linux_dsm_epyc7002/drivers/gpu/drm/arm/malidp_crtc.c
Sam Ravnborg 535d1b947b drm/arm: drop use of drmP.h
Drop use of the deprecated drmP.h header file.

While touching the list of include files divide them
into blocks and sort within each block.
Fix fallout.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: Thierry Reding <treding@nvidia.com>
Cc: Liviu Dudau <liviu.dudau@arm.com>
Cc: Brian Starkey <brian.starkey@arm.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: malidp@foss.arm.com
Link: https://patchwork.freedesktop.org/patch/msgid/20190804094132.29463-5-sam@ravnborg.org
2019-08-14 18:31:15 +02:00

558 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
* Author: Liviu Dudau <Liviu.Dudau@arm.com>
*
* ARM Mali DP500/DP550/DP650 driver (crtc operations)
*/
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <video/videomode.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "malidp_drv.h"
#include "malidp_hw.h"
static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
/*
* check that the hardware can drive the required clock rate,
* but skip the check if the clock is meant to be disabled (req_rate = 0)
*/
long rate, req_rate = mode->crtc_clock * 1000;
if (req_rate) {
rate = clk_round_rate(hwdev->pxlclk, req_rate);
if (rate != req_rate) {
DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
req_rate);
return MODE_NOCLOCK;
}
}
return MODE_OK;
}
static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
struct videomode vm;
int err = pm_runtime_get_sync(crtc->dev->dev);
if (err < 0) {
DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
return;
}
drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
clk_prepare_enable(hwdev->pxlclk);
/* We rely on firmware to set mclk to a sensible level. */
clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
hwdev->hw->modeset(hwdev, &vm);
hwdev->hw->leave_config_mode(hwdev);
drm_crtc_vblank_on(crtc);
}
static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
int err;
/* always disable planes on the CRTC that is being turned off */
drm_atomic_helper_disable_planes_on_crtc(old_state, false);
drm_crtc_vblank_off(crtc);
hwdev->hw->enter_config_mode(hwdev);
clk_disable_unprepare(hwdev->pxlclk);
err = pm_runtime_put(crtc->dev->dev);
if (err < 0) {
DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err);
}
}
static const struct gamma_curve_segment {
u16 start;
u16 end;
} segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
/* sector 0 */
{ 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 },
{ 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 },
{ 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 },
{ 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 },
/* sector 1 */
{ 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 },
/* sector 2 */
{ 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 },
/* sector 3 */
{ 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 },
/* sector 4 */
{ 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 },
/* sector 5 */
{ 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 },
/* sector 6 */
{ 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 },
{ 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
{ 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
{ 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
{ 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
{ 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
{ 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
};
#define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
{
struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
int i;
for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
u32 a, b, delta_in, out_start, out_end;
delta_in = segments[i].end - segments[i].start;
/* DP has 12-bit internal precision for its LUTs. */
out_start = drm_color_lut_extract(lut[segments[i].start].green,
12);
out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
b = out_start;
coeffs[i] = DE_COEFTAB_DATA(a, b);
}
}
/*
* Check if there is a new gamma LUT and if it is of an acceptable size. Also,
* reject any LUTs that use distinct red, green, and blue curves.
*/
static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
struct drm_color_lut *lut;
size_t lut_size;
int i;
if (!state->color_mgmt_changed || !state->gamma_lut)
return 0;
if (crtc->state->gamma_lut &&
(crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
return 0;
if (state->gamma_lut->length % sizeof(struct drm_color_lut))
return -EINVAL;
lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
if (lut_size != MALIDP_GAMMA_LUT_SIZE)
return -EINVAL;
lut = (struct drm_color_lut *)state->gamma_lut->data;
for (i = 0; i < lut_size; ++i)
if (!((lut[i].red == lut[i].green) &&
(lut[i].red == lut[i].blue)))
return -EINVAL;
if (!state->mode_changed) {
int ret;
state->mode_changed = true;
/*
* Kerneldoc for drm_atomic_helper_check_modeset mandates that
* it be invoked when the driver sets ->mode_changed. Since
* changing the gamma LUT doesn't depend on any external
* resources, it is safe to call it only once.
*/
ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
if (ret)
return ret;
}
malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
return 0;
}
/*
* Check if there is a new CTM and if it contains valid input. Valid here means
* that the number is inside the representable range for a Q3.12 number,
* excluding truncating the fractional part of the input data.
*
* The COLORADJ registers can be changed atomically.
*/
static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
struct drm_color_ctm *ctm;
int i;
if (!state->color_mgmt_changed)
return 0;
if (!state->ctm)
return 0;
if (crtc->state->ctm && (crtc->state->ctm->base.id ==
state->ctm->base.id))
return 0;
/*
* The size of the ctm is checked in
* drm_atomic_replace_property_blob_from_id.
*/
ctm = (struct drm_color_ctm *)state->ctm->data;
for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
/* Convert from S31.32 to Q3.12. */
s64 val = ctm->matrix[i];
u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
GENMASK_ULL(14, 0);
/*
* Convert to 2s complement and check the destination's top bit
* for overflow. NB: Can't check before converting or it'd
* incorrectly reject the case:
* sign == 1
* mag == 0x2000
*/
if (val & BIT_ULL(63))
mag = ~mag + 1;
if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
return -EINVAL;
mc->coloradj_coeffs[i] = mag;
}
return 0;
}
static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
struct malidp_se_config *s = &cs->scaler_config;
struct drm_plane *plane;
struct videomode vm;
const struct drm_plane_state *pstate;
u32 h_upscale_factor = 0; /* U16.16 */
u32 v_upscale_factor = 0; /* U16.16 */
u8 scaling = cs->scaled_planes_mask;
int ret;
if (!scaling) {
s->scale_enable = false;
goto mclk_calc;
}
/* The scaling engine can only handle one plane at a time. */
if (scaling & (scaling - 1))
return -EINVAL;
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
struct malidp_plane *mp = to_malidp_plane(plane);
u32 phase;
if (!(mp->layer->id & scaling))
continue;
/*
* Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
* to get the U16.16 result.
*/
h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
pstate->src_w);
v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
pstate->src_h);
s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
(v_upscale_factor >> 16) >= 2);
if (pstate->rotation & MALIDP_ROTATED_MASK) {
s->input_w = pstate->src_h >> 16;
s->input_h = pstate->src_w >> 16;
} else {
s->input_w = pstate->src_w >> 16;
s->input_h = pstate->src_h >> 16;
}
s->output_w = pstate->crtc_w;
s->output_h = pstate->crtc_h;
#define SE_N_PHASE 4
#define SE_SHIFT_N_PHASE 12
/* Calculate initial_phase and delta_phase for horizontal. */
phase = s->input_w;
s->h_init_phase =
((phase << SE_N_PHASE) / s->output_w + 1) / 2;
phase = s->input_w;
phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
s->h_delta_phase = phase / s->output_w;
/* Same for vertical. */
phase = s->input_h;
s->v_init_phase =
((phase << SE_N_PHASE) / s->output_h + 1) / 2;
phase = s->input_h;
phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
s->v_delta_phase = phase / s->output_h;
#undef SE_N_PHASE
#undef SE_SHIFT_N_PHASE
s->plane_src_id = mp->layer->id;
}
s->scale_enable = true;
s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
mclk_calc:
drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm);
if (ret < 0)
return -EINVAL;
return 0;
}
static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
struct drm_plane *plane;
const struct drm_plane_state *pstate;
u32 rot_mem_free, rot_mem_usable;
int rotated_planes = 0;
int ret;
/*
* check if there is enough rotation memory available for planes
* that need 90° and 270° rotion or planes that are compressed.
* Each plane has set its required memory size in the ->plane_check()
* callback, here we only make sure that the sums are less that the
* total usable memory.
*
* The rotation memory allocation algorithm (for each plane):
* a. If no more rotated or compressed planes exist, all remaining
* rotate memory in the bank is available for use by the plane.
* b. If other rotated or compressed planes exist, and plane's
* layer ID is DE_VIDEO1, it can use all the memory from first bank
* if secondary rotation memory bank is available, otherwise it can
* use up to half the bank's memory.
* c. If other rotated or compressed planes exist, and plane's layer ID
* is not DE_VIDEO1, it can use half of the available memory.
*
* Note: this algorithm assumes that the order in which the planes are
* checked always has DE_VIDEO1 plane first in the list if it is
* rotated. Because that is how we create the planes in the first
* place, under current DRM version things work, but if ever the order
* in which drm_atomic_crtc_state_for_each_plane() iterates over planes
* changes, we need to pre-sort the planes before validation.
*/
/* first count the number of rotated planes */
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
struct drm_framebuffer *fb = pstate->fb;
if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier)
rotated_planes++;
}
rot_mem_free = hwdev->rotation_memory[0];
/*
* if we have more than 1 plane using rotation memory, use the second
* block of rotation memory as well
*/
if (rotated_planes > 1)
rot_mem_free += hwdev->rotation_memory[1];
/* now validate the rotation memory requirements */
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
struct malidp_plane *mp = to_malidp_plane(plane);
struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
struct drm_framebuffer *fb = pstate->fb;
if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) {
/* process current plane */
rotated_planes--;
if (!rotated_planes) {
/* no more rotated planes, we can use what's left */
rot_mem_usable = rot_mem_free;
} else {
if ((mp->layer->id != DE_VIDEO1) ||
(hwdev->rotation_memory[1] == 0))
rot_mem_usable = rot_mem_free / 2;
else
rot_mem_usable = hwdev->rotation_memory[0];
}
rot_mem_free -= rot_mem_usable;
if (ms->rotmem_size > rot_mem_usable)
return -EINVAL;
}
}
/* If only the writeback routing has changed, we don't need a modeset */
if (state->connectors_changed) {
u32 old_mask = crtc->state->connector_mask;
u32 new_mask = state->connector_mask;
if ((old_mask ^ new_mask) ==
(1 << drm_connector_index(&malidp->mw_connector.base)))
state->connectors_changed = false;
}
ret = malidp_crtc_atomic_check_gamma(crtc, state);
ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state);
ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state);
return ret;
}
static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
.mode_valid = malidp_crtc_mode_valid,
.atomic_check = malidp_crtc_atomic_check,
.atomic_enable = malidp_crtc_atomic_enable,
.atomic_disable = malidp_crtc_atomic_disable,
};
static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct malidp_crtc_state *state, *old_state;
if (WARN_ON(!crtc->state))
return NULL;
old_state = to_malidp_crtc_state(crtc->state);
state = kmalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
sizeof(state->gamma_coeffs));
memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
sizeof(state->coloradj_coeffs));
memcpy(&state->scaler_config, &old_state->scaler_config,
sizeof(state->scaler_config));
state->scaled_planes_mask = 0;
return &state->base;
}
static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_crtc_state *mali_state = NULL;
if (state) {
mali_state = to_malidp_crtc_state(state);
__drm_atomic_helper_crtc_destroy_state(state);
}
kfree(mali_state);
}
static void malidp_crtc_reset(struct drm_crtc *crtc)
{
struct malidp_crtc_state *state =
kzalloc(sizeof(*state), GFP_KERNEL);
if (crtc->state)
malidp_crtc_destroy_state(crtc, crtc->state);
__drm_atomic_helper_crtc_reset(crtc, &state->base);
}
static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
hwdev->hw->map.de_irq_map.vsync_irq);
return 0;
}
static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
hwdev->hw->map.de_irq_map.vsync_irq);
}
static const struct drm_crtc_funcs malidp_crtc_funcs = {
.gamma_set = drm_atomic_helper_legacy_gamma_set,
.destroy = drm_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.reset = malidp_crtc_reset,
.atomic_duplicate_state = malidp_crtc_duplicate_state,
.atomic_destroy_state = malidp_crtc_destroy_state,
.enable_vblank = malidp_crtc_enable_vblank,
.disable_vblank = malidp_crtc_disable_vblank,
};
int malidp_crtc_init(struct drm_device *drm)
{
struct malidp_drm *malidp = drm->dev_private;
struct drm_plane *primary = NULL, *plane;
int ret;
ret = malidp_de_planes_init(drm);
if (ret < 0) {
DRM_ERROR("Failed to initialise planes\n");
return ret;
}
drm_for_each_plane(plane, drm) {
if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
primary = plane;
break;
}
}
if (!primary) {
DRM_ERROR("no primary plane found\n");
return -EINVAL;
}
ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
&malidp_crtc_funcs, NULL);
if (ret)
return ret;
drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
/* No inverse-gamma: it is per-plane. */
drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
malidp_se_set_enh_coeffs(malidp->dev);
return 0;
}