mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 10:36:42 +07:00
1812924bb1
TLB shootdown for SGI UV. Depends on patch (in tip/x86/irq): x86-update-macros-used-by-uv-platform.patch Jack Steiner May 29 This patch provides the ability to flush TLB's in cpu's that are not on the local node. The hardware mechanism for distributing the flush messages is the UV's "broadcast assist unit". The hook to intercept TLB shootdown requests is a 2-line change to native_flush_tlb_others() (arch/x86/kernel/tlb_64.c). This code has been tested on a hardware simulator. The real hardware is not yet available. The shootdown statistics are provided through /proc/sgi_uv/ptc_statistics. The use of /sys was considered, but would have required the use of many /sys files. The debugfs was also considered, but these statistics should be available on an ongoing basis, not just for debugging. Issues to be fixed later: - The IRQ for the messaging interrupt is currently hardcoded as 200 (see UV_BAU_MESSAGE). It should be dynamically assigned in the future. - The use of appropriate udelay()'s is untested, as they are a problem in the simulator. Signed-off-by: Cliff Wickman <cpw@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
280 lines
7.0 KiB
C
280 lines
7.0 KiB
C
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/mtrr.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/apicdef.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/uv/uv_hub.h>
|
|
#include <asm/uv/uv_bau.h>
|
|
|
|
#include <mach_ipi.h>
|
|
/*
|
|
* Smarter SMP flushing macros.
|
|
* c/o Linus Torvalds.
|
|
*
|
|
* These mean you can really definitely utterly forget about
|
|
* writing to user space from interrupts. (Its not allowed anyway).
|
|
*
|
|
* Optimizations Manfred Spraul <manfred@colorfullife.com>
|
|
*
|
|
* More scalable flush, from Andi Kleen
|
|
*
|
|
* To avoid global state use 8 different call vectors.
|
|
* Each CPU uses a specific vector to trigger flushes on other
|
|
* CPUs. Depending on the received vector the target CPUs look into
|
|
* the right per cpu variable for the flush data.
|
|
*
|
|
* With more than 8 CPUs they are hashed to the 8 available
|
|
* vectors. The limited global vector space forces us to this right now.
|
|
* In future when interrupts are split into per CPU domains this could be
|
|
* fixed, at the cost of triggering multiple IPIs in some cases.
|
|
*/
|
|
|
|
union smp_flush_state {
|
|
struct {
|
|
cpumask_t flush_cpumask;
|
|
struct mm_struct *flush_mm;
|
|
unsigned long flush_va;
|
|
spinlock_t tlbstate_lock;
|
|
};
|
|
char pad[SMP_CACHE_BYTES];
|
|
} ____cacheline_aligned;
|
|
|
|
/* State is put into the per CPU data section, but padded
|
|
to a full cache line because other CPUs can access it and we don't
|
|
want false sharing in the per cpu data segment. */
|
|
static DEFINE_PER_CPU(union smp_flush_state, flush_state);
|
|
|
|
/*
|
|
* We cannot call mmdrop() because we are in interrupt context,
|
|
* instead update mm->cpu_vm_mask.
|
|
*/
|
|
void leave_mm(int cpu)
|
|
{
|
|
if (read_pda(mmu_state) == TLBSTATE_OK)
|
|
BUG();
|
|
cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
|
|
load_cr3(swapper_pg_dir);
|
|
}
|
|
EXPORT_SYMBOL_GPL(leave_mm);
|
|
|
|
/*
|
|
*
|
|
* The flush IPI assumes that a thread switch happens in this order:
|
|
* [cpu0: the cpu that switches]
|
|
* 1) switch_mm() either 1a) or 1b)
|
|
* 1a) thread switch to a different mm
|
|
* 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
|
|
* Stop ipi delivery for the old mm. This is not synchronized with
|
|
* the other cpus, but smp_invalidate_interrupt ignore flush ipis
|
|
* for the wrong mm, and in the worst case we perform a superfluous
|
|
* tlb flush.
|
|
* 1a2) set cpu mmu_state to TLBSTATE_OK
|
|
* Now the smp_invalidate_interrupt won't call leave_mm if cpu0
|
|
* was in lazy tlb mode.
|
|
* 1a3) update cpu active_mm
|
|
* Now cpu0 accepts tlb flushes for the new mm.
|
|
* 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
|
|
* Now the other cpus will send tlb flush ipis.
|
|
* 1a4) change cr3.
|
|
* 1b) thread switch without mm change
|
|
* cpu active_mm is correct, cpu0 already handles
|
|
* flush ipis.
|
|
* 1b1) set cpu mmu_state to TLBSTATE_OK
|
|
* 1b2) test_and_set the cpu bit in cpu_vm_mask.
|
|
* Atomically set the bit [other cpus will start sending flush ipis],
|
|
* and test the bit.
|
|
* 1b3) if the bit was 0: leave_mm was called, flush the tlb.
|
|
* 2) switch %%esp, ie current
|
|
*
|
|
* The interrupt must handle 2 special cases:
|
|
* - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
|
|
* - the cpu performs speculative tlb reads, i.e. even if the cpu only
|
|
* runs in kernel space, the cpu could load tlb entries for user space
|
|
* pages.
|
|
*
|
|
* The good news is that cpu mmu_state is local to each cpu, no
|
|
* write/read ordering problems.
|
|
*/
|
|
|
|
/*
|
|
* TLB flush IPI:
|
|
*
|
|
* 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
|
|
* 2) Leave the mm if we are in the lazy tlb mode.
|
|
*
|
|
* Interrupts are disabled.
|
|
*/
|
|
|
|
asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
|
|
{
|
|
int cpu;
|
|
int sender;
|
|
union smp_flush_state *f;
|
|
|
|
cpu = smp_processor_id();
|
|
/*
|
|
* orig_rax contains the negated interrupt vector.
|
|
* Use that to determine where the sender put the data.
|
|
*/
|
|
sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
|
|
f = &per_cpu(flush_state, sender);
|
|
|
|
if (!cpu_isset(cpu, f->flush_cpumask))
|
|
goto out;
|
|
/*
|
|
* This was a BUG() but until someone can quote me the
|
|
* line from the intel manual that guarantees an IPI to
|
|
* multiple CPUs is retried _only_ on the erroring CPUs
|
|
* its staying as a return
|
|
*
|
|
* BUG();
|
|
*/
|
|
|
|
if (f->flush_mm == read_pda(active_mm)) {
|
|
if (read_pda(mmu_state) == TLBSTATE_OK) {
|
|
if (f->flush_va == TLB_FLUSH_ALL)
|
|
local_flush_tlb();
|
|
else
|
|
__flush_tlb_one(f->flush_va);
|
|
} else
|
|
leave_mm(cpu);
|
|
}
|
|
out:
|
|
ack_APIC_irq();
|
|
cpu_clear(cpu, f->flush_cpumask);
|
|
add_pda(irq_tlb_count, 1);
|
|
}
|
|
|
|
void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
|
|
unsigned long va)
|
|
{
|
|
int sender;
|
|
union smp_flush_state *f;
|
|
cpumask_t cpumask = *cpumaskp;
|
|
|
|
if (is_uv_system() && uv_flush_tlb_others(&cpumask, mm, va))
|
|
return;
|
|
|
|
/* Caller has disabled preemption */
|
|
sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
|
|
f = &per_cpu(flush_state, sender);
|
|
|
|
/*
|
|
* Could avoid this lock when
|
|
* num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
|
|
* probably not worth checking this for a cache-hot lock.
|
|
*/
|
|
spin_lock(&f->tlbstate_lock);
|
|
|
|
f->flush_mm = mm;
|
|
f->flush_va = va;
|
|
cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
|
|
|
|
/*
|
|
* We have to send the IPI only to
|
|
* CPUs affected.
|
|
*/
|
|
send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
|
|
|
|
while (!cpus_empty(f->flush_cpumask))
|
|
cpu_relax();
|
|
|
|
f->flush_mm = NULL;
|
|
f->flush_va = 0;
|
|
spin_unlock(&f->tlbstate_lock);
|
|
}
|
|
|
|
static int __cpuinit init_smp_flush(void)
|
|
{
|
|
int i;
|
|
|
|
for_each_possible_cpu(i)
|
|
spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(init_smp_flush);
|
|
|
|
void flush_tlb_current_task(void)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
cpumask_t cpu_mask;
|
|
|
|
preempt_disable();
|
|
cpu_mask = mm->cpu_vm_mask;
|
|
cpu_clear(smp_processor_id(), cpu_mask);
|
|
|
|
local_flush_tlb();
|
|
if (!cpus_empty(cpu_mask))
|
|
flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
cpumask_t cpu_mask;
|
|
|
|
preempt_disable();
|
|
cpu_mask = mm->cpu_vm_mask;
|
|
cpu_clear(smp_processor_id(), cpu_mask);
|
|
|
|
if (current->active_mm == mm) {
|
|
if (current->mm)
|
|
local_flush_tlb();
|
|
else
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
if (!cpus_empty(cpu_mask))
|
|
flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
cpumask_t cpu_mask;
|
|
|
|
preempt_disable();
|
|
cpu_mask = mm->cpu_vm_mask;
|
|
cpu_clear(smp_processor_id(), cpu_mask);
|
|
|
|
if (current->active_mm == mm) {
|
|
if (current->mm)
|
|
__flush_tlb_one(va);
|
|
else
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
|
|
if (!cpus_empty(cpu_mask))
|
|
flush_tlb_others(cpu_mask, mm, va);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void do_flush_tlb_all(void *info)
|
|
{
|
|
unsigned long cpu = smp_processor_id();
|
|
|
|
__flush_tlb_all();
|
|
if (read_pda(mmu_state) == TLBSTATE_LAZY)
|
|
leave_mm(cpu);
|
|
}
|
|
|
|
void flush_tlb_all(void)
|
|
{
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
|
|
}
|