_1GBE_CC_CX BIT(2)
|
|
#define XGBE_SFP_BASE_1GBE_CC_T BIT(3)
|
|
|
|
#define XGBE_SFP_BASE_CABLE 8
|
|
#define XGBE_SFP_BASE_CABLE_PASSIVE BIT(2)
|
|
#define XGBE_SFP_BASE_CABLE_ACTIVE BIT(3)
|
|
|
|
#define XGBE_SFP_BASE_BR 12
|
|
#define XGBE_SFP_BASE_BR_1GBE_MIN 0x0a
|
|
#define XGBE_SFP_BASE_BR_1GBE_MAX 0x0d
|
|
#define XGBE_SFP_BASE_BR_10GBE_MIN 0x64
|
|
#define XGBE_SFP_BASE_BR_10GBE_MAX 0x68
|
|
|
|
#define XGBE_SFP_BASE_CU_CABLE_LEN 18
|
|
|
|
#define XGBE_SFP_BASE_VENDOR_NAME 20
|
|
#define XGBE_SFP_BASE_VENDOR_NAME_LEN 16
|
|
#define XGBE_SFP_BASE_VENDOR_PN 40
|
|
#define XGBE_SFP_BASE_VENDOR_PN_LEN 16
|
|
#define XGBE_SFP_BASE_VENDOR_REV 56
|
|
#define XGBE_SFP_BASE_VENDOR_REV_LEN 4
|
|
|
|
#define XGBE_SFP_BASE_CC 63
|
|
|
|
/* SFP Serial ID Extended ID values relative to an offset of 64 */
|
|
#define XGBE_SFP_BASE_VENDOR_SN 4
|
|
#define XGBE_SFP_BASE_VENDOR_SN_LEN 16
|
|
|
|
#define XGBE_SFP_EXTD_DIAG 28
|
|
#define XGBE_SFP_EXTD_DIAG_ADDR_CHANGE BIT(2)
|
|
|
|
#define XGBE_SFP_EXTD_SFF_8472 30
|
|
|
|
#define XGBE_SFP_EXTD_CC 31
|
|
|
|
struct xgbe_sfp_eeprom {
|
|
u8 base[64];
|
|
u8 extd[32];
|
|
u8 vendor[32];
|
|
};
|
|
|
|
#define XGBE_BEL_FUSE_VENDOR "BEL-FUSE "
|
|
#define XGBE_BEL_FUSE_PARTNO "1GBT-SFP06 "
|
|
|
|
struct xgbe_sfp_ascii {
|
|
union {
|
|
char vendor[XGBE_SFP_BASE_VENDOR_NAME_LEN + 1];
|
|
char partno[XGBE_SFP_BASE_VENDOR_PN_LEN + 1];
|
|
char rev[XGBE_SFP_BASE_VENDOR_REV_LEN + 1];
|
|
char serno[XGBE_SFP_BASE_VENDOR_SN_LEN + 1];
|
|
} u;
|
|
};
|
|
|
|
/* MDIO PHY reset types */
|
|
enum xgbe_mdio_reset {
|
|
XGBE_MDIO_RESET_NONE = 0,
|
|
XGBE_MDIO_RESET_I2C_GPIO,
|
|
XGBE_MDIO_RESET_INT_GPIO,
|
|
XGBE_MDIO_RESET_MAX,
|
|
};
|
|
|
|
/* Re-driver related definitions */
|
|
enum xgbe_phy_redrv_if {
|
|
XGBE_PHY_REDRV_IF_MDIO = 0,
|
|
XGBE_PHY_REDRV_IF_I2C,
|
|
XGBE_PHY_REDRV_IF_MAX,
|
|
};
|
|
|
|
enum xgbe_phy_redrv_model {
|
|
XGBE_PHY_REDRV_MODEL_4223 = 0,
|
|
XGBE_PHY_REDRV_MODEL_4227,
|
|
XGBE_PHY_REDRV_MODEL_MAX,
|
|
};
|
|
|
|
enum xgbe_phy_redrv_mode {
|
|
XGBE_PHY_REDRV_MODE_CX = 5,
|
|
XGBE_PHY_REDRV_MODE_SR = 9,
|
|
};
|
|
|
|
#define XGBE_PHY_REDRV_MODE_REG 0x12b0
|
|
|
|
/* PHY related configuration information */
|
|
struct xgbe_phy_data {
|
|
enum xgbe_port_mode port_mode;
|
|
|
|
unsigned int port_id;
|
|
|
|
unsigned int port_speeds;
|
|
|
|
enum xgbe_conn_type conn_type;
|
|
|
|
enum xgbe_mode cur_mode;
|
|
enum xgbe_mode start_mode;
|
|
|
|
unsigned int rrc_count;
|
|
|
|
unsigned int mdio_addr;
|
|
|
|
unsigned int comm_owned;
|
|
|
|
/* SFP Support */
|
|
enum xgbe_sfp_comm sfp_comm;
|
|
unsigned int sfp_mux_address;
|
|
unsigned int sfp_mux_channel;
|
|
|
|
unsigned int sfp_gpio_address;
|
|
unsigned int sfp_gpio_mask;
|
|
unsigned int sfp_gpio_rx_los;
|
|
unsigned int sfp_gpio_tx_fault;
|
|
unsigned int sfp_gpio_mod_absent;
|
|
unsigned int sfp_gpio_rate_select;
|
|
|
|
unsigned int sfp_rx_los;
|
|
unsigned int sfp_tx_fault;
|
|
unsigned int sfp_mod_absent;
|
|
unsigned int sfp_diags;
|
|
unsigned int sfp_changed;
|
|
unsigned int sfp_phy_avail;
|
|
unsigned int sfp_cable_len;
|
|
enum xgbe_sfp_base sfp_base;
|
|
enum xgbe_sfp_cable sfp_cable;
|
|
enum xgbe_sfp_speed sfp_speed;
|
|
struct xgbe_sfp_eeprom sfp_eeprom;
|
|
|
|
/* External PHY support */
|
|
enum xgbe_mdio_mode phydev_mode;
|
|
struct mii_bus *mii;
|
|
struct phy_device *phydev;
|
|
enum xgbe_mdio_reset mdio_reset;
|
|
unsigned int mdio_reset_addr;
|
|
unsigned int mdio_reset_gpio;
|
|
|
|
/* Re-driver support */
|
|
unsigned int redrv;
|
|
unsigned int redrv_if;
|
|
unsigned int redrv_addr;
|
|
unsigned int redrv_lane;
|
|
unsigned int redrv_model;
|
|
};
|
|
|
|
/* I2C, MDIO and GPIO lines are muxed, so only one device at a time */
|
|
static DEFINE_MUTEX(xgbe_phy_comm_lock);
|
|
|
|
static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata);
|
|
|
|
static int xgbe_phy_i2c_xfer(struct xgbe_prv_data *pdata,
|
|
struct xgbe_i2c_op *i2c_op)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
/* Be sure we own the bus */
|
|
if (WARN_ON(!phy_data->comm_owned))
|
|
return -EIO;
|
|
|
|
return pdata->i2c_if.i2c_xfer(pdata, i2c_op);
|
|
}
|
|
|
|
static int xgbe_phy_redrv_write(struct xgbe_prv_data *pdata, unsigned int reg,
|
|
unsigned int val)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
struct xgbe_i2c_op i2c_op;
|
|
__be16 *redrv_val;
|
|
u8 redrv_data[5], csum;
|
|
unsigned int i, retry;
|
|
int ret;
|
|
|
|
/* High byte of register contains read/write indicator */
|
|
redrv_data[0] = ((reg >> 8) & 0xff) << 1;
|
|
redrv_data[1] = reg & 0xff;
|
|
redrv_val = (__be16 *)&redrv_data[2];
|
|
*redrv_val = cpu_to_be16(val);
|
|
|
|
/* Calculate 1 byte checksum */
|
|
csum = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
csum += redrv_data[i];
|
|
if (redrv_data[i] > csum)
|
|
csum++;
|
|
}
|
|
redrv_data[4] = ~csum;
|
|
|
|
retry = 1;
|
|
again1:
|
|
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
|
|
i2c_op.target = phy_data->redrv_addr;
|
|
i2c_op.len = sizeof(redrv_data);
|
|
i2c_op.buf = redrv_data;
|
|
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
|
|
if (ret) {
|
|
if ((ret == -EAGAIN) && retry--)
|
|
goto again1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
retry = 1;
|
|
again2:
|
|
i2c_op.cmd = XGBE_I2C_CMD_READ;
|
|
i2c_op.target = phy_data->redrv_addr;
|
|
i2c_op.len = 1;
|
|
i2c_op.buf = redrv_data;
|
|
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
|
|
if (ret) {
|
|
if ((ret == -EAGAIN) && retry--)
|
|
goto again2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
if (redrv_data[0] != 0xff) {
|
|
netif_dbg(pdata, drv, pdata->netdev,
|
|
"Redriver write checksum error\n");
|
|
ret = -EIO;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xgbe_phy_i2c_write(struct xgbe_prv_data *pdata, unsigned int target,
|
|
void *val, unsigned int val_len)
|
|
{
|
|
struct xgbe_i2c_op i2c_op;
|
|
int retry, ret;
|
|
|
|
retry = 1;
|
|
again:
|
|
/* Write the specfied register */
|
|
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
|
|
i2c_op.target = target;
|
|
i2c_op.len = val_len;
|
|
i2c_op.buf = val;
|
|
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
|
|
if ((ret == -EAGAIN) && retry--)
|
|
goto again;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xgbe_phy_i2c_read(struct xgbe_prv_data *pdata, unsigned int target,
|
|
void *reg, unsigned int reg_len,
|
|
void *val, unsigned int val_len)
|
|
{
|
|
struct xgbe_i2c_op i2c_op;
|
|
int retry, ret;
|
|
|
|
retry = 1;
|
|
again1:
|
|
/* Set the specified register to read */
|
|
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
|
|
i2c_op.target = target;
|
|
i2c_op.len = reg_len;
|
|
i2c_op.buf = reg;
|
|
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
|
|
if (ret) {
|
|
if ((ret == -EAGAIN) && retry--)
|
|
goto again1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
retry = 1;
|
|
again2:
|
|
/* Read the specfied register */
|
|
i2c_op.cmd = XGBE_I2C_CMD_READ;
|
|
i2c_op.target = target;
|
|
i2c_op.len = val_len;
|
|
i2c_op.buf = val;
|
|
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
|
|
if ((ret == -EAGAIN) && retry--)
|
|
goto again2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xgbe_phy_sfp_put_mux(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
struct xgbe_i2c_op i2c_op;
|
|
u8 mux_channel;
|
|
|
|
if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT)
|
|
return 0;
|
|
|
|
/* Select no mux channels */
|
|
mux_channel = 0;
|
|
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
|
|
i2c_op.target = phy_data->sfp_mux_address;
|
|
i2c_op.len = sizeof(mux_channel);
|
|
i2c_op.buf = &mux_channel;
|
|
|
|
return xgbe_phy_i2c_xfer(pdata, &i2c_op);
|
|
}
|
|
|
|
static int xgbe_phy_sfp_get_mux(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
struct xgbe_i2c_op i2c_op;
|
|
u8 mux_channel;
|
|
|
|
if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT)
|
|
return 0;
|
|
|
|
/* Select desired mux channel */
|
|
mux_channel = 1 << phy_data->sfp_mux_channel;
|
|
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
|
|
i2c_op.target = phy_data->sfp_mux_address;
|
|
i2c_op.len = sizeof(mux_channel);
|
|
i2c_op.buf = &mux_channel;
|
|
|
|
return xgbe_phy_i2c_xfer(pdata, &i2c_op);
|
|
}
|
|
|
|
static void xgbe_phy_put_comm_ownership(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
phy_data->comm_owned = 0;
|
|
|
|
mutex_unlock(&xgbe_phy_comm_lock);
|
|
}
|
|
|
|
static int xgbe_phy_get_comm_ownership(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned long timeout;
|
|
unsigned int mutex_id;
|
|
|
|
if (phy_data->comm_owned)
|
|
return 0;
|
|
|
|
/* The I2C and MDIO/GPIO bus is multiplexed between multiple devices,
|
|
* the driver needs to take the software mutex and then the hardware
|
|
* mutexes before being able to use the busses.
|
|
*/
|
|
mutex_lock(&xgbe_phy_comm_lock);
|
|
|
|
/* Clear the mutexes */
|
|
XP_IOWRITE(pdata, XP_I2C_MUTEX, XGBE_MUTEX_RELEASE);
|
|
XP_IOWRITE(pdata, XP_MDIO_MUTEX, XGBE_MUTEX_RELEASE);
|
|
|
|
/* Mutex formats are the same for I2C and MDIO/GPIO */
|
|
mutex_id = 0;
|
|
XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ID, phy_data->port_id);
|
|
XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ACTIVE, 1);
|
|
|
|
timeout = jiffies + (5 * HZ);
|
|
while (time_before(jiffies, timeout)) {
|
|
/* Must be all zeroes in order to obtain the mutex */
|
|
if (XP_IOREAD(pdata, XP_I2C_MUTEX) ||
|
|
XP_IOREAD(pdata, XP_MDIO_MUTEX)) {
|
|
usleep_range(100, 200);
|
|
continue;
|
|
}
|
|
|
|
/* Obtain the mutex */
|
|
XP_IOWRITE(pdata, XP_I2C_MUTEX, mutex_id);
|
|
XP_IOWRITE(pdata, XP_MDIO_MUTEX, mutex_id);
|
|
|
|
phy_data->comm_owned = 1;
|
|
return 0;
|
|
}
|
|
|
|
mutex_unlock(&xgbe_phy_comm_lock);
|
|
|
|
netdev_err(pdata->netdev, "unable to obtain hardware mutexes\n");
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int xgbe_phy_mdio_mii_write(struct xgbe_prv_data *pdata, int addr,
|
|
int reg, u16 val)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
if (reg & MII_ADDR_C45) {
|
|
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45)
|
|
return -ENOTSUPP;
|
|
} else {
|
|
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22)
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
return pdata->hw_if.write_ext_mii_regs(pdata, addr, reg, val);
|
|
}
|
|
|
|
static int xgbe_phy_i2c_mii_write(struct xgbe_prv_data *pdata, int reg, u16 val)
|
|
{
|
|
__be16 *mii_val;
|
|
u8 mii_data[3];
|
|
int ret;
|
|
|
|
ret = xgbe_phy_sfp_get_mux(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mii_data[0] = reg & 0xff;
|
|
mii_val = (__be16 *)&mii_data[1];
|
|
*mii_val = cpu_to_be16(val);
|
|
|
|
ret = xgbe_phy_i2c_write(pdata, XGBE_SFP_PHY_ADDRESS,
|
|
mii_data, sizeof(mii_data));
|
|
|
|
xgbe_phy_sfp_put_mux(pdata);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xgbe_phy_mii_write(struct mii_bus *mii, int addr, int reg, u16 val)
|
|
{
|
|
struct xgbe_prv_data *pdata = mii->priv;
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
int ret;
|
|
|
|
ret = xgbe_phy_get_comm_ownership(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (phy_data->conn_type == XGBE_CONN_TYPE_SFP)
|
|
ret = xgbe_phy_i2c_mii_write(pdata, reg, val);
|
|
else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO)
|
|
ret = xgbe_phy_mdio_mii_write(pdata, addr, reg, val);
|
|
else
|
|
ret = -ENOTSUPP;
|
|
|
|
xgbe_phy_put_comm_ownership(pdata);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xgbe_phy_mdio_mii_read(struct xgbe_prv_data *pdata, int addr,
|
|
int reg)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
if (reg & MII_ADDR_C45) {
|
|
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45)
|
|
return -ENOTSUPP;
|
|
} else {
|
|
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22)
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
return pdata->hw_if.read_ext_mii_regs(pdata, addr, reg);
|
|
}
|
|
|
|
static int xgbe_phy_i2c_mii_read(struct xgbe_prv_data *pdata, int reg)
|
|
{
|
|
__be16 mii_val;
|
|
u8 mii_reg;
|
|
int ret;
|
|
|
|
ret = xgbe_phy_sfp_get_mux(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mii_reg = reg;
|
|
ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_PHY_ADDRESS,
|
|
&mii_reg, sizeof(mii_reg),
|
|
&mii_val, sizeof(mii_val));
|
|
if (!ret)
|
|
ret = be16_to_cpu(mii_val);
|
|
|
|
xgbe_phy_sfp_put_mux(pdata);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xgbe_phy_mii_read(struct mii_bus *mii, int addr, int reg)
|
|
{
|
|
struct xgbe_prv_data *pdata = mii->priv;
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
int ret;
|
|
|
|
ret = xgbe_phy_get_comm_ownership(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (phy_data->conn_type == XGBE_CONN_TYPE_SFP)
|
|
ret = xgbe_phy_i2c_mii_read(pdata, reg);
|
|
else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO)
|
|
ret = xgbe_phy_mdio_mii_read(pdata, addr, reg);
|
|
else
|
|
ret = -ENOTSUPP;
|
|
|
|
xgbe_phy_put_comm_ownership(pdata);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void xgbe_phy_sfp_phy_settings(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
if (!phy_data->sfp_mod_absent && !phy_data->sfp_changed)
|
|
return;
|
|
|
|
pdata->phy.supported &= ~SUPPORTED_Autoneg;
|
|
pdata->phy.supported &= ~(SUPPORTED_Pause | SUPPORTED_Asym_Pause);
|
|
pdata->phy.supported &= ~SUPPORTED_TP;
|
|
pdata->phy.supported &= ~SUPPORTED_FIBRE;
|
|
pdata->phy.supported &= ~SUPPORTED_100baseT_Full;
|
|
pdata->phy.supported &= ~SUPPORTED_1000baseT_Full;
|
|
pdata->phy.supported &= ~SUPPORTED_10000baseT_Full;
|
|
|
|
if (phy_data->sfp_mod_absent) {
|
|
pdata->phy.speed = SPEED_UNKNOWN;
|
|
pdata->phy.duplex = DUPLEX_UNKNOWN;
|
|
pdata->phy.autoneg = AUTONEG_ENABLE;
|
|
pdata->phy.pause_autoneg = AUTONEG_ENABLE;
|
|
|
|
pdata->phy.supported |= SUPPORTED_Autoneg;
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
pdata->phy.supported |= SUPPORTED_TP;
|
|
pdata->phy.supported |= SUPPORTED_FIBRE;
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100)
|
|
pdata->phy.supported |= SUPPORTED_100baseT_Full;
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
|
|
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)
|
|
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
|
|
|
|
pdata->phy.advertising = pdata->phy.supported;
|
|
|
|
return;
|
|
}
|
|
|
|
switch (phy_data->sfp_base) {
|
|
case XGBE_SFP_BASE_1000_T:
|
|
case XGBE_SFP_BASE_1000_SX:
|
|
case XGBE_SFP_BASE_1000_LX:
|
|
case XGBE_SFP_BASE_1000_CX:
|
|
pdata->phy.speed = SPEED_UNKNOWN;
|
|
pdata->phy.duplex = DUPLEX_UNKNOWN;
|
|
pdata->phy.autoneg = AUTONEG_ENABLE;
|
|
pdata->phy.pause_autoneg = AUTONEG_ENABLE;
|
|
pdata->phy.supported |= SUPPORTED_Autoneg;
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
break;
|
|
case XGBE_SFP_BASE_10000_SR:
|
|
case XGBE_SFP_BASE_10000_LR:
|
|
case XGBE_SFP_BASE_10000_LRM:
|
|
case XGBE_SFP_BASE_10000_ER:
|
|
case XGBE_SFP_BASE_10000_CR:
|
|
pdata->phy.speed = SPEED_10000;
|
|
pdata->phy.duplex = DUPLEX_FULL;
|
|
pdata->phy.autoneg = AUTONEG_DISABLE;
|
|
pdata->phy.pause_autoneg = AUTONEG_DISABLE;
|
|
break;
|
|
default:
|
|
pdata->phy.speed = SPEED_UNKNOWN;
|
|
pdata->phy.duplex = DUPLEX_UNKNOWN;
|
|
pdata->phy.autoneg = AUTONEG_DISABLE;
|
|
pdata->phy.pause_autoneg = AUTONEG_DISABLE;
|
|
break;
|
|
}
|
|
|
|
switch (phy_data->sfp_base) {
|
|
case XGBE_SFP_BASE_1000_T:
|
|
case XGBE_SFP_BASE_1000_CX:
|
|
case XGBE_SFP_BASE_10000_CR:
|
|
pdata->phy.supported |= SUPPORTED_TP;
|
|
break;
|
|
default:
|
|
pdata->phy.supported |= SUPPORTED_FIBRE;
|
|
}
|
|
|
|
switch (phy_data->sfp_speed) {
|
|
case XGBE_SFP_SPEED_100_1000:
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100)
|
|
pdata->phy.supported |= SUPPORTED_100baseT_Full;
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
|
|
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
|
|
break;
|
|
case XGBE_SFP_SPEED_1000:
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
|
|
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
|
|
break;
|
|
case XGBE_SFP_SPEED_10000:
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)
|
|
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
|
|
break;
|
|
default:
|
|
/* Choose the fastest supported speed */
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)
|
|
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
|
|
else if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
|
|
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
|
|
else if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100)
|
|
pdata->phy.supported |= SUPPORTED_100baseT_Full;
|
|
}
|
|
|
|
pdata->phy.advertising = pdata->phy.supported;
|
|
}
|
|
|
|
static bool xgbe_phy_sfp_bit_rate(struct xgbe_sfp_eeprom *sfp_eeprom,
|
|
enum xgbe_sfp_speed sfp_speed)
|
|
{
|
|
u8 *sfp_base, min, max;
|
|
|
|
sfp_base = sfp_eeprom->base;
|
|
|
|
switch (sfp_speed) {
|
|
case XGBE_SFP_SPEED_1000:
|
|
min = XGBE_SFP_BASE_BR_1GBE_MIN;
|
|
max = XGBE_SFP_BASE_BR_1GBE_MAX;
|
|
break;
|
|
case XGBE_SFP_SPEED_10000:
|
|
min = XGBE_SFP_BASE_BR_10GBE_MIN;
|
|
max = XGBE_SFP_BASE_BR_10GBE_MAX;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return ((sfp_base[XGBE_SFP_BASE_BR] >= min) &&
|
|
(sfp_base[XGBE_SFP_BASE_BR] <= max));
|
|
}
|
|
|
|
static void xgbe_phy_free_phy_device(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
if (phy_data->phydev) {
|
|
phy_detach(phy_data->phydev);
|
|
phy_device_remove(phy_data->phydev);
|
|
phy_device_free(phy_data->phydev);
|
|
phy_data->phydev = NULL;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_finisar_phy_quirks(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned int phy_id = phy_data->phydev->phy_id;
|
|
|
|
if ((phy_id & 0xfffffff0) != 0x01ff0cc0)
|
|
return false;
|
|
|
|
/* Enable Base-T AN */
|
|
phy_write(phy_data->phydev, 0x16, 0x0001);
|
|
phy_write(phy_data->phydev, 0x00, 0x9140);
|
|
phy_write(phy_data->phydev, 0x16, 0x0000);
|
|
|
|
/* Enable SGMII at 100Base-T/1000Base-T Full Duplex */
|
|
phy_write(phy_data->phydev, 0x1b, 0x9084);
|
|
phy_write(phy_data->phydev, 0x09, 0x0e00);
|
|
phy_write(phy_data->phydev, 0x00, 0x8140);
|
|
phy_write(phy_data->phydev, 0x04, 0x0d01);
|
|
phy_write(phy_data->phydev, 0x00, 0x9140);
|
|
|
|
phy_data->phydev->supported = PHY_GBIT_FEATURES;
|
|
phy_data->phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
phy_data->phydev->advertising = phy_data->phydev->supported;
|
|
|
|
netif_dbg(pdata, drv, pdata->netdev,
|
|
"Finisar PHY quirk in place\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
static void xgbe_phy_external_phy_quirks(struct xgbe_prv_data *pdata)
|
|
{
|
|
if (xgbe_phy_finisar_phy_quirks(pdata))
|
|
return;
|
|
}
|
|
|
|
static int xgbe_phy_find_phy_device(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
struct phy_device *phydev;
|
|
int ret;
|
|
|
|
/* If we already have a PHY, just return */
|
|
if (phy_data->phydev)
|
|
return 0;
|
|
|
|
/* Check for the use of an external PHY */
|
|
if (phy_data->phydev_mode == XGBE_MDIO_MODE_NONE)
|
|
return 0;
|
|
|
|
/* For SFP, only use an external PHY if available */
|
|
if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) &&
|
|
!phy_data->sfp_phy_avail)
|
|
return 0;
|
|
|
|
/* Set the proper MDIO mode for the PHY */
|
|
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr,
|
|
phy_data->phydev_mode);
|
|
if (ret) {
|
|
netdev_err(pdata->netdev,
|
|
"mdio port/clause not compatible (%u/%u)\n",
|
|
phy_data->mdio_addr, phy_data->phydev_mode);
|
|
return ret;
|
|
}
|
|
|
|
/* Create and connect to the PHY device */
|
|
phydev = get_phy_device(phy_data->mii, phy_data->mdio_addr,
|
|
(phy_data->phydev_mode == XGBE_MDIO_MODE_CL45));
|
|
if (IS_ERR(phydev)) {
|
|
netdev_err(pdata->netdev, "get_phy_device failed\n");
|
|
return -ENODEV;
|
|
}
|
|
netif_dbg(pdata, drv, pdata->netdev, "external PHY id is %#010x\n",
|
|
phydev->phy_id);
|
|
|
|
/*TODO: If c45, add request_module based on one of the MMD ids? */
|
|
|
|
ret = phy_device_register(phydev);
|
|
if (ret) {
|
|
netdev_err(pdata->netdev, "phy_device_register failed\n");
|
|
phy_device_free(phydev);
|
|
return ret;
|
|
}
|
|
|
|
ret = phy_attach_direct(pdata->netdev, phydev, phydev->dev_flags,
|
|
PHY_INTERFACE_MODE_SGMII);
|
|
if (ret) {
|
|
netdev_err(pdata->netdev, "phy_attach_direct failed\n");
|
|
phy_device_remove(phydev);
|
|
phy_device_free(phydev);
|
|
return ret;
|
|
}
|
|
phy_data->phydev = phydev;
|
|
|
|
xgbe_phy_external_phy_quirks(pdata);
|
|
phydev->advertising &= pdata->phy.advertising;
|
|
|
|
phy_start_aneg(phy_data->phydev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void xgbe_phy_sfp_external_phy(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
int ret;
|
|
|
|
if (!phy_data->sfp_changed)
|
|
return;
|
|
|
|
phy_data->sfp_phy_avail = 0;
|
|
|
|
if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T)
|
|
return;
|
|
|
|
/* Check access to the PHY by reading CTRL1 */
|
|
ret = xgbe_phy_i2c_mii_read(pdata, MII_BMCR);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
/* Successfully accessed the PHY */
|
|
phy_data->sfp_phy_avail = 1;
|
|
}
|
|
|
|
static bool xgbe_phy_belfuse_parse_quirks(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom;
|
|
|
|
if (memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME],
|
|
XGBE_BEL_FUSE_VENDOR, XGBE_SFP_BASE_VENDOR_NAME_LEN))
|
|
return false;
|
|
|
|
if (!memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN],
|
|
XGBE_BEL_FUSE_PARTNO, XGBE_SFP_BASE_VENDOR_PN_LEN)) {
|
|
phy_data->sfp_base = XGBE_SFP_BASE_1000_SX;
|
|
phy_data->sfp_cable = XGBE_SFP_CABLE_ACTIVE;
|
|
phy_data->sfp_speed = XGBE_SFP_SPEED_1000;
|
|
if (phy_data->sfp_changed)
|
|
netif_dbg(pdata, drv, pdata->netdev,
|
|
"Bel-Fuse SFP quirk in place\n");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool xgbe_phy_sfp_parse_quirks(struct xgbe_prv_data *pdata)
|
|
{
|
|
if (xgbe_phy_belfuse_parse_quirks(pdata))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void xgbe_phy_sfp_parse_eeprom(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom;
|
|
u8 *sfp_base;
|
|
|
|
sfp_base = sfp_eeprom->base;
|
|
|
|
if (sfp_base[XGBE_SFP_BASE_ID] != XGBE_SFP_ID_SFP)
|
|
return;
|
|
|
|
if (sfp_base[XGBE_SFP_BASE_EXT_ID] != XGBE_SFP_EXT_ID_SFP)
|
|
return;
|
|
|
|
if (xgbe_phy_sfp_parse_quirks(pdata))
|
|
return;
|
|
|
|
/* Assume ACTIVE cable unless told it is PASSIVE */
|
|
if (sfp_base[XGBE_SFP_BASE_CABLE] & XGBE_SFP_BASE_CABLE_PASSIVE) {
|
|
phy_data->sfp_cable = XGBE_SFP_CABLE_PASSIVE;
|
|
phy_data->sfp_cable_len = sfp_base[XGBE_SFP_BASE_CU_CABLE_LEN];
|
|
} else {
|
|
phy_data->sfp_cable = XGBE_SFP_CABLE_ACTIVE;
|
|
}
|
|
|
|
/* Determine the type of SFP */
|
|
if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_SR)
|
|
phy_data->sfp_base = XGBE_SFP_BASE_10000_SR;
|
|
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LR)
|
|
phy_data->sfp_base = XGBE_SFP_BASE_10000_LR;
|
|
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LRM)
|
|
phy_data->sfp_base = XGBE_SFP_BASE_10000_LRM;
|
|
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_ER)
|
|
phy_data->sfp_base = XGBE_SFP_BASE_10000_ER;
|
|
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_SX)
|
|
phy_data->sfp_base = XGBE_SFP_BASE_1000_SX;
|
|
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_LX)
|
|
phy_data->sfp_base = XGBE_SFP_BASE_1000_LX;
|
|
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_CX)
|
|
phy_data->sfp_base = XGBE_SFP_BASE_1000_CX;
|
|
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_T)
|
|
phy_data->sfp_base = XGBE_SFP_BASE_1000_T;
|
|
else if ((phy_data->sfp_cable == XGBE_SFP_CABLE_PASSIVE) &&
|
|
xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_10000))
|
|
phy_data->sfp_base = XGBE_SFP_BASE_10000_CR;
|
|
|
|
switch (phy_data->sfp_base) {
|
|
case XGBE_SFP_BASE_1000_T:
|
|
phy_data->sfp_speed = XGBE_SFP_SPEED_100_1000;
|
|
break;
|
|
case XGBE_SFP_BASE_1000_SX:
|
|
case XGBE_SFP_BASE_1000_LX:
|
|
case XGBE_SFP_BASE_1000_CX:
|
|
phy_data->sfp_speed = XGBE_SFP_SPEED_1000;
|
|
break;
|
|
case XGBE_SFP_BASE_10000_SR:
|
|
case XGBE_SFP_BASE_10000_LR:
|
|
case XGBE_SFP_BASE_10000_LRM:
|
|
case XGBE_SFP_BASE_10000_ER:
|
|
case XGBE_SFP_BASE_10000_CR:
|
|
phy_data->sfp_speed = XGBE_SFP_SPEED_10000;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void xgbe_phy_sfp_eeprom_info(struct xgbe_prv_data *pdata,
|
|
struct xgbe_sfp_eeprom *sfp_eeprom)
|
|
{
|
|
struct xgbe_sfp_ascii sfp_ascii;
|
|
char *sfp_data = (char *)&sfp_ascii;
|
|
|
|
netif_dbg(pdata, drv, pdata->netdev, "SFP detected:\n");
|
|
memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME],
|
|
XGBE_SFP_BASE_VENDOR_NAME_LEN);
|
|
sfp_data[XGBE_SFP_BASE_VENDOR_NAME_LEN] = '\0';
|
|
netif_dbg(pdata, drv, pdata->netdev, " vendor: %s\n",
|
|
sfp_data);
|
|
|
|
memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN],
|
|
XGBE_SFP_BASE_VENDOR_PN_LEN);
|
|
sfp_data[XGBE_SFP_BASE_VENDOR_PN_LEN] = '\0';
|
|
netif_dbg(pdata, drv, pdata->netdev, " part number: %s\n",
|
|
sfp_data);
|
|
|
|
memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_REV],
|
|
XGBE_SFP_BASE_VENDOR_REV_LEN);
|
|
sfp_data[XGBE_SFP_BASE_VENDOR_REV_LEN] = '\0';
|
|
netif_dbg(pdata, drv, pdata->netdev, " revision level: %s\n",
|
|
sfp_data);
|
|
|
|
memcpy(sfp_data, &sfp_eeprom->extd[XGBE_SFP_BASE_VENDOR_SN],
|
|
XGBE_SFP_BASE_VENDOR_SN_LEN);
|
|
sfp_data[XGBE_SFP_BASE_VENDOR_SN_LEN] = '\0';
|
|
netif_dbg(pdata, drv, pdata->netdev, " serial number: %s\n",
|
|
sfp_data);
|
|
}
|
|
|
|
static bool xgbe_phy_sfp_verify_eeprom(u8 cc_in, u8 *buf, unsigned int len)
|
|
{
|
|
u8 cc;
|
|
|
|
for (cc = 0; len; buf++, len--)
|
|
cc += *buf;
|
|
|
|
return (cc == cc_in) ? true : false;
|
|
}
|
|
|
|
static int xgbe_phy_sfp_read_eeprom(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
struct xgbe_sfp_eeprom sfp_eeprom;
|
|
u8 eeprom_addr;
|
|
int ret;
|
|
|
|
ret = xgbe_phy_sfp_get_mux(pdata);
|
|
if (ret) {
|
|
dev_err_once(pdata->dev, "%s: I2C error setting SFP MUX\n",
|
|
netdev_name(pdata->netdev));
|
|
return ret;
|
|
}
|
|
|
|
/* Read the SFP serial ID eeprom */
|
|
eeprom_addr = 0;
|
|
ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_SERIAL_ID_ADDRESS,
|
|
&eeprom_addr, sizeof(eeprom_addr),
|
|
&sfp_eeprom, sizeof(sfp_eeprom));
|
|
if (ret) {
|
|
dev_err_once(pdata->dev, "%s: I2C error reading SFP EEPROM\n",
|
|
netdev_name(pdata->netdev));
|
|
goto put;
|
|
}
|
|
|
|
/* Validate the contents read */
|
|
if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.base[XGBE_SFP_BASE_CC],
|
|
sfp_eeprom.base,
|
|
sizeof(sfp_eeprom.base) - 1)) {
|
|
ret = -EINVAL;
|
|
goto put;
|
|
}
|
|
|
|
if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.extd[XGBE_SFP_EXTD_CC],
|
|
sfp_eeprom.extd,
|
|
sizeof(sfp_eeprom.extd) - 1)) {
|
|
ret = -EINVAL;
|
|
goto put;
|
|
}
|
|
|
|
/* Check for an added or changed SFP */
|
|
if (memcmp(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom))) {
|
|
phy_data->sfp_changed = 1;
|
|
|
|
if (netif_msg_drv(pdata))
|
|
xgbe_phy_sfp_eeprom_info(pdata, &sfp_eeprom);
|
|
|
|
memcpy(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom));
|
|
|
|
if (sfp_eeprom.extd[XGBE_SFP_EXTD_SFF_8472]) {
|
|
u8 diag_type = sfp_eeprom.extd[XGBE_SFP_EXTD_DIAG];
|
|
|
|
if (!(diag_type & XGBE_SFP_EXTD_DIAG_ADDR_CHANGE))
|
|
phy_data->sfp_diags = 1;
|
|
}
|
|
|
|
xgbe_phy_free_phy_device(pdata);
|
|
} else {
|
|
phy_data->sfp_changed = 0;
|
|
}
|
|
|
|
put:
|
|
xgbe_phy_sfp_put_mux(pdata);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void xgbe_phy_sfp_signals(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned int gpio_input;
|
|
u8 gpio_reg, gpio_ports[2];
|
|
int ret;
|
|
|
|
/* Read the input port registers */
|
|
gpio_reg = 0;
|
|
ret = xgbe_phy_i2c_read(pdata, phy_data->sfp_gpio_address,
|
|
&gpio_reg, sizeof(gpio_reg),
|
|
gpio_ports, sizeof(gpio_ports));
|
|
if (ret) {
|
|
dev_err_once(pdata->dev, "%s: I2C error reading SFP GPIOs\n",
|
|
netdev_name(pdata->netdev));
|
|
return;
|
|
}
|
|
|
|
gpio_input = (gpio_ports[1] << 8) | gpio_ports[0];
|
|
|
|
if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_MOD_ABSENT) {
|
|
/* No GPIO, just assume the module is present for now */
|
|
phy_data->sfp_mod_absent = 0;
|
|
} else {
|
|
if (!(gpio_input & (1 << phy_data->sfp_gpio_mod_absent)))
|
|
phy_data->sfp_mod_absent = 0;
|
|
}
|
|
|
|
if (!(phy_data->sfp_gpio_mask & XGBE_GPIO_NO_RX_LOS) &&
|
|
(gpio_input & (1 << phy_data->sfp_gpio_rx_los)))
|
|
phy_data->sfp_rx_los = 1;
|
|
|
|
if (!(phy_data->sfp_gpio_mask & XGBE_GPIO_NO_TX_FAULT) &&
|
|
(gpio_input & (1 << phy_data->sfp_gpio_tx_fault)))
|
|
phy_data->sfp_tx_fault = 1;
|
|
}
|
|
|
|
static void xgbe_phy_sfp_mod_absent(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
xgbe_phy_free_phy_device(pdata);
|
|
|
|
phy_data->sfp_mod_absent = 1;
|
|
phy_data->sfp_phy_avail = 0;
|
|
memset(&phy_data->sfp_eeprom, 0, sizeof(phy_data->sfp_eeprom));
|
|
}
|
|
|
|
static void xgbe_phy_sfp_reset(struct xgbe_phy_data *phy_data)
|
|
{
|
|
phy_data->sfp_rx_los = 0;
|
|
phy_data->sfp_tx_fault = 0;
|
|
phy_data->sfp_mod_absent = 1;
|
|
phy_data->sfp_diags = 0;
|
|
phy_data->sfp_base = XGBE_SFP_BASE_UNKNOWN;
|
|
phy_data->sfp_cable = XGBE_SFP_CABLE_UNKNOWN;
|
|
phy_data->sfp_speed = XGBE_SFP_SPEED_UNKNOWN;
|
|
}
|
|
|
|
static void xgbe_phy_sfp_detect(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
int ret;
|
|
|
|
/* Reset the SFP signals and info */
|
|
xgbe_phy_sfp_reset(phy_data);
|
|
|
|
ret = xgbe_phy_get_comm_ownership(pdata);
|
|
if (ret)
|
|
return;
|
|
|
|
/* Read the SFP signals and check for module presence */
|
|
xgbe_phy_sfp_signals(pdata);
|
|
if (phy_data->sfp_mod_absent) {
|
|
xgbe_phy_sfp_mod_absent(pdata);
|
|
goto put;
|
|
}
|
|
|
|
ret = xgbe_phy_sfp_read_eeprom(pdata);
|
|
if (ret) {
|
|
/* Treat any error as if there isn't an SFP plugged in */
|
|
xgbe_phy_sfp_reset(phy_data);
|
|
xgbe_phy_sfp_mod_absent(pdata);
|
|
goto put;
|
|
}
|
|
|
|
xgbe_phy_sfp_parse_eeprom(pdata);
|
|
|
|
xgbe_phy_sfp_external_phy(pdata);
|
|
|
|
put:
|
|
xgbe_phy_sfp_phy_settings(pdata);
|
|
|
|
xgbe_phy_put_comm_ownership(pdata);
|
|
}
|
|
|
|
static void xgbe_phy_phydev_flowctrl(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
u16 lcl_adv = 0, rmt_adv = 0;
|
|
u8 fc;
|
|
|
|
pdata->phy.tx_pause = 0;
|
|
pdata->phy.rx_pause = 0;
|
|
|
|
if (!phy_data->phydev)
|
|
return;
|
|
|
|
if (phy_data->phydev->advertising & ADVERTISED_Pause)
|
|
lcl_adv |= ADVERTISE_PAUSE_CAP;
|
|
if (phy_data->phydev->advertising & ADVERTISED_Asym_Pause)
|
|
lcl_adv |= ADVERTISE_PAUSE_ASYM;
|
|
|
|
if (phy_data->phydev->pause) {
|
|
pdata->phy.lp_advertising |= ADVERTISED_Pause;
|
|
rmt_adv |= LPA_PAUSE_CAP;
|
|
}
|
|
if (phy_data->phydev->asym_pause) {
|
|
pdata->phy.lp_advertising |= ADVERTISED_Asym_Pause;
|
|
rmt_adv |= LPA_PAUSE_ASYM;
|
|
}
|
|
|
|
fc = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
|
|
if (fc & FLOW_CTRL_TX)
|
|
pdata->phy.tx_pause = 1;
|
|
if (fc & FLOW_CTRL_RX)
|
|
pdata->phy.rx_pause = 1;
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_an37_sgmii_outcome(struct xgbe_prv_data *pdata)
|
|
{
|
|
enum xgbe_mode mode;
|
|
|
|
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
|
|
pdata->phy.lp_advertising |= ADVERTISED_TP;
|
|
|
|
/* Use external PHY to determine flow control */
|
|
if (pdata->phy.pause_autoneg)
|
|
xgbe_phy_phydev_flowctrl(pdata);
|
|
|
|
switch (pdata->an_status & XGBE_SGMII_AN_LINK_SPEED) {
|
|
case XGBE_SGMII_AN_LINK_SPEED_100:
|
|
if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) {
|
|
pdata->phy.lp_advertising |= ADVERTISED_100baseT_Full;
|
|
mode = XGBE_MODE_SGMII_100;
|
|
} else {
|
|
/* Half-duplex not supported */
|
|
pdata->phy.lp_advertising |= ADVERTISED_100baseT_Half;
|
|
mode = XGBE_MODE_UNKNOWN;
|
|
}
|
|
break;
|
|
case XGBE_SGMII_AN_LINK_SPEED_1000:
|
|
if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) {
|
|
pdata->phy.lp_advertising |= ADVERTISED_1000baseT_Full;
|
|
mode = XGBE_MODE_SGMII_1000;
|
|
} else {
|
|
/* Half-duplex not supported */
|
|
pdata->phy.lp_advertising |= ADVERTISED_1000baseT_Half;
|
|
mode = XGBE_MODE_UNKNOWN;
|
|
}
|
|
break;
|
|
default:
|
|
mode = XGBE_MODE_UNKNOWN;
|
|
}
|
|
|
|
return mode;
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_an37_outcome(struct xgbe_prv_data *pdata)
|
|
{
|
|
enum xgbe_mode mode;
|
|
unsigned int ad_reg, lp_reg;
|
|
|
|
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
|
|
pdata->phy.lp_advertising |= ADVERTISED_FIBRE;
|
|
|
|
/* Compare Advertisement and Link Partner register */
|
|
ad_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_ADVERTISE);
|
|
lp_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_LP_ABILITY);
|
|
if (lp_reg & 0x100)
|
|
pdata->phy.lp_advertising |= ADVERTISED_Pause;
|
|
if (lp_reg & 0x80)
|
|
pdata->phy.lp_advertising |= ADVERTISED_Asym_Pause;
|
|
|
|
if (pdata->phy.pause_autoneg) {
|
|
/* Set flow control based on auto-negotiation result */
|
|
pdata->phy.tx_pause = 0;
|
|
pdata->phy.rx_pause = 0;
|
|
|
|
if (ad_reg & lp_reg & 0x100) {
|
|
pdata->phy.tx_pause = 1;
|
|
pdata->phy.rx_pause = 1;
|
|
} else if (ad_reg & lp_reg & 0x80) {
|
|
if (ad_reg & 0x100)
|
|
pdata->phy.rx_pause = 1;
|
|
else if (lp_reg & 0x100)
|
|
pdata->phy.tx_pause = 1;
|
|
}
|
|
}
|
|
|
|
if (lp_reg & 0x40)
|
|
pdata->phy.lp_advertising |= ADVERTISED_1000baseT_Half;
|
|
if (lp_reg & 0x20)
|
|
pdata->phy.lp_advertising |= ADVERTISED_1000baseT_Full;
|
|
|
|
/* Half duplex is not supported */
|
|
ad_reg &= lp_reg;
|
|
mode = (ad_reg & 0x20) ? XGBE_MODE_X : XGBE_MODE_UNKNOWN;
|
|
|
|
return mode;
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_an73_redrv_outcome(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
enum xgbe_mode mode;
|
|
unsigned int ad_reg, lp_reg;
|
|
|
|
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
|
|
pdata->phy.lp_advertising |= ADVERTISED_Backplane;
|
|
|
|
/* Use external PHY to determine flow control */
|
|
if (pdata->phy.pause_autoneg)
|
|
xgbe_phy_phydev_flowctrl(pdata);
|
|
|
|
/* Compare Advertisement and Link Partner register 2 */
|
|
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
|
|
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
|
|
if (lp_reg & 0x80)
|
|
pdata->phy.lp_advertising |= ADVERTISED_10000baseKR_Full;
|
|
if (lp_reg & 0x20)
|
|
pdata->phy.lp_advertising |= ADVERTISED_1000baseKX_Full;
|
|
|
|
ad_reg &= lp_reg;
|
|
if (ad_reg & 0x80) {
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
mode = XGBE_MODE_KR;
|
|
break;
|
|
default:
|
|
mode = XGBE_MODE_SFI;
|
|
break;
|
|
}
|
|
} else if (ad_reg & 0x20) {
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
mode = XGBE_MODE_KX_1000;
|
|
break;
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
mode = XGBE_MODE_X;
|
|
break;
|
|
case XGBE_PORT_MODE_SFP:
|
|
switch (phy_data->sfp_base) {
|
|
case XGBE_SFP_BASE_1000_T:
|
|
if (phy_data->phydev &&
|
|
(phy_data->phydev->speed == SPEED_100))
|
|
mode = XGBE_MODE_SGMII_100;
|
|
else
|
|
mode = XGBE_MODE_SGMII_1000;
|
|
break;
|
|
case XGBE_SFP_BASE_1000_SX:
|
|
case XGBE_SFP_BASE_1000_LX:
|
|
case XGBE_SFP_BASE_1000_CX:
|
|
default:
|
|
mode = XGBE_MODE_X;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
if (phy_data->phydev &&
|
|
(phy_data->phydev->speed == SPEED_100))
|
|
mode = XGBE_MODE_SGMII_100;
|
|
else
|
|
mode = XGBE_MODE_SGMII_1000;
|
|
break;
|
|
}
|
|
} else {
|
|
mode = XGBE_MODE_UNKNOWN;
|
|
}
|
|
|
|
/* Compare Advertisement and Link Partner register 3 */
|
|
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
|
|
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
|
|
if (lp_reg & 0xc000)
|
|
pdata->phy.lp_advertising |= ADVERTISED_10000baseR_FEC;
|
|
|
|
return mode;
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_an73_outcome(struct xgbe_prv_data *pdata)
|
|
{
|
|
enum xgbe_mode mode;
|
|
unsigned int ad_reg, lp_reg;
|
|
|
|
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
|
|
pdata->phy.lp_advertising |= ADVERTISED_Backplane;
|
|
|
|
/* Compare Advertisement and Link Partner register 1 */
|
|
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
|
|
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA);
|
|
if (lp_reg & 0x400)
|
|
pdata->phy.lp_advertising |= ADVERTISED_Pause;
|
|
if (lp_reg & 0x800)
|
|
pdata->phy.lp_advertising |= ADVERTISED_Asym_Pause;
|
|
|
|
if (pdata->phy.pause_autoneg) {
|
|
/* Set flow control based on auto-negotiation result */
|
|
pdata->phy.tx_pause = 0;
|
|
pdata->phy.rx_pause = 0;
|
|
|
|
if (ad_reg & lp_reg & 0x400) {
|
|
pdata->phy.tx_pause = 1;
|
|
pdata->phy.rx_pause = 1;
|
|
} else if (ad_reg & lp_reg & 0x800) {
|
|
if (ad_reg & 0x400)
|
|
pdata->phy.rx_pause = 1;
|
|
else if (lp_reg & 0x400)
|
|
pdata->phy.tx_pause = 1;
|
|
}
|
|
}
|
|
|
|
/* Compare Advertisement and Link Partner register 2 */
|
|
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
|
|
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
|
|
if (lp_reg & 0x80)
|
|
pdata->phy.lp_advertising |= ADVERTISED_10000baseKR_Full;
|
|
if (lp_reg & 0x20)
|
|
pdata->phy.lp_advertising |= ADVERTISED_1000baseKX_Full;
|
|
|
|
ad_reg &= lp_reg;
|
|
if (ad_reg & 0x80)
|
|
mode = XGBE_MODE_KR;
|
|
else if (ad_reg & 0x20)
|
|
mode = XGBE_MODE_KX_1000;
|
|
else
|
|
mode = XGBE_MODE_UNKNOWN;
|
|
|
|
/* Compare Advertisement and Link Partner register 3 */
|
|
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
|
|
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
|
|
if (lp_reg & 0xc000)
|
|
pdata->phy.lp_advertising |= ADVERTISED_10000baseR_FEC;
|
|
|
|
return mode;
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_an_outcome(struct xgbe_prv_data *pdata)
|
|
{
|
|
switch (pdata->an_mode) {
|
|
case XGBE_AN_MODE_CL73:
|
|
return xgbe_phy_an73_outcome(pdata);
|
|
case XGBE_AN_MODE_CL73_REDRV:
|
|
return xgbe_phy_an73_redrv_outcome(pdata);
|
|
case XGBE_AN_MODE_CL37:
|
|
return xgbe_phy_an37_outcome(pdata);
|
|
case XGBE_AN_MODE_CL37_SGMII:
|
|
return xgbe_phy_an37_sgmii_outcome(pdata);
|
|
default:
|
|
return XGBE_MODE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static unsigned int xgbe_phy_an_advertising(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned int advertising;
|
|
|
|
/* Without a re-driver, just return current advertising */
|
|
if (!phy_data->redrv)
|
|
return pdata->phy.advertising;
|
|
|
|
/* With the KR re-driver we need to advertise a single speed */
|
|
advertising = pdata->phy.advertising;
|
|
advertising &= ~ADVERTISED_1000baseKX_Full;
|
|
advertising &= ~ADVERTISED_10000baseKR_Full;
|
|
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
advertising |= ADVERTISED_10000baseKR_Full;
|
|
break;
|
|
case XGBE_PORT_MODE_BACKPLANE_2500:
|
|
advertising |= ADVERTISED_1000baseKX_Full;
|
|
break;
|
|
case XGBE_PORT_MODE_1000BASE_T:
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
case XGBE_PORT_MODE_NBASE_T:
|
|
advertising |= ADVERTISED_1000baseKX_Full;
|
|
break;
|
|
case XGBE_PORT_MODE_10GBASE_T:
|
|
if (phy_data->phydev &&
|
|
(phy_data->phydev->speed == SPEED_10000))
|
|
advertising |= ADVERTISED_10000baseKR_Full;
|
|
else
|
|
advertising |= ADVERTISED_1000baseKX_Full;
|
|
break;
|
|
case XGBE_PORT_MODE_10GBASE_R:
|
|
advertising |= ADVERTISED_10000baseKR_Full;
|
|
break;
|
|
case XGBE_PORT_MODE_SFP:
|
|
switch (phy_data->sfp_base) {
|
|
case XGBE_SFP_BASE_1000_T:
|
|
case XGBE_SFP_BASE_1000_SX:
|
|
case XGBE_SFP_BASE_1000_LX:
|
|
case XGBE_SFP_BASE_1000_CX:
|
|
advertising |= ADVERTISED_1000baseKX_Full;
|
|
break;
|
|
default:
|
|
advertising |= ADVERTISED_10000baseKR_Full;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
advertising |= ADVERTISED_10000baseKR_Full;
|
|
break;
|
|
}
|
|
|
|
return advertising;
|
|
}
|
|
|
|
static int xgbe_phy_an_config(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
int ret;
|
|
|
|
ret = xgbe_phy_find_phy_device(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!phy_data->phydev)
|
|
return 0;
|
|
|
|
phy_data->phydev->autoneg = pdata->phy.autoneg;
|
|
phy_data->phydev->advertising = phy_data->phydev->supported &
|
|
pdata->phy.advertising;
|
|
|
|
if (pdata->phy.autoneg != AUTONEG_ENABLE) {
|
|
phy_data->phydev->speed = pdata->phy.speed;
|
|
phy_data->phydev->duplex = pdata->phy.duplex;
|
|
}
|
|
|
|
ret = phy_start_aneg(phy_data->phydev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static enum xgbe_an_mode xgbe_phy_an_sfp_mode(struct xgbe_phy_data *phy_data)
|
|
{
|
|
switch (phy_data->sfp_base) {
|
|
case XGBE_SFP_BASE_1000_T:
|
|
return XGBE_AN_MODE_CL37_SGMII;
|
|
case XGBE_SFP_BASE_1000_SX:
|
|
case XGBE_SFP_BASE_1000_LX:
|
|
case XGBE_SFP_BASE_1000_CX:
|
|
return XGBE_AN_MODE_CL37;
|
|
default:
|
|
return XGBE_AN_MODE_NONE;
|
|
}
|
|
}
|
|
|
|
static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
/* A KR re-driver will always require CL73 AN */
|
|
if (phy_data->redrv)
|
|
return XGBE_AN_MODE_CL73_REDRV;
|
|
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
return XGBE_AN_MODE_CL73;
|
|
case XGBE_PORT_MODE_BACKPLANE_2500:
|
|
return XGBE_AN_MODE_NONE;
|
|
case XGBE_PORT_MODE_1000BASE_T:
|
|
return XGBE_AN_MODE_CL37_SGMII;
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
return XGBE_AN_MODE_CL37;
|
|
case XGBE_PORT_MODE_NBASE_T:
|
|
return XGBE_AN_MODE_CL37_SGMII;
|
|
case XGBE_PORT_MODE_10GBASE_T:
|
|
return XGBE_AN_MODE_CL73;
|
|
case XGBE_PORT_MODE_10GBASE_R:
|
|
return XGBE_AN_MODE_NONE;
|
|
case XGBE_PORT_MODE_SFP:
|
|
return xgbe_phy_an_sfp_mode(phy_data);
|
|
default:
|
|
return XGBE_AN_MODE_NONE;
|
|
}
|
|
}
|
|
|
|
static int xgbe_phy_set_redrv_mode_mdio(struct xgbe_prv_data *pdata,
|
|
enum xgbe_phy_redrv_mode mode)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
u16 redrv_reg, redrv_val;
|
|
|
|
redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000);
|
|
redrv_val = (u16)mode;
|
|
|
|
return pdata->hw_if.write_ext_mii_regs(pdata, phy_data->redrv_addr,
|
|
redrv_reg, redrv_val);
|
|
}
|
|
|
|
static int xgbe_phy_set_redrv_mode_i2c(struct xgbe_prv_data *pdata,
|
|
enum xgbe_phy_redrv_mode mode)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned int redrv_reg;
|
|
int ret;
|
|
|
|
/* Calculate the register to write */
|
|
redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000);
|
|
|
|
ret = xgbe_phy_redrv_write(pdata, redrv_reg, mode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void xgbe_phy_set_redrv_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
enum xgbe_phy_redrv_mode mode;
|
|
int ret;
|
|
|
|
if (!phy_data->redrv)
|
|
return;
|
|
|
|
mode = XGBE_PHY_REDRV_MODE_CX;
|
|
if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) &&
|
|
(phy_data->sfp_base != XGBE_SFP_BASE_1000_CX) &&
|
|
(phy_data->sfp_base != XGBE_SFP_BASE_10000_CR))
|
|
mode = XGBE_PHY_REDRV_MODE_SR;
|
|
|
|
ret = xgbe_phy_get_comm_ownership(pdata);
|
|
if (ret)
|
|
return;
|
|
|
|
if (phy_data->redrv_if)
|
|
xgbe_phy_set_redrv_mode_i2c(pdata, mode);
|
|
else
|
|
xgbe_phy_set_redrv_mode_mdio(pdata, mode);
|
|
|
|
xgbe_phy_put_comm_ownership(pdata);
|
|
}
|
|
|
|
static void xgbe_phy_perform_ratechange(struct xgbe_prv_data *pdata,
|
|
unsigned int cmd, unsigned int sub_cmd)
|
|
{
|
|
unsigned int s0 = 0;
|
|
unsigned int wait;
|
|
|
|
/* Log if a previous command did not complete */
|
|
if (XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS))
|
|
netif_dbg(pdata, link, pdata->netdev,
|
|
"firmware mailbox not ready for command\n");
|
|
|
|
/* Construct the command */
|
|
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, cmd);
|
|
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, sub_cmd);
|
|
|
|
/* Issue the command */
|
|
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
|
|
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
|
|
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
|
|
|
|
/* Wait for command to complete */
|
|
wait = XGBE_RATECHANGE_COUNT;
|
|
while (wait--) {
|
|
if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS))
|
|
return;
|
|
|
|
usleep_range(1000, 2000);
|
|
}
|
|
|
|
netif_dbg(pdata, link, pdata->netdev,
|
|
"firmware mailbox command did not complete\n");
|
|
}
|
|
|
|
static void xgbe_phy_rrc(struct xgbe_prv_data *pdata)
|
|
{
|
|
/* Receiver Reset Cycle */
|
|
xgbe_phy_perform_ratechange(pdata, 5, 0);
|
|
|
|
netif_dbg(pdata, link, pdata->netdev, "receiver reset complete\n");
|
|
}
|
|
|
|
static void xgbe_phy_power_off(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
/* Power off */
|
|
xgbe_phy_perform_ratechange(pdata, 0, 0);
|
|
|
|
phy_data->cur_mode = XGBE_MODE_UNKNOWN;
|
|
|
|
netif_dbg(pdata, link, pdata->netdev, "phy powered off\n");
|
|
}
|
|
|
|
static void xgbe_phy_sfi_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
xgbe_phy_set_redrv_mode(pdata);
|
|
|
|
/* 10G/SFI */
|
|
if (phy_data->sfp_cable != XGBE_SFP_CABLE_PASSIVE) {
|
|
xgbe_phy_perform_ratechange(pdata, 3, 0);
|
|
} else {
|
|
if (phy_data->sfp_cable_len <= 1)
|
|
xgbe_phy_perform_ratechange(pdata, 3, 1);
|
|
else if (phy_data->sfp_cable_len <= 3)
|
|
xgbe_phy_perform_ratechange(pdata, 3, 2);
|
|
else
|
|
xgbe_phy_perform_ratechange(pdata, 3, 3);
|
|
}
|
|
|
|
phy_data->cur_mode = XGBE_MODE_SFI;
|
|
|
|
netif_dbg(pdata, link, pdata->netdev, "10GbE SFI mode set\n");
|
|
}
|
|
|
|
static void xgbe_phy_x_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
xgbe_phy_set_redrv_mode(pdata);
|
|
|
|
/* 1G/X */
|
|
xgbe_phy_perform_ratechange(pdata, 1, 3);
|
|
|
|
phy_data->cur_mode = XGBE_MODE_X;
|
|
|
|
netif_dbg(pdata, link, pdata->netdev, "1GbE X mode set\n");
|
|
}
|
|
|
|
static void xgbe_phy_sgmii_1000_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
xgbe_phy_set_redrv_mode(pdata);
|
|
|
|
/* 1G/SGMII */
|
|
xgbe_phy_perform_ratechange(pdata, 1, 2);
|
|
|
|
phy_data->cur_mode = XGBE_MODE_SGMII_1000;
|
|
|
|
netif_dbg(pdata, link, pdata->netdev, "1GbE SGMII mode set\n");
|
|
}
|
|
|
|
static void xgbe_phy_sgmii_100_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
xgbe_phy_set_redrv_mode(pdata);
|
|
|
|
/* 100M/SGMII */
|
|
xgbe_phy_perform_ratechange(pdata, 1, 1);
|
|
|
|
phy_data->cur_mode = XGBE_MODE_SGMII_100;
|
|
|
|
netif_dbg(pdata, link, pdata->netdev, "100MbE SGMII mode set\n");
|
|
}
|
|
|
|
static void xgbe_phy_kr_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
xgbe_phy_set_redrv_mode(pdata);
|
|
|
|
/* 10G/KR */
|
|
xgbe_phy_perform_ratechange(pdata, 4, 0);
|
|
|
|
phy_data->cur_mode = XGBE_MODE_KR;
|
|
|
|
netif_dbg(pdata, link, pdata->netdev, "10GbE KR mode set\n");
|
|
}
|
|
|
|
static void xgbe_phy_kx_2500_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
xgbe_phy_set_redrv_mode(pdata);
|
|
|
|
/* 2.5G/KX */
|
|
xgbe_phy_perform_ratechange(pdata, 2, 0);
|
|
|
|
phy_data->cur_mode = XGBE_MODE_KX_2500;
|
|
|
|
netif_dbg(pdata, link, pdata->netdev, "2.5GbE KX mode set\n");
|
|
}
|
|
|
|
static void xgbe_phy_kx_1000_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
xgbe_phy_set_redrv_mode(pdata);
|
|
|
|
/* 1G/KX */
|
|
xgbe_phy_perform_ratechange(pdata, 1, 3);
|
|
|
|
phy_data->cur_mode = XGBE_MODE_KX_1000;
|
|
|
|
netif_dbg(pdata, link, pdata->netdev, "1GbE KX mode set\n");
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_cur_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
return phy_data->cur_mode;
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_switch_baset_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
/* No switching if not 10GBase-T */
|
|
if (phy_data->port_mode != XGBE_PORT_MODE_10GBASE_T)
|
|
return xgbe_phy_cur_mode(pdata);
|
|
|
|
switch (xgbe_phy_cur_mode(pdata)) {
|
|
case XGBE_MODE_SGMII_100:
|
|
case XGBE_MODE_SGMII_1000:
|
|
return XGBE_MODE_KR;
|
|
case XGBE_MODE_KR:
|
|
default:
|
|
return XGBE_MODE_SGMII_1000;
|
|
}
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_switch_bp_2500_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
return XGBE_MODE_KX_2500;
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_switch_bp_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
/* If we are in KR switch to KX, and vice-versa */
|
|
switch (xgbe_phy_cur_mode(pdata)) {
|
|
case XGBE_MODE_KX_1000:
|
|
return XGBE_MODE_KR;
|
|
case XGBE_MODE_KR:
|
|
default:
|
|
return XGBE_MODE_KX_1000;
|
|
}
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_switch_mode(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
return xgbe_phy_switch_bp_mode(pdata);
|
|
case XGBE_PORT_MODE_BACKPLANE_2500:
|
|
return xgbe_phy_switch_bp_2500_mode(pdata);
|
|
case XGBE_PORT_MODE_1000BASE_T:
|
|
case XGBE_PORT_MODE_NBASE_T:
|
|
case XGBE_PORT_MODE_10GBASE_T:
|
|
return xgbe_phy_switch_baset_mode(pdata);
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
case XGBE_PORT_MODE_10GBASE_R:
|
|
case XGBE_PORT_MODE_SFP:
|
|
/* No switching, so just return current mode */
|
|
return xgbe_phy_cur_mode(pdata);
|
|
default:
|
|
return XGBE_MODE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_get_basex_mode(struct xgbe_phy_data *phy_data,
|
|
int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_1000:
|
|
return XGBE_MODE_X;
|
|
case SPEED_10000:
|
|
return XGBE_MODE_KR;
|
|
default:
|
|
return XGBE_MODE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_get_baset_mode(struct xgbe_phy_data *phy_data,
|
|
int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_100:
|
|
return XGBE_MODE_SGMII_100;
|
|
case SPEED_1000:
|
|
return XGBE_MODE_SGMII_1000;
|
|
case SPEED_2500:
|
|
return XGBE_MODE_KX_2500;
|
|
case SPEED_10000:
|
|
return XGBE_MODE_KR;
|
|
default:
|
|
return XGBE_MODE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_get_sfp_mode(struct xgbe_phy_data *phy_data,
|
|
int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_100:
|
|
return XGBE_MODE_SGMII_100;
|
|
case SPEED_1000:
|
|
if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T)
|
|
return XGBE_MODE_SGMII_1000;
|
|
else
|
|
return XGBE_MODE_X;
|
|
case SPEED_10000:
|
|
case SPEED_UNKNOWN:
|
|
return XGBE_MODE_SFI;
|
|
default:
|
|
return XGBE_MODE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_get_bp_2500_mode(int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_2500:
|
|
return XGBE_MODE_KX_2500;
|
|
default:
|
|
return XGBE_MODE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_get_bp_mode(int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_1000:
|
|
return XGBE_MODE_KX_1000;
|
|
case SPEED_10000:
|
|
return XGBE_MODE_KR;
|
|
default:
|
|
return XGBE_MODE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static enum xgbe_mode xgbe_phy_get_mode(struct xgbe_prv_data *pdata,
|
|
int speed)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
return xgbe_phy_get_bp_mode(speed);
|
|
case XGBE_PORT_MODE_BACKPLANE_2500:
|
|
return xgbe_phy_get_bp_2500_mode(speed);
|
|
case XGBE_PORT_MODE_1000BASE_T:
|
|
case XGBE_PORT_MODE_NBASE_T:
|
|
case XGBE_PORT_MODE_10GBASE_T:
|
|
return xgbe_phy_get_baset_mode(phy_data, speed);
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
case XGBE_PORT_MODE_10GBASE_R:
|
|
return xgbe_phy_get_basex_mode(phy_data, speed);
|
|
case XGBE_PORT_MODE_SFP:
|
|
return xgbe_phy_get_sfp_mode(phy_data, speed);
|
|
default:
|
|
return XGBE_MODE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static void xgbe_phy_set_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
|
|
{
|
|
switch (mode) {
|
|
case XGBE_MODE_KX_1000:
|
|
xgbe_phy_kx_1000_mode(pdata);
|
|
break;
|
|
case XGBE_MODE_KX_2500:
|
|
xgbe_phy_kx_2500_mode(pdata);
|
|
break;
|
|
case XGBE_MODE_KR:
|
|
xgbe_phy_kr_mode(pdata);
|
|
break;
|
|
case XGBE_MODE_SGMII_100:
|
|
xgbe_phy_sgmii_100_mode(pdata);
|
|
break;
|
|
case XGBE_MODE_SGMII_1000:
|
|
xgbe_phy_sgmii_1000_mode(pdata);
|
|
break;
|
|
case XGBE_MODE_X:
|
|
xgbe_phy_x_mode(pdata);
|
|
break;
|
|
case XGBE_MODE_SFI:
|
|
xgbe_phy_sfi_mode(pdata);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_check_mode(struct xgbe_prv_data *pdata,
|
|
enum xgbe_mode mode, u32 advert)
|
|
{
|
|
if (pdata->phy.autoneg == AUTONEG_ENABLE) {
|
|
if (pdata->phy.advertising & advert)
|
|
return true;
|
|
} else {
|
|
enum xgbe_mode cur_mode;
|
|
|
|
cur_mode = xgbe_phy_get_mode(pdata, pdata->phy.speed);
|
|
if (cur_mode == mode)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool xgbe_phy_use_basex_mode(struct xgbe_prv_data *pdata,
|
|
enum xgbe_mode mode)
|
|
{
|
|
switch (mode) {
|
|
case XGBE_MODE_X:
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_1000baseT_Full);
|
|
case XGBE_MODE_KR:
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_10000baseT_Full);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_use_baset_mode(struct xgbe_prv_data *pdata,
|
|
enum xgbe_mode mode)
|
|
{
|
|
switch (mode) {
|
|
case XGBE_MODE_SGMII_100:
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_100baseT_Full);
|
|
case XGBE_MODE_SGMII_1000:
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_1000baseT_Full);
|
|
case XGBE_MODE_KX_2500:
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_2500baseX_Full);
|
|
case XGBE_MODE_KR:
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_10000baseT_Full);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_use_sfp_mode(struct xgbe_prv_data *pdata,
|
|
enum xgbe_mode mode)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
switch (mode) {
|
|
case XGBE_MODE_X:
|
|
if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T)
|
|
return false;
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_1000baseT_Full);
|
|
case XGBE_MODE_SGMII_100:
|
|
if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T)
|
|
return false;
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_100baseT_Full);
|
|
case XGBE_MODE_SGMII_1000:
|
|
if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T)
|
|
return false;
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_1000baseT_Full);
|
|
case XGBE_MODE_SFI:
|
|
if (phy_data->sfp_mod_absent)
|
|
return true;
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_10000baseT_Full);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_use_bp_2500_mode(struct xgbe_prv_data *pdata,
|
|
enum xgbe_mode mode)
|
|
{
|
|
switch (mode) {
|
|
case XGBE_MODE_KX_2500:
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_2500baseX_Full);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_use_bp_mode(struct xgbe_prv_data *pdata,
|
|
enum xgbe_mode mode)
|
|
{
|
|
switch (mode) {
|
|
case XGBE_MODE_KX_1000:
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_1000baseKX_Full);
|
|
case XGBE_MODE_KR:
|
|
return xgbe_phy_check_mode(pdata, mode,
|
|
ADVERTISED_10000baseKR_Full);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_use_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
return xgbe_phy_use_bp_mode(pdata, mode);
|
|
case XGBE_PORT_MODE_BACKPLANE_2500:
|
|
return xgbe_phy_use_bp_2500_mode(pdata, mode);
|
|
case XGBE_PORT_MODE_1000BASE_T:
|
|
case XGBE_PORT_MODE_NBASE_T:
|
|
case XGBE_PORT_MODE_10GBASE_T:
|
|
return xgbe_phy_use_baset_mode(pdata, mode);
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
case XGBE_PORT_MODE_10GBASE_R:
|
|
return xgbe_phy_use_basex_mode(pdata, mode);
|
|
case XGBE_PORT_MODE_SFP:
|
|
return xgbe_phy_use_sfp_mode(pdata, mode);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_valid_speed_basex_mode(struct xgbe_phy_data *phy_data,
|
|
int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_1000:
|
|
return (phy_data->port_mode == XGBE_PORT_MODE_1000BASE_X);
|
|
case SPEED_10000:
|
|
return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_R);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_valid_speed_baset_mode(struct xgbe_phy_data *phy_data,
|
|
int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_100:
|
|
case SPEED_1000:
|
|
return true;
|
|
case SPEED_2500:
|
|
return (phy_data->port_mode == XGBE_PORT_MODE_NBASE_T);
|
|
case SPEED_10000:
|
|
return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_T);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_valid_speed_sfp_mode(struct xgbe_phy_data *phy_data,
|
|
int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_100:
|
|
return (phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000);
|
|
case SPEED_1000:
|
|
return ((phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000) ||
|
|
(phy_data->sfp_speed == XGBE_SFP_SPEED_1000));
|
|
case SPEED_10000:
|
|
return (phy_data->sfp_speed == XGBE_SFP_SPEED_10000);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_valid_speed_bp_2500_mode(int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_2500:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_valid_speed_bp_mode(int speed)
|
|
{
|
|
switch (speed) {
|
|
case SPEED_1000:
|
|
case SPEED_10000:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool xgbe_phy_valid_speed(struct xgbe_prv_data *pdata, int speed)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
return xgbe_phy_valid_speed_bp_mode(speed);
|
|
case XGBE_PORT_MODE_BACKPLANE_2500:
|
|
return xgbe_phy_valid_speed_bp_2500_mode(speed);
|
|
case XGBE_PORT_MODE_1000BASE_T:
|
|
case XGBE_PORT_MODE_NBASE_T:
|
|
case XGBE_PORT_MODE_10GBASE_T:
|
|
return xgbe_phy_valid_speed_baset_mode(phy_data, speed);
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
case XGBE_PORT_MODE_10GBASE_R:
|
|
return xgbe_phy_valid_speed_basex_mode(phy_data, speed);
|
|
case XGBE_PORT_MODE_SFP:
|
|
return xgbe_phy_valid_speed_sfp_mode(phy_data, speed);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int xgbe_phy_link_status(struct xgbe_prv_data *pdata, int *an_restart)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned int reg;
|
|
int ret;
|
|
|
|
*an_restart = 0;
|
|
|
|
if (phy_data->port_mode == XGBE_PORT_MODE_SFP) {
|
|
/* Check SFP signals */
|
|
xgbe_phy_sfp_detect(pdata);
|
|
|
|
if (phy_data->sfp_changed) {
|
|
*an_restart = 1;
|
|
return 0;
|
|
}
|
|
|
|
if (phy_data->sfp_mod_absent || phy_data->sfp_rx_los)
|
|
return 0;
|
|
}
|
|
|
|
if (phy_data->phydev) {
|
|
/* Check external PHY */
|
|
ret = phy_read_status(phy_data->phydev);
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
if ((pdata->phy.autoneg == AUTONEG_ENABLE) &&
|
|
!phy_aneg_done(phy_data->phydev))
|
|
return 0;
|
|
|
|
if (!phy_data->phydev->link)
|
|
return 0;
|
|
}
|
|
|
|
/* Link status is latched low, so read once to clear
|
|
* and then read again to get current state
|
|
*/
|
|
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
|
|
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
|
|
if (reg & MDIO_STAT1_LSTATUS)
|
|
return 1;
|
|
|
|
/* No link, attempt a receiver reset cycle */
|
|
if (phy_data->rrc_count++) {
|
|
phy_data->rrc_count = 0;
|
|
xgbe_phy_rrc(pdata);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void xgbe_phy_sfp_gpio_setup(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned int reg;
|
|
|
|
reg = XP_IOREAD(pdata, XP_PROP_3);
|
|
|
|
phy_data->sfp_gpio_address = XGBE_GPIO_ADDRESS_PCA9555 +
|
|
XP_GET_BITS(reg, XP_PROP_3, GPIO_ADDR);
|
|
|
|
phy_data->sfp_gpio_mask = XP_GET_BITS(reg, XP_PROP_3, GPIO_MASK);
|
|
|
|
phy_data->sfp_gpio_rx_los = XP_GET_BITS(reg, XP_PROP_3,
|
|
GPIO_RX_LOS);
|
|
phy_data->sfp_gpio_tx_fault = XP_GET_BITS(reg, XP_PROP_3,
|
|
GPIO_TX_FAULT);
|
|
phy_data->sfp_gpio_mod_absent = XP_GET_BITS(reg, XP_PROP_3,
|
|
GPIO_MOD_ABS);
|
|
phy_data->sfp_gpio_rate_select = XP_GET_BITS(reg, XP_PROP_3,
|
|
GPIO_RATE_SELECT);
|
|
|
|
if (netif_msg_probe(pdata)) {
|
|
dev_dbg(pdata->dev, "SFP: gpio_address=%#x\n",
|
|
phy_data->sfp_gpio_address);
|
|
dev_dbg(pdata->dev, "SFP: gpio_mask=%#x\n",
|
|
phy_data->sfp_gpio_mask);
|
|
dev_dbg(pdata->dev, "SFP: gpio_rx_los=%u\n",
|
|
phy_data->sfp_gpio_rx_los);
|
|
dev_dbg(pdata->dev, "SFP: gpio_tx_fault=%u\n",
|
|
phy_data->sfp_gpio_tx_fault);
|
|
dev_dbg(pdata->dev, "SFP: gpio_mod_absent=%u\n",
|
|
phy_data->sfp_gpio_mod_absent);
|
|
dev_dbg(pdata->dev, "SFP: gpio_rate_select=%u\n",
|
|
phy_data->sfp_gpio_rate_select);
|
|
}
|
|
}
|
|
|
|
static void xgbe_phy_sfp_comm_setup(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned int reg, mux_addr_hi, mux_addr_lo;
|
|
|
|
reg = XP_IOREAD(pdata, XP_PROP_4);
|
|
|
|
mux_addr_hi = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_HI);
|
|
mux_addr_lo = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_LO);
|
|
if (mux_addr_lo == XGBE_SFP_DIRECT)
|
|
return;
|
|
|
|
phy_data->sfp_comm = XGBE_SFP_COMM_PCA9545;
|
|
phy_data->sfp_mux_address = (mux_addr_hi << 2) + mux_addr_lo;
|
|
phy_data->sfp_mux_channel = XP_GET_BITS(reg, XP_PROP_4, MUX_CHAN);
|
|
|
|
if (netif_msg_probe(pdata)) {
|
|
dev_dbg(pdata->dev, "SFP: mux_address=%#x\n",
|
|
phy_data->sfp_mux_address);
|
|
dev_dbg(pdata->dev, "SFP: mux_channel=%u\n",
|
|
phy_data->sfp_mux_channel);
|
|
}
|
|
}
|
|
|
|
static void xgbe_phy_sfp_setup(struct xgbe_prv_data *pdata)
|
|
{
|
|
xgbe_phy_sfp_comm_setup(pdata);
|
|
xgbe_phy_sfp_gpio_setup(pdata);
|
|
}
|
|
|
|
static int xgbe_phy_int_mdio_reset(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned int ret;
|
|
|
|
ret = pdata->hw_if.set_gpio(pdata, phy_data->mdio_reset_gpio);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pdata->hw_if.clr_gpio(pdata, phy_data->mdio_reset_gpio);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xgbe_phy_i2c_mdio_reset(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
u8 gpio_reg, gpio_ports[2], gpio_data[3];
|
|
int ret;
|
|
|
|
/* Read the output port registers */
|
|
gpio_reg = 2;
|
|
ret = xgbe_phy_i2c_read(pdata, phy_data->mdio_reset_addr,
|
|
&gpio_reg, sizeof(gpio_reg),
|
|
gpio_ports, sizeof(gpio_ports));
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Prepare to write the GPIO data */
|
|
gpio_data[0] = 2;
|
|
gpio_data[1] = gpio_ports[0];
|
|
gpio_data[2] = gpio_ports[1];
|
|
|
|
/* Set the GPIO pin */
|
|
if (phy_data->mdio_reset_gpio < 8)
|
|
gpio_data[1] |= (1 << (phy_data->mdio_reset_gpio % 8));
|
|
else
|
|
gpio_data[2] |= (1 << (phy_data->mdio_reset_gpio % 8));
|
|
|
|
/* Write the output port registers */
|
|
ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr,
|
|
gpio_data, sizeof(gpio_data));
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Clear the GPIO pin */
|
|
if (phy_data->mdio_reset_gpio < 8)
|
|
gpio_data[1] &= ~(1 << (phy_data->mdio_reset_gpio % 8));
|
|
else
|
|
gpio_data[2] &= ~(1 << (phy_data->mdio_reset_gpio % 8));
|
|
|
|
/* Write the output port registers */
|
|
ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr,
|
|
gpio_data, sizeof(gpio_data));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xgbe_phy_mdio_reset(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
int ret;
|
|
|
|
if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO)
|
|
return 0;
|
|
|
|
ret = xgbe_phy_get_comm_ownership(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO)
|
|
ret = xgbe_phy_i2c_mdio_reset(pdata);
|
|
else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO)
|
|
ret = xgbe_phy_int_mdio_reset(pdata);
|
|
|
|
xgbe_phy_put_comm_ownership(pdata);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool xgbe_phy_redrv_error(struct xgbe_phy_data *phy_data)
|
|
{
|
|
if (!phy_data->redrv)
|
|
return false;
|
|
|
|
if (phy_data->redrv_if >= XGBE_PHY_REDRV_IF_MAX)
|
|
return true;
|
|
|
|
switch (phy_data->redrv_model) {
|
|
case XGBE_PHY_REDRV_MODEL_4223:
|
|
if (phy_data->redrv_lane > 3)
|
|
return true;
|
|
break;
|
|
case XGBE_PHY_REDRV_MODEL_4227:
|
|
if (phy_data->redrv_lane > 1)
|
|
return true;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int xgbe_phy_mdio_reset_setup(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
unsigned int reg;
|
|
|
|
if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO)
|
|
return 0;
|
|
|
|
reg = XP_IOREAD(pdata, XP_PROP_3);
|
|
phy_data->mdio_reset = XP_GET_BITS(reg, XP_PROP_3, MDIO_RESET);
|
|
switch (phy_data->mdio_reset) {
|
|
case XGBE_MDIO_RESET_NONE:
|
|
case XGBE_MDIO_RESET_I2C_GPIO:
|
|
case XGBE_MDIO_RESET_INT_GPIO:
|
|
break;
|
|
default:
|
|
dev_err(pdata->dev, "unsupported MDIO reset (%#x)\n",
|
|
phy_data->mdio_reset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO) {
|
|
phy_data->mdio_reset_addr = XGBE_GPIO_ADDRESS_PCA9555 +
|
|
XP_GET_BITS(reg, XP_PROP_3,
|
|
MDIO_RESET_I2C_ADDR);
|
|
phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3,
|
|
MDIO_RESET_I2C_GPIO);
|
|
} else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO) {
|
|
phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3,
|
|
MDIO_RESET_INT_GPIO);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool xgbe_phy_port_mode_mismatch(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
|
|
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000))
|
|
return false;
|
|
break;
|
|
case XGBE_PORT_MODE_BACKPLANE_2500:
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500)
|
|
return false;
|
|
break;
|
|
case XGBE_PORT_MODE_1000BASE_T:
|
|
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
|
|
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000))
|
|
return false;
|
|
break;
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
|
|
return false;
|
|
break;
|
|
case XGBE_PORT_MODE_NBASE_T:
|
|
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
|
|
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
|
|
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500))
|
|
return false;
|
|
break;
|
|
case XGBE_PORT_MODE_10GBASE_T:
|
|
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
|
|
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
|
|
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000))
|
|
return false;
|
|
break;
|
|
case XGBE_PORT_MODE_10GBASE_R:
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)
|
|
return false;
|
|
break;
|
|
case XGBE_PORT_MODE_SFP:
|
|
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
|
|
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
|
|
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000))
|
|
return false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool xgbe_phy_conn_type_mismatch(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
case XGBE_PORT_MODE_BACKPLANE_2500:
|
|
if (phy_data->conn_type == XGBE_CONN_TYPE_BACKPLANE)
|
|
return false;
|
|
break;
|
|
case XGBE_PORT_MODE_1000BASE_T:
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
case XGBE_PORT_MODE_NBASE_T:
|
|
case XGBE_PORT_MODE_10GBASE_T:
|
|
case XGBE_PORT_MODE_10GBASE_R:
|
|
if (phy_data->conn_type == XGBE_CONN_TYPE_MDIO)
|
|
return false;
|
|
break;
|
|
case XGBE_PORT_MODE_SFP:
|
|
if (phy_data->conn_type == XGBE_CONN_TYPE_SFP)
|
|
return false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool xgbe_phy_port_enabled(struct xgbe_prv_data *pdata)
|
|
{
|
|
unsigned int reg;
|
|
|
|
reg = XP_IOREAD(pdata, XP_PROP_0);
|
|
if (!XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS))
|
|
return false;
|
|
if (!XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void xgbe_phy_stop(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
/* If we have an external PHY, free it */
|
|
xgbe_phy_free_phy_device(pdata);
|
|
|
|
/* Reset SFP data */
|
|
xgbe_phy_sfp_reset(phy_data);
|
|
xgbe_phy_sfp_mod_absent(pdata);
|
|
|
|
/* Power off the PHY */
|
|
xgbe_phy_power_off(pdata);
|
|
|
|
/* Stop the I2C controller */
|
|
pdata->i2c_if.i2c_stop(pdata);
|
|
}
|
|
|
|
static int xgbe_phy_start(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
int ret;
|
|
|
|
/* Start the I2C controller */
|
|
ret = pdata->i2c_if.i2c_start(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Set the proper MDIO mode for the re-driver */
|
|
if (phy_data->redrv && !phy_data->redrv_if) {
|
|
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr,
|
|
XGBE_MDIO_MODE_CL22);
|
|
if (ret) {
|
|
netdev_err(pdata->netdev,
|
|
"redriver mdio port not compatible (%u)\n",
|
|
phy_data->redrv_addr);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Start in highest supported mode */
|
|
xgbe_phy_set_mode(pdata, phy_data->start_mode);
|
|
|
|
/* After starting the I2C controller, we can check for an SFP */
|
|
switch (phy_data->port_mode) {
|
|
case XGBE_PORT_MODE_SFP:
|
|
xgbe_phy_sfp_detect(pdata);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* If we have an external PHY, start it */
|
|
ret = xgbe_phy_find_phy_device(pdata);
|
|
if (ret)
|
|
goto err_i2c;
|
|
|
|
return 0;
|
|
|
|
err_i2c:
|
|
pdata->i2c_if.i2c_stop(pdata);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xgbe_phy_reset(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
enum xgbe_mode cur_mode;
|
|
int ret;
|
|
|
|
/* Reset by power cycling the PHY */
|
|
cur_mode = phy_data->cur_mode;
|
|
xgbe_phy_power_off(pdata);
|
|
xgbe_phy_set_mode(pdata, cur_mode);
|
|
|
|
if (!phy_data->phydev)
|
|
return 0;
|
|
|
|
/* Reset the external PHY */
|
|
ret = xgbe_phy_mdio_reset(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return phy_init_hw(phy_data->phydev);
|
|
}
|
|
|
|
static void xgbe_phy_exit(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data = pdata->phy_data;
|
|
|
|
/* Unregister for driving external PHYs */
|
|
mdiobus_unregister(phy_data->mii);
|
|
}
|
|
|
|
static int xgbe_phy_init(struct xgbe_prv_data *pdata)
|
|
{
|
|
struct xgbe_phy_data *phy_data;
|
|
struct mii_bus *mii;
|
|
unsigned int reg;
|
|
int ret;
|
|
|
|
/* Check if enabled */
|
|
if (!xgbe_phy_port_enabled(pdata)) {
|
|
dev_info(pdata->dev, "device is not enabled\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Initialize the I2C controller */
|
|
ret = pdata->i2c_if.i2c_init(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
phy_data = devm_kzalloc(pdata->dev, sizeof(*phy_data), GFP_KERNEL);
|
|
if (!phy_data)
|
|
return -ENOMEM;
|
|
pdata->phy_data = phy_data;
|
|
|
|
reg = XP_IOREAD(pdata, XP_PROP_0);
|
|
phy_data->port_mode = XP_GET_BITS(reg, XP_PROP_0, PORT_MODE);
|
|
phy_data->port_id = XP_GET_BITS(reg, XP_PROP_0, PORT_ID);
|
|
phy_data->port_speeds = XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS);
|
|
phy_data->conn_type = XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE);
|
|
phy_data->mdio_addr = XP_GET_BITS(reg, XP_PROP_0, MDIO_ADDR);
|
|
if (netif_msg_probe(pdata)) {
|
|
dev_dbg(pdata->dev, "port mode=%u\n", phy_data->port_mode);
|
|
dev_dbg(pdata->dev, "port id=%u\n", phy_data->port_id);
|
|
dev_dbg(pdata->dev, "port speeds=%#x\n", phy_data->port_speeds);
|
|
dev_dbg(pdata->dev, "conn type=%u\n", phy_data->conn_type);
|
|
dev_dbg(pdata->dev, "mdio addr=%u\n", phy_data->mdio_addr);
|
|
}
|
|
|
|
reg = XP_IOREAD(pdata, XP_PROP_4);
|
|
phy_data->redrv = XP_GET_BITS(reg, XP_PROP_4, REDRV_PRESENT);
|
|
phy_data->redrv_if = XP_GET_BITS(reg, XP_PROP_4, REDRV_IF);
|
|
phy_data->redrv_addr = XP_GET_BITS(reg, XP_PROP_4, REDRV_ADDR);
|
|
phy_data->redrv_lane = XP_GET_BITS(reg, XP_PROP_4, REDRV_LANE);
|
|
phy_data->redrv_model = XP_GET_BITS(reg, XP_PROP_4, REDRV_MODEL);
|
|
if (phy_data->redrv && netif_msg_probe(pdata)) {
|
|
dev_dbg(pdata->dev, "redrv present\n");
|
|
dev_dbg(pdata->dev, "redrv i/f=%u\n", phy_data->redrv_if);
|
|
dev_dbg(pdata->dev, "redrv addr=%#x\n", phy_data->redrv_addr);
|
|
dev_dbg(pdata->dev, "redrv lane=%u\n", phy_data->redrv_lane);
|
|
dev_dbg(pdata->dev, "redrv model=%u\n", phy_data->redrv_model);
|
|
}
|
|
|
|
/* Validate the connection requested */
|
|
if (xgbe_phy_conn_type_mismatch(pdata)) {
|
|
dev_err(pdata->dev, "phy mode/connection mismatch (%#x/%#x)\n",
|
|
phy_data->port_mode, phy_data->conn_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Validate the mode requested */
|
|
if (xgbe_phy_port_mode_mismatch(pdata)) {
|
|
dev_err(pdata->dev, "phy mode/speed mismatch (%#x/%#x)\n",
|
|
phy_data->port_mode, phy_data->port_speeds);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check for and validate MDIO reset support */
|
|
ret = xgbe_phy_mdio_reset_setup(pdata);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Validate the re-driver information */
|
|
if (xgbe_phy_redrv_error(phy_data)) {
|
|
dev_err(pdata->dev, "phy re-driver settings error\n");
|
|
return -EINVAL;
|
|
}
|
|
pdata->kr_redrv = phy_data->redrv;
|
|
|
|
/* Indicate current mode is unknown */
|
|
phy_data->cur_mode = XGBE_MODE_UNKNOWN;
|
|
|
|
/* Initialize supported features */
|
|
pdata->phy.supported = 0;
|
|
|
|
switch (phy_data->port_mode) {
|
|
/* Backplane support */
|
|
case XGBE_PORT_MODE_BACKPLANE:
|
|
pdata->phy.supported |= SUPPORTED_Autoneg;
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
pdata->phy.supported |= SUPPORTED_Backplane;
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
|
|
pdata->phy.supported |= SUPPORTED_1000baseKX_Full;
|
|
phy_data->start_mode = XGBE_MODE_KX_1000;
|
|
}
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) {
|
|
pdata->phy.supported |= SUPPORTED_10000baseKR_Full;
|
|
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
|
|
pdata->phy.supported |=
|
|
SUPPORTED_10000baseR_FEC;
|
|
phy_data->start_mode = XGBE_MODE_KR;
|
|
}
|
|
|
|
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
|
|
break;
|
|
case XGBE_PORT_MODE_BACKPLANE_2500:
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
pdata->phy.supported |= SUPPORTED_Backplane;
|
|
pdata->phy.supported |= SUPPORTED_2500baseX_Full;
|
|
phy_data->start_mode = XGBE_MODE_KX_2500;
|
|
|
|
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
|
|
break;
|
|
|
|
/* MDIO 1GBase-T support */
|
|
case XGBE_PORT_MODE_1000BASE_T:
|
|
pdata->phy.supported |= SUPPORTED_Autoneg;
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
pdata->phy.supported |= SUPPORTED_TP;
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
|
|
pdata->phy.supported |= SUPPORTED_100baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_SGMII_100;
|
|
}
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
|
|
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_SGMII_1000;
|
|
}
|
|
|
|
phy_data->phydev_mode = XGBE_MDIO_MODE_CL22;
|
|
break;
|
|
|
|
/* MDIO Base-X support */
|
|
case XGBE_PORT_MODE_1000BASE_X:
|
|
pdata->phy.supported |= SUPPORTED_Autoneg;
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
pdata->phy.supported |= SUPPORTED_FIBRE;
|
|
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_X;
|
|
|
|
phy_data->phydev_mode = XGBE_MDIO_MODE_CL22;
|
|
break;
|
|
|
|
/* MDIO NBase-T support */
|
|
case XGBE_PORT_MODE_NBASE_T:
|
|
pdata->phy.supported |= SUPPORTED_Autoneg;
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
pdata->phy.supported |= SUPPORTED_TP;
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
|
|
pdata->phy.supported |= SUPPORTED_100baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_SGMII_100;
|
|
}
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
|
|
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_SGMII_1000;
|
|
}
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500) {
|
|
pdata->phy.supported |= SUPPORTED_2500baseX_Full;
|
|
phy_data->start_mode = XGBE_MODE_KX_2500;
|
|
}
|
|
|
|
phy_data->phydev_mode = XGBE_MDIO_MODE_CL45;
|
|
break;
|
|
|
|
/* 10GBase-T support */
|
|
case XGBE_PORT_MODE_10GBASE_T:
|
|
pdata->phy.supported |= SUPPORTED_Autoneg;
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
pdata->phy.supported |= SUPPORTED_TP;
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
|
|
pdata->phy.supported |= SUPPORTED_100baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_SGMII_100;
|
|
}
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
|
|
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_SGMII_1000;
|
|
}
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) {
|
|
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_KR;
|
|
}
|
|
|
|
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
|
|
break;
|
|
|
|
/* 10GBase-R support */
|
|
case XGBE_PORT_MODE_10GBASE_R:
|
|
pdata->phy.supported |= SUPPORTED_Autoneg;
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
pdata->phy.supported |= SUPPORTED_TP;
|
|
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
|
|
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
|
|
pdata->phy.supported |= SUPPORTED_10000baseR_FEC;
|
|
phy_data->start_mode = XGBE_MODE_SFI;
|
|
|
|
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
|
|
break;
|
|
|
|
/* SFP support */
|
|
case XGBE_PORT_MODE_SFP:
|
|
pdata->phy.supported |= SUPPORTED_Autoneg;
|
|
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
|
|
pdata->phy.supported |= SUPPORTED_TP;
|
|
pdata->phy.supported |= SUPPORTED_FIBRE;
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
|
|
pdata->phy.supported |= SUPPORTED_100baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_SGMII_100;
|
|
}
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
|
|
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_SGMII_1000;
|
|
}
|
|
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) {
|
|
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
|
|
phy_data->start_mode = XGBE_MODE_SFI;
|
|
}
|
|
|
|
phy_data->phydev_mode = XGBE_MDIO_MODE_CL22;
|
|
|
|
xgbe_phy_sfp_setup(pdata);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (netif_msg_probe(pdata))
|
|
dev_dbg(pdata->dev, "phy supported=%#x\n",
|
|
pdata->phy.supported);
|
|
|
|
if ((phy_data->conn_type & XGBE_CONN_TYPE_MDIO) &&
|
|
(phy_data->phydev_mode != XGBE_MDIO_MODE_NONE)) {
|
|
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr,
|
|
phy_data->phydev_mode);
|
|
if (ret) {
|
|
dev_err(pdata->dev,
|
|
"mdio port/clause not compatible (%d/%u)\n",
|
|
phy_data->mdio_addr, phy_data->phydev_mode);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (phy_data->redrv && !phy_data->redrv_if) {
|
|
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr,
|
|
XGBE_MDIO_MODE_CL22);
|
|
if (ret) {
|
|
dev_err(pdata->dev,
|
|
"redriver mdio port not compatible (%u)\n",
|
|
phy_data->redrv_addr);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Register for driving external PHYs */
|
|
mii = devm_mdiobus_alloc(pdata->dev);
|
|
if (!mii) {
|
|
dev_err(pdata->dev, "mdiobus_alloc failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mii->priv = pdata;
|
|
mii->name = "amd-xgbe-mii";
|
|
mii->read = xgbe_phy_mii_read;
|
|
mii->write = xgbe_phy_mii_write;
|
|
mii->parent = pdata->dev;
|
|
mii->phy_mask = ~0;
|
|
snprintf(mii->id, sizeof(mii->id), "%s", dev_name(pdata->dev));
|
|
ret = mdiobus_register(mii);
|
|
if (ret) {
|
|
dev_err(pdata->dev, "mdiobus_register failed\n");
|
|
return ret;
|
|
}
|
|
phy_data->mii = mii;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void xgbe_init_function_ptrs_phy_v2(struct xgbe_phy_if *phy_if)
|
|
{
|
|
struct xgbe_phy_impl_if *phy_impl = &phy_if->phy_impl;
|
|
|
|
phy_impl->init = xgbe_phy_init;
|
|
phy_impl->exit = xgbe_phy_exit;
|
|
|
|
phy_impl->reset = xgbe_phy_reset;
|
|
phy_impl->start = xgbe_phy_start;
|
|
phy_impl->stop = xgbe_phy_stop;
|
|
|
|
phy_impl->link_status = xgbe_phy_link_status;
|
|
|
|
phy_impl->valid_speed = xgbe_phy_valid_speed;
|
|
|
|
phy_impl->use_mode = xgbe_phy_use_mode;
|
|
phy_impl->set_mode = xgbe_phy_set_mode;
|
|
phy_impl->get_mode = xgbe_phy_get_mode;
|
|
phy_impl->switch_mode = xgbe_phy_switch_mode;
|
|
phy_impl->cur_mode = xgbe_phy_cur_mode;
|
|
|
|
phy_impl->an_mode = xgbe_phy_an_mode;
|
|
|
|
phy_impl->an_config = xgbe_phy_an_config;
|
|
|
|
phy_impl->an_advertising = xgbe_phy_an_advertising;
|
|
|
|
phy_impl->an_outcome = xgbe_phy_an_outcome;
|
|
}
|