linux_dsm_epyc7002/drivers/net/caif/caif_spi.c
Linus Torvalds 5518b69b76 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
 "Reasonably busy this cycle, but perhaps not as busy as in the 4.12
  merge window:

   1) Several optimizations for UDP processing under high load from
      Paolo Abeni.

   2) Support pacing internally in TCP when using the sch_fq packet
      scheduler for this is not practical. From Eric Dumazet.

   3) Support mutliple filter chains per qdisc, from Jiri Pirko.

   4) Move to 1ms TCP timestamp clock, from Eric Dumazet.

   5) Add batch dequeueing to vhost_net, from Jason Wang.

   6) Flesh out more completely SCTP checksum offload support, from
      Davide Caratti.

   7) More plumbing of extended netlink ACKs, from David Ahern, Pablo
      Neira Ayuso, and Matthias Schiffer.

   8) Add devlink support to nfp driver, from Simon Horman.

   9) Add RTM_F_FIB_MATCH flag to RTM_GETROUTE queries, from Roopa
      Prabhu.

  10) Add stack depth tracking to BPF verifier and use this information
      in the various eBPF JITs. From Alexei Starovoitov.

  11) Support XDP on qed device VFs, from Yuval Mintz.

  12) Introduce BPF PROG ID for better introspection of installed BPF
      programs. From Martin KaFai Lau.

  13) Add bpf_set_hash helper for TC bpf programs, from Daniel Borkmann.

  14) For loads, allow narrower accesses in bpf verifier checking, from
      Yonghong Song.

  15) Support MIPS in the BPF selftests and samples infrastructure, the
      MIPS eBPF JIT will be merged in via the MIPS GIT tree. From David
      Daney.

  16) Support kernel based TLS, from Dave Watson and others.

  17) Remove completely DST garbage collection, from Wei Wang.

  18) Allow installing TCP MD5 rules using prefixes, from Ivan
      Delalande.

  19) Add XDP support to Intel i40e driver, from Björn Töpel

  20) Add support for TC flower offload in nfp driver, from Simon
      Horman, Pieter Jansen van Vuuren, Benjamin LaHaise, Jakub
      Kicinski, and Bert van Leeuwen.

  21) IPSEC offloading support in mlx5, from Ilan Tayari.

  22) Add HW PTP support to macb driver, from Rafal Ozieblo.

  23) Networking refcount_t conversions, From Elena Reshetova.

  24) Add sock_ops support to BPF, from Lawrence Brako. This is useful
      for tuning the TCP sockopt settings of a group of applications,
      currently via CGROUPs"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1899 commits)
  net: phy: dp83867: add workaround for incorrect RX_CTRL pin strap
  dt-bindings: phy: dp83867: provide a workaround for incorrect RX_CTRL pin strap
  cxgb4: Support for get_ts_info ethtool method
  cxgb4: Add PTP Hardware Clock (PHC) support
  cxgb4: time stamping interface for PTP
  nfp: default to chained metadata prepend format
  nfp: remove legacy MAC address lookup
  nfp: improve order of interfaces in breakout mode
  net: macb: remove extraneous return when MACB_EXT_DESC is defined
  bpf: add missing break in for the TCP_BPF_SNDCWND_CLAMP case
  bpf: fix return in load_bpf_file
  mpls: fix rtm policy in mpls_getroute
  net, ax25: convert ax25_cb.refcount from atomic_t to refcount_t
  net, ax25: convert ax25_route.refcount from atomic_t to refcount_t
  net, ax25: convert ax25_uid_assoc.refcount from atomic_t to refcount_t
  net, sctp: convert sctp_ep_common.refcnt from atomic_t to refcount_t
  net, sctp: convert sctp_transport.refcnt from atomic_t to refcount_t
  net, sctp: convert sctp_chunk.refcnt from atomic_t to refcount_t
  net, sctp: convert sctp_datamsg.refcnt from atomic_t to refcount_t
  net, sctp: convert sctp_auth_bytes.refcnt from atomic_t to refcount_t
  ...
2017-07-05 12:31:59 -07:00

873 lines
21 KiB
C

/*
* Copyright (C) ST-Ericsson AB 2010
* Author: Daniel Martensson
* License terms: GNU General Public License (GPL) version 2.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/string.h>
#include <linux/workqueue.h>
#include <linux/completion.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/debugfs.h>
#include <linux/if_arp.h>
#include <net/caif/caif_layer.h>
#include <net/caif/caif_spi.h>
#ifndef CONFIG_CAIF_SPI_SYNC
#define FLAVOR "Flavour: Vanilla.\n"
#else
#define FLAVOR "Flavour: Master CMD&LEN at start.\n"
#endif /* CONFIG_CAIF_SPI_SYNC */
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Daniel Martensson");
MODULE_DESCRIPTION("CAIF SPI driver");
/* Returns the number of padding bytes for alignment. */
#define PAD_POW2(x, pow) ((((x)&((pow)-1))==0) ? 0 : (((pow)-((x)&((pow)-1)))))
static bool spi_loop;
module_param(spi_loop, bool, S_IRUGO);
MODULE_PARM_DESC(spi_loop, "SPI running in loopback mode.");
/* SPI frame alignment. */
module_param(spi_frm_align, int, S_IRUGO);
MODULE_PARM_DESC(spi_frm_align, "SPI frame alignment.");
/*
* SPI padding options.
* Warning: must be a base of 2 (& operation used) and can not be zero !
*/
module_param(spi_up_head_align, int, S_IRUGO);
MODULE_PARM_DESC(spi_up_head_align, "SPI uplink head alignment.");
module_param(spi_up_tail_align, int, S_IRUGO);
MODULE_PARM_DESC(spi_up_tail_align, "SPI uplink tail alignment.");
module_param(spi_down_head_align, int, S_IRUGO);
MODULE_PARM_DESC(spi_down_head_align, "SPI downlink head alignment.");
module_param(spi_down_tail_align, int, S_IRUGO);
MODULE_PARM_DESC(spi_down_tail_align, "SPI downlink tail alignment.");
#ifdef CONFIG_ARM
#define BYTE_HEX_FMT "%02X"
#else
#define BYTE_HEX_FMT "%02hhX"
#endif
#define SPI_MAX_PAYLOAD_SIZE 4096
/*
* Threshold values for the SPI packet queue. Flowcontrol will be asserted
* when the number of packets exceeds HIGH_WATER_MARK. It will not be
* deasserted before the number of packets drops below LOW_WATER_MARK.
*/
#define LOW_WATER_MARK 100
#define HIGH_WATER_MARK (LOW_WATER_MARK*5)
#ifdef CONFIG_UML
/*
* We sometimes use UML for debugging, but it cannot handle
* dma_alloc_coherent so we have to wrap it.
*/
static inline void *dma_alloc(dma_addr_t *daddr)
{
return kmalloc(SPI_DMA_BUF_LEN, GFP_KERNEL);
}
static inline void dma_free(void *cpu_addr, dma_addr_t handle)
{
kfree(cpu_addr);
}
#else
static inline void *dma_alloc(dma_addr_t *daddr)
{
return dma_alloc_coherent(NULL, SPI_DMA_BUF_LEN, daddr,
GFP_KERNEL);
}
static inline void dma_free(void *cpu_addr, dma_addr_t handle)
{
dma_free_coherent(NULL, SPI_DMA_BUF_LEN, cpu_addr, handle);
}
#endif /* CONFIG_UML */
#ifdef CONFIG_DEBUG_FS
#define DEBUGFS_BUF_SIZE 4096
static struct dentry *dbgfs_root;
static inline void driver_debugfs_create(void)
{
dbgfs_root = debugfs_create_dir(cfspi_spi_driver.driver.name, NULL);
}
static inline void driver_debugfs_remove(void)
{
debugfs_remove(dbgfs_root);
}
static inline void dev_debugfs_rem(struct cfspi *cfspi)
{
debugfs_remove(cfspi->dbgfs_frame);
debugfs_remove(cfspi->dbgfs_state);
debugfs_remove(cfspi->dbgfs_dir);
}
static ssize_t dbgfs_state(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
char *buf;
int len = 0;
ssize_t size;
struct cfspi *cfspi = file->private_data;
buf = kzalloc(DEBUGFS_BUF_SIZE, GFP_KERNEL);
if (!buf)
return 0;
/* Print out debug information. */
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"CAIF SPI debug information:\n");
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len), FLAVOR);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"STATE: %d\n", cfspi->dbg_state);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Previous CMD: 0x%x\n", cfspi->pcmd);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Current CMD: 0x%x\n", cfspi->cmd);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Previous TX len: %d\n", cfspi->tx_ppck_len);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Previous RX len: %d\n", cfspi->rx_ppck_len);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Current TX len: %d\n", cfspi->tx_cpck_len);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Current RX len: %d\n", cfspi->rx_cpck_len);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Next TX len: %d\n", cfspi->tx_npck_len);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Next RX len: %d\n", cfspi->rx_npck_len);
if (len > DEBUGFS_BUF_SIZE)
len = DEBUGFS_BUF_SIZE;
size = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return size;
}
static ssize_t print_frame(char *buf, size_t size, char *frm,
size_t count, size_t cut)
{
int len = 0;
int i;
for (i = 0; i < count; i++) {
len += snprintf((buf + len), (size - len),
"[0x" BYTE_HEX_FMT "]",
frm[i]);
if ((i == cut) && (count > (cut * 2))) {
/* Fast forward. */
i = count - cut;
len += snprintf((buf + len), (size - len),
"--- %zu bytes skipped ---\n",
count - (cut * 2));
}
if ((!(i % 10)) && i) {
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"\n");
}
}
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len), "\n");
return len;
}
static ssize_t dbgfs_frame(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
char *buf;
int len = 0;
ssize_t size;
struct cfspi *cfspi;
cfspi = file->private_data;
buf = kzalloc(DEBUGFS_BUF_SIZE, GFP_KERNEL);
if (!buf)
return 0;
/* Print out debug information. */
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Current frame:\n");
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Tx data (Len: %d):\n", cfspi->tx_cpck_len);
len += print_frame((buf + len), (DEBUGFS_BUF_SIZE - len),
cfspi->xfer.va_tx[0],
(cfspi->tx_cpck_len + SPI_CMD_SZ), 100);
len += snprintf((buf + len), (DEBUGFS_BUF_SIZE - len),
"Rx data (Len: %d):\n", cfspi->rx_cpck_len);
len += print_frame((buf + len), (DEBUGFS_BUF_SIZE - len),
cfspi->xfer.va_rx,
(cfspi->rx_cpck_len + SPI_CMD_SZ), 100);
size = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return size;
}
static const struct file_operations dbgfs_state_fops = {
.open = simple_open,
.read = dbgfs_state,
.owner = THIS_MODULE
};
static const struct file_operations dbgfs_frame_fops = {
.open = simple_open,
.read = dbgfs_frame,
.owner = THIS_MODULE
};
static inline void dev_debugfs_add(struct cfspi *cfspi)
{
cfspi->dbgfs_dir = debugfs_create_dir(cfspi->pdev->name, dbgfs_root);
cfspi->dbgfs_state = debugfs_create_file("state", S_IRUGO,
cfspi->dbgfs_dir, cfspi,
&dbgfs_state_fops);
cfspi->dbgfs_frame = debugfs_create_file("frame", S_IRUGO,
cfspi->dbgfs_dir, cfspi,
&dbgfs_frame_fops);
}
inline void cfspi_dbg_state(struct cfspi *cfspi, int state)
{
cfspi->dbg_state = state;
};
#else
static inline void driver_debugfs_create(void)
{
}
static inline void driver_debugfs_remove(void)
{
}
static inline void dev_debugfs_add(struct cfspi *cfspi)
{
}
static inline void dev_debugfs_rem(struct cfspi *cfspi)
{
}
inline void cfspi_dbg_state(struct cfspi *cfspi, int state)
{
}
#endif /* CONFIG_DEBUG_FS */
static LIST_HEAD(cfspi_list);
static spinlock_t cfspi_list_lock;
/* SPI uplink head alignment. */
static ssize_t up_head_align_show(struct device_driver *driver, char *buf)
{
return sprintf(buf, "%d\n", spi_up_head_align);
}
static DRIVER_ATTR_RO(up_head_align);
/* SPI uplink tail alignment. */
static ssize_t up_tail_align_show(struct device_driver *driver, char *buf)
{
return sprintf(buf, "%d\n", spi_up_tail_align);
}
static DRIVER_ATTR_RO(up_tail_align);
/* SPI downlink head alignment. */
static ssize_t down_head_align_show(struct device_driver *driver, char *buf)
{
return sprintf(buf, "%d\n", spi_down_head_align);
}
static DRIVER_ATTR_RO(down_head_align);
/* SPI downlink tail alignment. */
static ssize_t down_tail_align_show(struct device_driver *driver, char *buf)
{
return sprintf(buf, "%d\n", spi_down_tail_align);
}
static DRIVER_ATTR_RO(down_tail_align);
/* SPI frame alignment. */
static ssize_t frame_align_show(struct device_driver *driver, char *buf)
{
return sprintf(buf, "%d\n", spi_frm_align);
}
static DRIVER_ATTR_RO(frame_align);
int cfspi_xmitfrm(struct cfspi *cfspi, u8 *buf, size_t len)
{
u8 *dst = buf;
caif_assert(buf);
if (cfspi->slave && !cfspi->slave_talked)
cfspi->slave_talked = true;
do {
struct sk_buff *skb;
struct caif_payload_info *info;
int spad = 0;
int epad;
skb = skb_dequeue(&cfspi->chead);
if (!skb)
break;
/*
* Calculate length of frame including SPI padding.
* The payload position is found in the control buffer.
*/
info = (struct caif_payload_info *)&skb->cb;
/*
* Compute head offset i.e. number of bytes to add to
* get the start of the payload aligned.
*/
if (spi_up_head_align > 1) {
spad = 1 + PAD_POW2((info->hdr_len + 1), spi_up_head_align);
*dst = (u8)(spad - 1);
dst += spad;
}
/* Copy in CAIF frame. */
skb_copy_bits(skb, 0, dst, skb->len);
dst += skb->len;
cfspi->ndev->stats.tx_packets++;
cfspi->ndev->stats.tx_bytes += skb->len;
/*
* Compute tail offset i.e. number of bytes to add to
* get the complete CAIF frame aligned.
*/
epad = PAD_POW2((skb->len + spad), spi_up_tail_align);
dst += epad;
dev_kfree_skb(skb);
} while ((dst - buf) < len);
return dst - buf;
}
int cfspi_xmitlen(struct cfspi *cfspi)
{
struct sk_buff *skb = NULL;
int frm_len = 0;
int pkts = 0;
/*
* Decommit previously committed frames.
* skb_queue_splice_tail(&cfspi->chead,&cfspi->qhead)
*/
while (skb_peek(&cfspi->chead)) {
skb = skb_dequeue_tail(&cfspi->chead);
skb_queue_head(&cfspi->qhead, skb);
}
do {
struct caif_payload_info *info = NULL;
int spad = 0;
int epad = 0;
skb = skb_dequeue(&cfspi->qhead);
if (!skb)
break;
/*
* Calculate length of frame including SPI padding.
* The payload position is found in the control buffer.
*/
info = (struct caif_payload_info *)&skb->cb;
/*
* Compute head offset i.e. number of bytes to add to
* get the start of the payload aligned.
*/
if (spi_up_head_align > 1)
spad = 1 + PAD_POW2((info->hdr_len + 1), spi_up_head_align);
/*
* Compute tail offset i.e. number of bytes to add to
* get the complete CAIF frame aligned.
*/
epad = PAD_POW2((skb->len + spad), spi_up_tail_align);
if ((skb->len + spad + epad + frm_len) <= CAIF_MAX_SPI_FRAME) {
skb_queue_tail(&cfspi->chead, skb);
pkts++;
frm_len += skb->len + spad + epad;
} else {
/* Put back packet. */
skb_queue_head(&cfspi->qhead, skb);
break;
}
} while (pkts <= CAIF_MAX_SPI_PKTS);
/*
* Send flow on if previously sent flow off
* and now go below the low water mark
*/
if (cfspi->flow_off_sent && cfspi->qhead.qlen < cfspi->qd_low_mark &&
cfspi->cfdev.flowctrl) {
cfspi->flow_off_sent = 0;
cfspi->cfdev.flowctrl(cfspi->ndev, 1);
}
return frm_len;
}
static void cfspi_ss_cb(bool assert, struct cfspi_ifc *ifc)
{
struct cfspi *cfspi = (struct cfspi *)ifc->priv;
/*
* The slave device is the master on the link. Interrupts before the
* slave has transmitted are considered spurious.
*/
if (cfspi->slave && !cfspi->slave_talked) {
printk(KERN_WARNING "CFSPI: Spurious SS interrupt.\n");
return;
}
if (!in_interrupt())
spin_lock(&cfspi->lock);
if (assert) {
set_bit(SPI_SS_ON, &cfspi->state);
set_bit(SPI_XFER, &cfspi->state);
} else {
set_bit(SPI_SS_OFF, &cfspi->state);
}
if (!in_interrupt())
spin_unlock(&cfspi->lock);
/* Wake up the xfer thread. */
if (assert)
wake_up_interruptible(&cfspi->wait);
}
static void cfspi_xfer_done_cb(struct cfspi_ifc *ifc)
{
struct cfspi *cfspi = (struct cfspi *)ifc->priv;
/* Transfer done, complete work queue */
complete(&cfspi->comp);
}
static int cfspi_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct cfspi *cfspi = NULL;
unsigned long flags;
if (!dev)
return -EINVAL;
cfspi = netdev_priv(dev);
skb_queue_tail(&cfspi->qhead, skb);
spin_lock_irqsave(&cfspi->lock, flags);
if (!test_and_set_bit(SPI_XFER, &cfspi->state)) {
/* Wake up xfer thread. */
wake_up_interruptible(&cfspi->wait);
}
spin_unlock_irqrestore(&cfspi->lock, flags);
/* Send flow off if number of bytes is above high water mark */
if (!cfspi->flow_off_sent &&
cfspi->qhead.qlen > cfspi->qd_high_mark &&
cfspi->cfdev.flowctrl) {
cfspi->flow_off_sent = 1;
cfspi->cfdev.flowctrl(cfspi->ndev, 0);
}
return 0;
}
int cfspi_rxfrm(struct cfspi *cfspi, u8 *buf, size_t len)
{
u8 *src = buf;
caif_assert(buf != NULL);
do {
int res;
struct sk_buff *skb = NULL;
int spad = 0;
int epad = 0;
int pkt_len = 0;
/*
* Compute head offset i.e. number of bytes added to
* get the start of the payload aligned.
*/
if (spi_down_head_align > 1) {
spad = 1 + *src;
src += spad;
}
/* Read length of CAIF frame (little endian). */
pkt_len = *src;
pkt_len |= ((*(src+1)) << 8) & 0xFF00;
pkt_len += 2; /* Add FCS fields. */
/* Get a suitable caif packet and copy in data. */
skb = netdev_alloc_skb(cfspi->ndev, pkt_len + 1);
caif_assert(skb != NULL);
skb_put_data(skb, src, pkt_len);
src += pkt_len;
skb->protocol = htons(ETH_P_CAIF);
skb_reset_mac_header(skb);
/*
* Push received packet up the stack.
*/
if (!spi_loop)
res = netif_rx_ni(skb);
else
res = cfspi_xmit(skb, cfspi->ndev);
if (!res) {
cfspi->ndev->stats.rx_packets++;
cfspi->ndev->stats.rx_bytes += pkt_len;
} else
cfspi->ndev->stats.rx_dropped++;
/*
* Compute tail offset i.e. number of bytes added to
* get the complete CAIF frame aligned.
*/
epad = PAD_POW2((pkt_len + spad), spi_down_tail_align);
src += epad;
} while ((src - buf) < len);
return src - buf;
}
static int cfspi_open(struct net_device *dev)
{
netif_wake_queue(dev);
return 0;
}
static int cfspi_close(struct net_device *dev)
{
netif_stop_queue(dev);
return 0;
}
static int cfspi_init(struct net_device *dev)
{
int res = 0;
struct cfspi *cfspi = netdev_priv(dev);
/* Set flow info. */
cfspi->flow_off_sent = 0;
cfspi->qd_low_mark = LOW_WATER_MARK;
cfspi->qd_high_mark = HIGH_WATER_MARK;
/* Set slave info. */
if (!strncmp(cfspi_spi_driver.driver.name, "cfspi_sspi", 10)) {
cfspi->slave = true;
cfspi->slave_talked = false;
} else {
cfspi->slave = false;
cfspi->slave_talked = false;
}
/* Allocate DMA buffers. */
cfspi->xfer.va_tx[0] = dma_alloc(&cfspi->xfer.pa_tx[0]);
if (!cfspi->xfer.va_tx[0]) {
res = -ENODEV;
goto err_dma_alloc_tx_0;
}
cfspi->xfer.va_rx = dma_alloc(&cfspi->xfer.pa_rx);
if (!cfspi->xfer.va_rx) {
res = -ENODEV;
goto err_dma_alloc_rx;
}
/* Initialize the work queue. */
INIT_WORK(&cfspi->work, cfspi_xfer);
/* Initialize spin locks. */
spin_lock_init(&cfspi->lock);
/* Initialize flow control state. */
cfspi->flow_stop = false;
/* Initialize wait queue. */
init_waitqueue_head(&cfspi->wait);
/* Create work thread. */
cfspi->wq = create_singlethread_workqueue(dev->name);
if (!cfspi->wq) {
printk(KERN_WARNING "CFSPI: failed to create work queue.\n");
res = -ENODEV;
goto err_create_wq;
}
/* Initialize work queue. */
init_completion(&cfspi->comp);
/* Create debugfs entries. */
dev_debugfs_add(cfspi);
/* Set up the ifc. */
cfspi->ifc.ss_cb = cfspi_ss_cb;
cfspi->ifc.xfer_done_cb = cfspi_xfer_done_cb;
cfspi->ifc.priv = cfspi;
/* Add CAIF SPI device to list. */
spin_lock(&cfspi_list_lock);
list_add_tail(&cfspi->list, &cfspi_list);
spin_unlock(&cfspi_list_lock);
/* Schedule the work queue. */
queue_work(cfspi->wq, &cfspi->work);
return 0;
err_create_wq:
dma_free(cfspi->xfer.va_rx, cfspi->xfer.pa_rx);
err_dma_alloc_rx:
dma_free(cfspi->xfer.va_tx[0], cfspi->xfer.pa_tx[0]);
err_dma_alloc_tx_0:
return res;
}
static void cfspi_uninit(struct net_device *dev)
{
struct cfspi *cfspi = netdev_priv(dev);
/* Remove from list. */
spin_lock(&cfspi_list_lock);
list_del(&cfspi->list);
spin_unlock(&cfspi_list_lock);
cfspi->ndev = NULL;
/* Free DMA buffers. */
dma_free(cfspi->xfer.va_rx, cfspi->xfer.pa_rx);
dma_free(cfspi->xfer.va_tx[0], cfspi->xfer.pa_tx[0]);
set_bit(SPI_TERMINATE, &cfspi->state);
wake_up_interruptible(&cfspi->wait);
destroy_workqueue(cfspi->wq);
/* Destroy debugfs directory and files. */
dev_debugfs_rem(cfspi);
return;
}
static const struct net_device_ops cfspi_ops = {
.ndo_open = cfspi_open,
.ndo_stop = cfspi_close,
.ndo_init = cfspi_init,
.ndo_uninit = cfspi_uninit,
.ndo_start_xmit = cfspi_xmit
};
static void cfspi_setup(struct net_device *dev)
{
struct cfspi *cfspi = netdev_priv(dev);
dev->features = 0;
dev->netdev_ops = &cfspi_ops;
dev->type = ARPHRD_CAIF;
dev->flags = IFF_NOARP | IFF_POINTOPOINT;
dev->priv_flags |= IFF_NO_QUEUE;
dev->mtu = SPI_MAX_PAYLOAD_SIZE;
dev->needs_free_netdev = true;
skb_queue_head_init(&cfspi->qhead);
skb_queue_head_init(&cfspi->chead);
cfspi->cfdev.link_select = CAIF_LINK_HIGH_BANDW;
cfspi->cfdev.use_frag = false;
cfspi->cfdev.use_stx = false;
cfspi->cfdev.use_fcs = false;
cfspi->ndev = dev;
}
int cfspi_spi_probe(struct platform_device *pdev)
{
struct cfspi *cfspi = NULL;
struct net_device *ndev;
struct cfspi_dev *dev;
int res;
dev = (struct cfspi_dev *)pdev->dev.platform_data;
if (!dev)
return -ENODEV;
ndev = alloc_netdev(sizeof(struct cfspi), "cfspi%d",
NET_NAME_UNKNOWN, cfspi_setup);
if (!ndev)
return -ENOMEM;
cfspi = netdev_priv(ndev);
netif_stop_queue(ndev);
cfspi->ndev = ndev;
cfspi->pdev = pdev;
/* Assign the SPI device. */
cfspi->dev = dev;
/* Assign the device ifc to this SPI interface. */
dev->ifc = &cfspi->ifc;
/* Register network device. */
res = register_netdev(ndev);
if (res) {
printk(KERN_ERR "CFSPI: Reg. error: %d.\n", res);
goto err_net_reg;
}
return res;
err_net_reg:
free_netdev(ndev);
return res;
}
int cfspi_spi_remove(struct platform_device *pdev)
{
/* Everything is done in cfspi_uninit(). */
return 0;
}
static void __exit cfspi_exit_module(void)
{
struct list_head *list_node;
struct list_head *n;
struct cfspi *cfspi = NULL;
list_for_each_safe(list_node, n, &cfspi_list) {
cfspi = list_entry(list_node, struct cfspi, list);
unregister_netdev(cfspi->ndev);
}
/* Destroy sysfs files. */
driver_remove_file(&cfspi_spi_driver.driver,
&driver_attr_up_head_align);
driver_remove_file(&cfspi_spi_driver.driver,
&driver_attr_up_tail_align);
driver_remove_file(&cfspi_spi_driver.driver,
&driver_attr_down_head_align);
driver_remove_file(&cfspi_spi_driver.driver,
&driver_attr_down_tail_align);
driver_remove_file(&cfspi_spi_driver.driver, &driver_attr_frame_align);
/* Unregister platform driver. */
platform_driver_unregister(&cfspi_spi_driver);
/* Destroy debugfs root directory. */
driver_debugfs_remove();
}
static int __init cfspi_init_module(void)
{
int result;
/* Initialize spin lock. */
spin_lock_init(&cfspi_list_lock);
/* Register platform driver. */
result = platform_driver_register(&cfspi_spi_driver);
if (result) {
printk(KERN_ERR "Could not register platform SPI driver.\n");
goto err_dev_register;
}
/* Create sysfs files. */
result =
driver_create_file(&cfspi_spi_driver.driver,
&driver_attr_up_head_align);
if (result) {
printk(KERN_ERR "Sysfs creation failed 1.\n");
goto err_create_up_head_align;
}
result =
driver_create_file(&cfspi_spi_driver.driver,
&driver_attr_up_tail_align);
if (result) {
printk(KERN_ERR "Sysfs creation failed 2.\n");
goto err_create_up_tail_align;
}
result =
driver_create_file(&cfspi_spi_driver.driver,
&driver_attr_down_head_align);
if (result) {
printk(KERN_ERR "Sysfs creation failed 3.\n");
goto err_create_down_head_align;
}
result =
driver_create_file(&cfspi_spi_driver.driver,
&driver_attr_down_tail_align);
if (result) {
printk(KERN_ERR "Sysfs creation failed 4.\n");
goto err_create_down_tail_align;
}
result =
driver_create_file(&cfspi_spi_driver.driver,
&driver_attr_frame_align);
if (result) {
printk(KERN_ERR "Sysfs creation failed 5.\n");
goto err_create_frame_align;
}
driver_debugfs_create();
return result;
err_create_frame_align:
driver_remove_file(&cfspi_spi_driver.driver,
&driver_attr_down_tail_align);
err_create_down_tail_align:
driver_remove_file(&cfspi_spi_driver.driver,
&driver_attr_down_head_align);
err_create_down_head_align:
driver_remove_file(&cfspi_spi_driver.driver,
&driver_attr_up_tail_align);
err_create_up_tail_align:
driver_remove_file(&cfspi_spi_driver.driver,
&driver_attr_up_head_align);
err_create_up_head_align:
platform_driver_unregister(&cfspi_spi_driver);
err_dev_register:
return result;
}
module_init(cfspi_init_module);
module_exit(cfspi_exit_module);