linux_dsm_epyc7002/sound/pci/bt87x.c
Clemens Ladisch 918f3a0e8c [ALSA] pcm: add snd_pcm_rate_to_rate_bit() helper
Add a snd_pcm_rate_to_rate_bit() function to factor out common code used
by several drivers.

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2007-10-16 15:58:54 +02:00

922 lines
28 KiB
C

/*
* bt87x.c - Brooktree Bt878/Bt879 driver for ALSA
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*
* based on btaudio.c by Gerd Knorr <kraxel@bytesex.org>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/control.h>
#include <sound/initval.h>
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("Brooktree Bt87x audio driver");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Brooktree,Bt878},"
"{Brooktree,Bt879}}");
static int index[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -2}; /* Exclude the first card */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
static int digital_rate[SNDRV_CARDS]; /* digital input rate */
static int load_all; /* allow to load the non-whitelisted cards */
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Bt87x soundcard");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Bt87x soundcard");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Bt87x soundcard");
module_param_array(digital_rate, int, NULL, 0444);
MODULE_PARM_DESC(digital_rate, "Digital input rate for Bt87x soundcard");
module_param(load_all, bool, 0444);
MODULE_PARM_DESC(load_all, "Allow to load the non-whitelisted cards");
/* register offsets */
#define REG_INT_STAT 0x100 /* interrupt status */
#define REG_INT_MASK 0x104 /* interrupt mask */
#define REG_GPIO_DMA_CTL 0x10c /* audio control */
#define REG_PACKET_LEN 0x110 /* audio packet lengths */
#define REG_RISC_STRT_ADD 0x114 /* RISC program start address */
#define REG_RISC_COUNT 0x120 /* RISC program counter */
/* interrupt bits */
#define INT_OFLOW (1 << 3) /* audio A/D overflow */
#define INT_RISCI (1 << 11) /* RISC instruction IRQ bit set */
#define INT_FBUS (1 << 12) /* FIFO overrun due to bus access latency */
#define INT_FTRGT (1 << 13) /* FIFO overrun due to target latency */
#define INT_FDSR (1 << 14) /* FIFO data stream resynchronization */
#define INT_PPERR (1 << 15) /* PCI parity error */
#define INT_RIPERR (1 << 16) /* RISC instruction parity error */
#define INT_PABORT (1 << 17) /* PCI master or target abort */
#define INT_OCERR (1 << 18) /* invalid opcode */
#define INT_SCERR (1 << 19) /* sync counter overflow */
#define INT_RISC_EN (1 << 27) /* DMA controller running */
#define INT_RISCS_SHIFT 28 /* RISC status bits */
/* audio control bits */
#define CTL_FIFO_ENABLE (1 << 0) /* enable audio data FIFO */
#define CTL_RISC_ENABLE (1 << 1) /* enable audio DMA controller */
#define CTL_PKTP_4 (0 << 2) /* packet mode FIFO trigger point - 4 DWORDs */
#define CTL_PKTP_8 (1 << 2) /* 8 DWORDs */
#define CTL_PKTP_16 (2 << 2) /* 16 DWORDs */
#define CTL_ACAP_EN (1 << 4) /* enable audio capture */
#define CTL_DA_APP (1 << 5) /* GPIO input */
#define CTL_DA_IOM_AFE (0 << 6) /* audio A/D input */
#define CTL_DA_IOM_DA (1 << 6) /* digital audio input */
#define CTL_DA_SDR_SHIFT 8 /* DDF first stage decimation rate */
#define CTL_DA_SDR_MASK (0xf<< 8)
#define CTL_DA_LMT (1 << 12) /* limit audio data values */
#define CTL_DA_ES2 (1 << 13) /* enable DDF stage 2 */
#define CTL_DA_SBR (1 << 14) /* samples rounded to 8 bits */
#define CTL_DA_DPM (1 << 15) /* data packet mode */
#define CTL_DA_LRD_SHIFT 16 /* ALRCK delay */
#define CTL_DA_MLB (1 << 21) /* MSB/LSB format */
#define CTL_DA_LRI (1 << 22) /* left/right indication */
#define CTL_DA_SCE (1 << 23) /* sample clock edge */
#define CTL_A_SEL_STV (0 << 24) /* TV tuner audio input */
#define CTL_A_SEL_SFM (1 << 24) /* FM audio input */
#define CTL_A_SEL_SML (2 << 24) /* mic/line audio input */
#define CTL_A_SEL_SMXC (3 << 24) /* MUX bypass */
#define CTL_A_SEL_SHIFT 24
#define CTL_A_SEL_MASK (3 << 24)
#define CTL_A_PWRDN (1 << 26) /* analog audio power-down */
#define CTL_A_G2X (1 << 27) /* audio gain boost */
#define CTL_A_GAIN_SHIFT 28 /* audio input gain */
#define CTL_A_GAIN_MASK (0xf<<28)
/* RISC instruction opcodes */
#define RISC_WRITE (0x1 << 28) /* write FIFO data to memory at address */
#define RISC_WRITEC (0x5 << 28) /* write FIFO data to memory at current address */
#define RISC_SKIP (0x2 << 28) /* skip FIFO data */
#define RISC_JUMP (0x7 << 28) /* jump to address */
#define RISC_SYNC (0x8 << 28) /* synchronize with FIFO */
/* RISC instruction bits */
#define RISC_BYTES_ENABLE (0xf << 12) /* byte enable bits */
#define RISC_RESYNC ( 1 << 15) /* disable FDSR errors */
#define RISC_SET_STATUS_SHIFT 16 /* set status bits */
#define RISC_RESET_STATUS_SHIFT 20 /* clear status bits */
#define RISC_IRQ ( 1 << 24) /* interrupt */
#define RISC_EOL ( 1 << 26) /* end of line */
#define RISC_SOL ( 1 << 27) /* start of line */
/* SYNC status bits values */
#define RISC_SYNC_FM1 0x6
#define RISC_SYNC_VRO 0xc
#define ANALOG_CLOCK 1792000
#ifdef CONFIG_SND_BT87X_OVERCLOCK
#define CLOCK_DIV_MIN 1
#else
#define CLOCK_DIV_MIN 4
#endif
#define CLOCK_DIV_MAX 15
#define ERROR_INTERRUPTS (INT_FBUS | INT_FTRGT | INT_PPERR | \
INT_RIPERR | INT_PABORT | INT_OCERR)
#define MY_INTERRUPTS (INT_RISCI | ERROR_INTERRUPTS)
/* SYNC, one WRITE per line, one extra WRITE per page boundary, SYNC, JUMP */
#define MAX_RISC_SIZE ((1 + 255 + (PAGE_ALIGN(255 * 4092) / PAGE_SIZE - 1) + 1 + 1) * 8)
struct snd_bt87x {
struct snd_card *card;
struct pci_dev *pci;
void __iomem *mmio;
int irq;
int dig_rate;
spinlock_t reg_lock;
unsigned long opened;
struct snd_pcm_substream *substream;
struct snd_dma_buffer dma_risc;
unsigned int line_bytes;
unsigned int lines;
u32 reg_control;
u32 interrupt_mask;
int current_line;
int pci_parity_errors;
};
enum { DEVICE_DIGITAL, DEVICE_ANALOG };
static inline u32 snd_bt87x_readl(struct snd_bt87x *chip, u32 reg)
{
return readl(chip->mmio + reg);
}
static inline void snd_bt87x_writel(struct snd_bt87x *chip, u32 reg, u32 value)
{
writel(value, chip->mmio + reg);
}
static int snd_bt87x_create_risc(struct snd_bt87x *chip, struct snd_pcm_substream *substream,
unsigned int periods, unsigned int period_bytes)
{
struct snd_sg_buf *sgbuf = snd_pcm_substream_sgbuf(substream);
unsigned int i, offset;
u32 *risc;
if (chip->dma_risc.area == NULL) {
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
PAGE_ALIGN(MAX_RISC_SIZE), &chip->dma_risc) < 0)
return -ENOMEM;
}
risc = (u32 *)chip->dma_risc.area;
offset = 0;
*risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_FM1);
*risc++ = cpu_to_le32(0);
for (i = 0; i < periods; ++i) {
u32 rest;
rest = period_bytes;
do {
u32 cmd, len;
len = PAGE_SIZE - (offset % PAGE_SIZE);
if (len > rest)
len = rest;
cmd = RISC_WRITE | len;
if (rest == period_bytes) {
u32 block = i * 16 / periods;
cmd |= RISC_SOL;
cmd |= block << RISC_SET_STATUS_SHIFT;
cmd |= (~block & 0xf) << RISC_RESET_STATUS_SHIFT;
}
if (len == rest)
cmd |= RISC_EOL | RISC_IRQ;
*risc++ = cpu_to_le32(cmd);
*risc++ = cpu_to_le32((u32)snd_pcm_sgbuf_get_addr(sgbuf, offset));
offset += len;
rest -= len;
} while (rest > 0);
}
*risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_VRO);
*risc++ = cpu_to_le32(0);
*risc++ = cpu_to_le32(RISC_JUMP);
*risc++ = cpu_to_le32(chip->dma_risc.addr);
chip->line_bytes = period_bytes;
chip->lines = periods;
return 0;
}
static void snd_bt87x_free_risc(struct snd_bt87x *chip)
{
if (chip->dma_risc.area) {
snd_dma_free_pages(&chip->dma_risc);
chip->dma_risc.area = NULL;
}
}
static void snd_bt87x_pci_error(struct snd_bt87x *chip, unsigned int status)
{
u16 pci_status;
pci_read_config_word(chip->pci, PCI_STATUS, &pci_status);
pci_status &= PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT |
PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY;
pci_write_config_word(chip->pci, PCI_STATUS, pci_status);
if (pci_status != PCI_STATUS_DETECTED_PARITY)
snd_printk(KERN_ERR "Aieee - PCI error! status %#08x, PCI status %#04x\n",
status & ERROR_INTERRUPTS, pci_status);
else {
snd_printk(KERN_ERR "Aieee - PCI parity error detected!\n");
/* error 'handling' similar to aic7xxx_pci.c: */
chip->pci_parity_errors++;
if (chip->pci_parity_errors > 20) {
snd_printk(KERN_ERR "Too many PCI parity errors observed.\n");
snd_printk(KERN_ERR "Some device on this bus is generating bad parity.\n");
snd_printk(KERN_ERR "This is an error *observed by*, not *generated by*, this card.\n");
snd_printk(KERN_ERR "PCI parity error checking has been disabled.\n");
chip->interrupt_mask &= ~(INT_PPERR | INT_RIPERR);
snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask);
}
}
}
static irqreturn_t snd_bt87x_interrupt(int irq, void *dev_id)
{
struct snd_bt87x *chip = dev_id;
unsigned int status, irq_status;
status = snd_bt87x_readl(chip, REG_INT_STAT);
irq_status = status & chip->interrupt_mask;
if (!irq_status)
return IRQ_NONE;
snd_bt87x_writel(chip, REG_INT_STAT, irq_status);
if (irq_status & ERROR_INTERRUPTS) {
if (irq_status & (INT_FBUS | INT_FTRGT))
snd_printk(KERN_WARNING "FIFO overrun, status %#08x\n", status);
if (irq_status & INT_OCERR)
snd_printk(KERN_ERR "internal RISC error, status %#08x\n", status);
if (irq_status & (INT_PPERR | INT_RIPERR | INT_PABORT))
snd_bt87x_pci_error(chip, irq_status);
}
if ((irq_status & INT_RISCI) && (chip->reg_control & CTL_ACAP_EN)) {
int current_block, irq_block;
/* assume that exactly one line has been recorded */
chip->current_line = (chip->current_line + 1) % chip->lines;
/* but check if some interrupts have been skipped */
current_block = chip->current_line * 16 / chip->lines;
irq_block = status >> INT_RISCS_SHIFT;
if (current_block != irq_block)
chip->current_line = (irq_block * chip->lines + 15) / 16;
snd_pcm_period_elapsed(chip->substream);
}
return IRQ_HANDLED;
}
static struct snd_pcm_hardware snd_bt87x_digital_hw = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = 0, /* set at runtime */
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 255 * 4092,
.period_bytes_min = 32,
.period_bytes_max = 4092,
.periods_min = 2,
.periods_max = 255,
};
static struct snd_pcm_hardware snd_bt87x_analog_hw = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8,
.rates = SNDRV_PCM_RATE_KNOT,
.rate_min = ANALOG_CLOCK / CLOCK_DIV_MAX,
.rate_max = ANALOG_CLOCK / CLOCK_DIV_MIN,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = 255 * 4092,
.period_bytes_min = 32,
.period_bytes_max = 4092,
.periods_min = 2,
.periods_max = 255,
};
static int snd_bt87x_set_digital_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime)
{
chip->reg_control |= CTL_DA_IOM_DA;
runtime->hw = snd_bt87x_digital_hw;
runtime->hw.rates = snd_pcm_rate_to_rate_bit(chip->dig_rate);
runtime->hw.rate_min = chip->dig_rate;
runtime->hw.rate_max = chip->dig_rate;
return 0;
}
static int snd_bt87x_set_analog_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime)
{
static struct snd_ratnum analog_clock = {
.num = ANALOG_CLOCK,
.den_min = CLOCK_DIV_MIN,
.den_max = CLOCK_DIV_MAX,
.den_step = 1
};
static struct snd_pcm_hw_constraint_ratnums constraint_rates = {
.nrats = 1,
.rats = &analog_clock
};
chip->reg_control &= ~CTL_DA_IOM_DA;
runtime->hw = snd_bt87x_analog_hw;
return snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
&constraint_rates);
}
static int snd_bt87x_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if (test_and_set_bit(0, &chip->opened))
return -EBUSY;
if (substream->pcm->device == DEVICE_DIGITAL)
err = snd_bt87x_set_digital_hw(chip, runtime);
else
err = snd_bt87x_set_analog_hw(chip, runtime);
if (err < 0)
goto _error;
err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
if (err < 0)
goto _error;
chip->substream = substream;
return 0;
_error:
clear_bit(0, &chip->opened);
smp_mb__after_clear_bit();
return err;
}
static int snd_bt87x_close(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
chip->substream = NULL;
clear_bit(0, &chip->opened);
smp_mb__after_clear_bit();
return 0;
}
static int snd_bt87x_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
int err;
err = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
if (err < 0)
return err;
return snd_bt87x_create_risc(chip, substream,
params_periods(hw_params),
params_period_bytes(hw_params));
}
static int snd_bt87x_hw_free(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
snd_bt87x_free_risc(chip);
snd_pcm_lib_free_pages(substream);
return 0;
}
static int snd_bt87x_prepare(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int decimation;
spin_lock_irq(&chip->reg_lock);
chip->reg_control &= ~(CTL_DA_SDR_MASK | CTL_DA_SBR);
decimation = (ANALOG_CLOCK + runtime->rate / 4) / runtime->rate;
chip->reg_control |= decimation << CTL_DA_SDR_SHIFT;
if (runtime->format == SNDRV_PCM_FORMAT_S8)
chip->reg_control |= CTL_DA_SBR;
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_bt87x_start(struct snd_bt87x *chip)
{
spin_lock(&chip->reg_lock);
chip->current_line = 0;
chip->reg_control |= CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN;
snd_bt87x_writel(chip, REG_RISC_STRT_ADD, chip->dma_risc.addr);
snd_bt87x_writel(chip, REG_PACKET_LEN,
chip->line_bytes | (chip->lines << 16));
snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
spin_unlock(&chip->reg_lock);
return 0;
}
static int snd_bt87x_stop(struct snd_bt87x *chip)
{
spin_lock(&chip->reg_lock);
chip->reg_control &= ~(CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
snd_bt87x_writel(chip, REG_INT_MASK, 0);
snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS);
spin_unlock(&chip->reg_lock);
return 0;
}
static int snd_bt87x_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
return snd_bt87x_start(chip);
case SNDRV_PCM_TRIGGER_STOP:
return snd_bt87x_stop(chip);
default:
return -EINVAL;
}
}
static snd_pcm_uframes_t snd_bt87x_pointer(struct snd_pcm_substream *substream)
{
struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
return (snd_pcm_uframes_t)bytes_to_frames(runtime, chip->current_line * chip->line_bytes);
}
static struct snd_pcm_ops snd_bt87x_pcm_ops = {
.open = snd_bt87x_pcm_open,
.close = snd_bt87x_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_bt87x_hw_params,
.hw_free = snd_bt87x_hw_free,
.prepare = snd_bt87x_prepare,
.trigger = snd_bt87x_trigger,
.pointer = snd_bt87x_pointer,
.page = snd_pcm_sgbuf_ops_page,
};
static int snd_bt87x_capture_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 1;
info->value.integer.min = 0;
info->value.integer.max = 15;
return 0;
}
static int snd_bt87x_capture_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
value->value.integer.value[0] = (chip->reg_control & CTL_A_GAIN_MASK) >> CTL_A_GAIN_SHIFT;
return 0;
}
static int snd_bt87x_capture_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
u32 old_control;
int changed;
spin_lock_irq(&chip->reg_lock);
old_control = chip->reg_control;
chip->reg_control = (chip->reg_control & ~CTL_A_GAIN_MASK)
| (value->value.integer.value[0] << CTL_A_GAIN_SHIFT);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
changed = old_control != chip->reg_control;
spin_unlock_irq(&chip->reg_lock);
return changed;
}
static struct snd_kcontrol_new snd_bt87x_capture_volume = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Volume",
.info = snd_bt87x_capture_volume_info,
.get = snd_bt87x_capture_volume_get,
.put = snd_bt87x_capture_volume_put,
};
#define snd_bt87x_capture_boost_info snd_ctl_boolean_mono_info
static int snd_bt87x_capture_boost_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
value->value.integer.value[0] = !! (chip->reg_control & CTL_A_G2X);
return 0;
}
static int snd_bt87x_capture_boost_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
u32 old_control;
int changed;
spin_lock_irq(&chip->reg_lock);
old_control = chip->reg_control;
chip->reg_control = (chip->reg_control & ~CTL_A_G2X)
| (value->value.integer.value[0] ? CTL_A_G2X : 0);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
changed = chip->reg_control != old_control;
spin_unlock_irq(&chip->reg_lock);
return changed;
}
static struct snd_kcontrol_new snd_bt87x_capture_boost = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Boost",
.info = snd_bt87x_capture_boost_info,
.get = snd_bt87x_capture_boost_get,
.put = snd_bt87x_capture_boost_put,
};
static int snd_bt87x_capture_source_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *info)
{
static char *texts[3] = {"TV Tuner", "FM", "Mic/Line"};
info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
info->count = 1;
info->value.enumerated.items = 3;
if (info->value.enumerated.item > 2)
info->value.enumerated.item = 2;
strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
return 0;
}
static int snd_bt87x_capture_source_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
value->value.enumerated.item[0] = (chip->reg_control & CTL_A_SEL_MASK) >> CTL_A_SEL_SHIFT;
return 0;
}
static int snd_bt87x_capture_source_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
u32 old_control;
int changed;
spin_lock_irq(&chip->reg_lock);
old_control = chip->reg_control;
chip->reg_control = (chip->reg_control & ~CTL_A_SEL_MASK)
| (value->value.enumerated.item[0] << CTL_A_SEL_SHIFT);
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
changed = chip->reg_control != old_control;
spin_unlock_irq(&chip->reg_lock);
return changed;
}
static struct snd_kcontrol_new snd_bt87x_capture_source = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = snd_bt87x_capture_source_info,
.get = snd_bt87x_capture_source_get,
.put = snd_bt87x_capture_source_put,
};
static int snd_bt87x_free(struct snd_bt87x *chip)
{
if (chip->mmio) {
snd_bt87x_stop(chip);
if (chip->irq >= 0)
synchronize_irq(chip->irq);
iounmap(chip->mmio);
}
if (chip->irq >= 0)
free_irq(chip->irq, chip);
pci_release_regions(chip->pci);
pci_disable_device(chip->pci);
kfree(chip);
return 0;
}
static int snd_bt87x_dev_free(struct snd_device *device)
{
struct snd_bt87x *chip = device->device_data;
return snd_bt87x_free(chip);
}
static int __devinit snd_bt87x_pcm(struct snd_bt87x *chip, int device, char *name)
{
int err;
struct snd_pcm *pcm;
err = snd_pcm_new(chip->card, name, device, 0, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = chip;
strcpy(pcm->name, name);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_bt87x_pcm_ops);
return snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV_SG,
snd_dma_pci_data(chip->pci),
128 * 1024,
ALIGN(255 * 4092, 1024));
}
static int __devinit snd_bt87x_create(struct snd_card *card,
struct pci_dev *pci,
struct snd_bt87x **rchip)
{
struct snd_bt87x *chip;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_bt87x_dev_free
};
*rchip = NULL;
err = pci_enable_device(pci);
if (err < 0)
return err;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip) {
pci_disable_device(pci);
return -ENOMEM;
}
chip->card = card;
chip->pci = pci;
chip->irq = -1;
spin_lock_init(&chip->reg_lock);
if ((err = pci_request_regions(pci, "Bt87x audio")) < 0) {
kfree(chip);
pci_disable_device(pci);
return err;
}
chip->mmio = ioremap_nocache(pci_resource_start(pci, 0),
pci_resource_len(pci, 0));
if (!chip->mmio) {
snd_bt87x_free(chip);
snd_printk(KERN_ERR "cannot remap io memory\n");
return -ENOMEM;
}
chip->reg_control = CTL_DA_ES2 | CTL_PKTP_16 | (15 << CTL_DA_SDR_SHIFT);
chip->interrupt_mask = MY_INTERRUPTS;
snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
snd_bt87x_writel(chip, REG_INT_MASK, 0);
snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS);
if (request_irq(pci->irq, snd_bt87x_interrupt, IRQF_SHARED,
"Bt87x audio", chip)) {
snd_bt87x_free(chip);
snd_printk(KERN_ERR "cannot grab irq\n");
return -EBUSY;
}
chip->irq = pci->irq;
pci_set_master(pci);
synchronize_irq(chip->irq);
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
if (err < 0) {
snd_bt87x_free(chip);
return err;
}
snd_card_set_dev(card, &pci->dev);
*rchip = chip;
return 0;
}
#define BT_DEVICE(chip, subvend, subdev, rate) \
{ .vendor = PCI_VENDOR_ID_BROOKTREE, \
.device = chip, \
.subvendor = subvend, .subdevice = subdev, \
.driver_data = rate }
/* driver_data is the default digital_rate value for that device */
static struct pci_device_id snd_bt87x_ids[] = {
/* Hauppauge WinTV series */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0x13eb, 32000),
/* Hauppauge WinTV series */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, 0x0070, 0x13eb, 32000),
/* Viewcast Osprey 200 */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0xff01, 44100),
/* Viewcast Osprey 440 (rate is configurable via gpio) */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0xff07, 32000),
/* ATI TV-Wonder */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1002, 0x0001, 32000),
/* Leadtek Winfast tv 2000xp delux */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x107d, 0x6606, 32000),
/* Voodoo TV 200 */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x121a, 0x3000, 32000),
/* AVerMedia Studio No. 103, 203, ...? */
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1461, 0x0003, 48000),
{ }
};
MODULE_DEVICE_TABLE(pci, snd_bt87x_ids);
/* cards known not to have audio
* (DVB cards use the audio function to transfer MPEG data) */
static struct {
unsigned short subvendor, subdevice;
} blacklist[] __devinitdata = {
{0x0071, 0x0101}, /* Nebula Electronics DigiTV */
{0x11bd, 0x001c}, /* Pinnacle PCTV Sat */
{0x11bd, 0x0026}, /* Pinnacle PCTV SAT CI */
{0x1461, 0x0761}, /* AVermedia AverTV DVB-T */
{0x1461, 0x0771}, /* AVermedia DVB-T 771 */
{0x1822, 0x0001}, /* Twinhan VisionPlus DVB-T */
{0x18ac, 0xd500}, /* DVICO FusionHDTV 5 Lite */
{0x18ac, 0xdb10}, /* DVICO FusionHDTV DVB-T Lite */
{0x18ac, 0xdb11}, /* Ultraview DVB-T Lite */
{0x270f, 0xfc00}, /* Chaintech Digitop DST-1000 DVB-S */
{0x7063, 0x2000}, /* pcHDTV HD-2000 TV */
};
static struct pci_driver driver;
/* return the rate of the card, or a negative value if it's blacklisted */
static int __devinit snd_bt87x_detect_card(struct pci_dev *pci)
{
int i;
const struct pci_device_id *supported;
supported = pci_match_device(&driver, pci);
if (supported && supported->driver_data > 0)
return supported->driver_data;
for (i = 0; i < ARRAY_SIZE(blacklist); ++i)
if (blacklist[i].subvendor == pci->subsystem_vendor &&
blacklist[i].subdevice == pci->subsystem_device) {
snd_printdd(KERN_INFO "card %#04x-%#04x:%#04x has no audio\n",
pci->device, pci->subsystem_vendor, pci->subsystem_device);
return -EBUSY;
}
snd_printk(KERN_INFO "unknown card %#04x-%#04x:%#04x, using default rate 32000\n",
pci->device, pci->subsystem_vendor, pci->subsystem_device);
snd_printk(KERN_DEBUG "please mail id, board name, and, "
"if it works, the correct digital_rate option to "
"<alsa-devel@alsa-project.org>\n");
return 32000; /* default rate */
}
static int __devinit snd_bt87x_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct snd_bt87x *chip;
int err, rate;
rate = pci_id->driver_data;
if (! rate)
if ((rate = snd_bt87x_detect_card(pci)) <= 0)
return -ENODEV;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
++dev;
return -ENOENT;
}
card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
if (!card)
return -ENOMEM;
err = snd_bt87x_create(card, pci, &chip);
if (err < 0)
goto _error;
if (digital_rate[dev] > 0)
chip->dig_rate = digital_rate[dev];
else
chip->dig_rate = rate;
err = snd_bt87x_pcm(chip, DEVICE_DIGITAL, "Bt87x Digital");
if (err < 0)
goto _error;
err = snd_bt87x_pcm(chip, DEVICE_ANALOG, "Bt87x Analog");
if (err < 0)
goto _error;
err = snd_ctl_add(card, snd_ctl_new1(&snd_bt87x_capture_volume, chip));
if (err < 0)
goto _error;
err = snd_ctl_add(card, snd_ctl_new1(&snd_bt87x_capture_boost, chip));
if (err < 0)
goto _error;
err = snd_ctl_add(card, snd_ctl_new1(&snd_bt87x_capture_source, chip));
if (err < 0)
goto _error;
strcpy(card->driver, "Bt87x");
sprintf(card->shortname, "Brooktree Bt%x", pci->device);
sprintf(card->longname, "%s at %#llx, irq %i",
card->shortname, (unsigned long long)pci_resource_start(pci, 0),
chip->irq);
strcpy(card->mixername, "Bt87x");
err = snd_card_register(card);
if (err < 0)
goto _error;
pci_set_drvdata(pci, card);
++dev;
return 0;
_error:
snd_card_free(card);
return err;
}
static void __devexit snd_bt87x_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
pci_set_drvdata(pci, NULL);
}
/* default entries for all Bt87x cards - it's not exported */
/* driver_data is set to 0 to call detection */
static struct pci_device_id snd_bt87x_default_ids[] __devinitdata = {
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, PCI_ANY_ID, PCI_ANY_ID, 0),
BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, PCI_ANY_ID, PCI_ANY_ID, 0),
{ }
};
static struct pci_driver driver = {
.name = "Bt87x",
.id_table = snd_bt87x_ids,
.probe = snd_bt87x_probe,
.remove = __devexit_p(snd_bt87x_remove),
};
static int __init alsa_card_bt87x_init(void)
{
if (load_all)
driver.id_table = snd_bt87x_default_ids;
return pci_register_driver(&driver);
}
static void __exit alsa_card_bt87x_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_bt87x_init)
module_exit(alsa_card_bt87x_exit)