linux_dsm_epyc7002/sound/soc/stm/stm32_sai_sub.c
Thomas Gleixner 1802d0beec treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 174
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 655 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070034.575739538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:41 -07:00

1529 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* STM32 ALSA SoC Digital Audio Interface (SAI) driver.
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <sound/asoundef.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include "stm32_sai.h"
#define SAI_FREE_PROTOCOL 0x0
#define SAI_SPDIF_PROTOCOL 0x1
#define SAI_SLOT_SIZE_AUTO 0x0
#define SAI_SLOT_SIZE_16 0x1
#define SAI_SLOT_SIZE_32 0x2
#define SAI_DATASIZE_8 0x2
#define SAI_DATASIZE_10 0x3
#define SAI_DATASIZE_16 0x4
#define SAI_DATASIZE_20 0x5
#define SAI_DATASIZE_24 0x6
#define SAI_DATASIZE_32 0x7
#define STM_SAI_FIFO_SIZE 8
#define STM_SAI_DAI_NAME_SIZE 15
#define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
#define STM_SAI_IS_CAPTURE(ip) ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
#define STM_SAI_A_ID 0x0
#define STM_SAI_B_ID 0x1
#define STM_SAI_IS_SUB_A(x) ((x)->id == STM_SAI_A_ID)
#define STM_SAI_IS_SUB_B(x) ((x)->id == STM_SAI_B_ID)
#define STM_SAI_BLOCK_NAME(x) (((x)->id == STM_SAI_A_ID) ? "A" : "B")
#define SAI_SYNC_NONE 0x0
#define SAI_SYNC_INTERNAL 0x1
#define SAI_SYNC_EXTERNAL 0x2
#define STM_SAI_PROTOCOL_IS_SPDIF(ip) ((ip)->spdif)
#define STM_SAI_HAS_SPDIF(x) ((x)->pdata->conf->has_spdif)
#define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
#define SAI_IEC60958_BLOCK_FRAMES 192
#define SAI_IEC60958_STATUS_BYTES 24
#define SAI_MCLK_NAME_LEN 32
#define SAI_RATE_11K 11025
/**
* struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
* @pdev: device data pointer
* @regmap: SAI register map pointer
* @regmap_config: SAI sub block register map configuration pointer
* @dma_params: dma configuration data for rx or tx channel
* @cpu_dai_drv: DAI driver data pointer
* @cpu_dai: DAI runtime data pointer
* @substream: PCM substream data pointer
* @pdata: SAI block parent data pointer
* @np_sync_provider: synchronization provider node
* @sai_ck: kernel clock feeding the SAI clock generator
* @sai_mclk: master clock from SAI mclk provider
* @phys_addr: SAI registers physical base address
* @mclk_rate: SAI block master clock frequency (Hz). set at init
* @id: SAI sub block id corresponding to sub-block A or B
* @dir: SAI block direction (playback or capture). set at init
* @master: SAI block mode flag. (true=master, false=slave) set at init
* @spdif: SAI S/PDIF iec60958 mode flag. set at init
* @fmt: SAI block format. relevant only for custom protocols. set at init
* @sync: SAI block synchronization mode. (none, internal or external)
* @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
* @synci: SAI block ext sync source (client setting). (SAI sync provider index)
* @fs_length: frame synchronization length. depends on protocol settings
* @slots: rx or tx slot number
* @slot_width: rx or tx slot width in bits
* @slot_mask: rx or tx active slots mask. set at init or at runtime
* @data_size: PCM data width. corresponds to PCM substream width.
* @spdif_frm_cnt: S/PDIF playback frame counter
* @iec958: iec958 data
* @ctrl_lock: control lock
* @irq_lock: prevent race condition with IRQ
*/
struct stm32_sai_sub_data {
struct platform_device *pdev;
struct regmap *regmap;
const struct regmap_config *regmap_config;
struct snd_dmaengine_dai_dma_data dma_params;
struct snd_soc_dai_driver cpu_dai_drv;
struct snd_soc_dai *cpu_dai;
struct snd_pcm_substream *substream;
struct stm32_sai_data *pdata;
struct device_node *np_sync_provider;
struct clk *sai_ck;
struct clk *sai_mclk;
dma_addr_t phys_addr;
unsigned int mclk_rate;
unsigned int id;
int dir;
bool master;
bool spdif;
int fmt;
int sync;
int synco;
int synci;
int fs_length;
int slots;
int slot_width;
int slot_mask;
int data_size;
unsigned int spdif_frm_cnt;
struct snd_aes_iec958 iec958;
struct mutex ctrl_lock; /* protect resources accessed by controls */
spinlock_t irq_lock; /* used to prevent race condition with IRQ */
};
enum stm32_sai_fifo_th {
STM_SAI_FIFO_TH_EMPTY,
STM_SAI_FIFO_TH_QUARTER,
STM_SAI_FIFO_TH_HALF,
STM_SAI_FIFO_TH_3_QUARTER,
STM_SAI_FIFO_TH_FULL,
};
static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM_SAI_CR1_REGX:
case STM_SAI_CR2_REGX:
case STM_SAI_FRCR_REGX:
case STM_SAI_SLOTR_REGX:
case STM_SAI_IMR_REGX:
case STM_SAI_SR_REGX:
case STM_SAI_CLRFR_REGX:
case STM_SAI_DR_REGX:
case STM_SAI_PDMCR_REGX:
case STM_SAI_PDMLY_REGX:
return true;
default:
return false;
}
}
static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM_SAI_DR_REGX:
case STM_SAI_SR_REGX:
return true;
default:
return false;
}
}
static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM_SAI_CR1_REGX:
case STM_SAI_CR2_REGX:
case STM_SAI_FRCR_REGX:
case STM_SAI_SLOTR_REGX:
case STM_SAI_IMR_REGX:
case STM_SAI_CLRFR_REGX:
case STM_SAI_DR_REGX:
case STM_SAI_PDMCR_REGX:
case STM_SAI_PDMLY_REGX:
return true;
default:
return false;
}
}
static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM_SAI_DR_REGX,
.readable_reg = stm32_sai_sub_readable_reg,
.volatile_reg = stm32_sai_sub_volatile_reg,
.writeable_reg = stm32_sai_sub_writeable_reg,
.fast_io = true,
.cache_type = REGCACHE_FLAT,
};
static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM_SAI_PDMLY_REGX,
.readable_reg = stm32_sai_sub_readable_reg,
.volatile_reg = stm32_sai_sub_volatile_reg,
.writeable_reg = stm32_sai_sub_writeable_reg,
.fast_io = true,
.cache_type = REGCACHE_FLAT,
};
static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uctl)
{
struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
mutex_lock(&sai->ctrl_lock);
memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
mutex_unlock(&sai->ctrl_lock);
return 0;
}
static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uctl)
{
struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
mutex_lock(&sai->ctrl_lock);
memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
mutex_unlock(&sai->ctrl_lock);
return 0;
}
static const struct snd_kcontrol_new iec958_ctls = {
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_VOLATILE),
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = snd_pcm_iec958_info,
.get = snd_pcm_iec958_get,
.put = snd_pcm_iec958_put,
};
struct stm32_sai_mclk_data {
struct clk_hw hw;
unsigned long freq;
struct stm32_sai_sub_data *sai_data;
};
#define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
#define STM32_SAI_MAX_CLKS 1
static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
unsigned long input_rate,
unsigned long output_rate)
{
int version = sai->pdata->conf->version;
int div;
div = DIV_ROUND_CLOSEST(input_rate, output_rate);
if (div > SAI_XCR1_MCKDIV_MAX(version)) {
dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
return -EINVAL;
}
dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
if (input_rate % div)
dev_dbg(&sai->pdev->dev,
"Rate not accurate. requested (%ld), actual (%ld)\n",
output_rate, input_rate / div);
return div;
}
static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
unsigned int div)
{
int version = sai->pdata->conf->version;
int ret, cr1, mask;
if (div > SAI_XCR1_MCKDIV_MAX(version)) {
dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
return -EINVAL;
}
mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
cr1 = SAI_XCR1_MCKDIV_SET(div);
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, mask, cr1);
if (ret < 0)
dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
return ret;
}
static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
unsigned int rate)
{
struct platform_device *pdev = sai->pdev;
struct clk *parent_clk = sai->pdata->clk_x8k;
int ret;
if (!(rate % SAI_RATE_11K))
parent_clk = sai->pdata->clk_x11k;
ret = clk_set_parent(sai->sai_ck, parent_clk);
if (ret)
dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
ret, ret == -EBUSY ?
"Active stream rates conflict\n" : "\n");
return ret;
}
static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
struct stm32_sai_sub_data *sai = mclk->sai_data;
int div;
div = stm32_sai_get_clk_div(sai, *prate, rate);
if (div < 0)
return div;
mclk->freq = *prate / div;
return mclk->freq;
}
static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
return mclk->freq;
}
static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
struct stm32_sai_sub_data *sai = mclk->sai_data;
int div, ret;
div = stm32_sai_get_clk_div(sai, parent_rate, rate);
if (div < 0)
return div;
ret = stm32_sai_set_clk_div(sai, div);
if (ret)
return ret;
mclk->freq = rate;
return 0;
}
static int stm32_sai_mclk_enable(struct clk_hw *hw)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
struct stm32_sai_sub_data *sai = mclk->sai_data;
dev_dbg(&sai->pdev->dev, "Enable master clock\n");
return regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
}
static void stm32_sai_mclk_disable(struct clk_hw *hw)
{
struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
struct stm32_sai_sub_data *sai = mclk->sai_data;
dev_dbg(&sai->pdev->dev, "Disable master clock\n");
regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
}
static const struct clk_ops mclk_ops = {
.enable = stm32_sai_mclk_enable,
.disable = stm32_sai_mclk_disable,
.recalc_rate = stm32_sai_mclk_recalc_rate,
.round_rate = stm32_sai_mclk_round_rate,
.set_rate = stm32_sai_mclk_set_rate,
};
static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
{
struct clk_hw *hw;
struct stm32_sai_mclk_data *mclk;
struct device *dev = &sai->pdev->dev;
const char *pname = __clk_get_name(sai->sai_ck);
char *mclk_name, *p, *s = (char *)pname;
int ret, i = 0;
mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
if (!mclk)
return -ENOMEM;
mclk_name = devm_kcalloc(dev, sizeof(char),
SAI_MCLK_NAME_LEN, GFP_KERNEL);
if (!mclk_name)
return -ENOMEM;
/*
* Forge mclk clock name from parent clock name and suffix.
* String after "_" char is stripped in parent name.
*/
p = mclk_name;
while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
*p++ = *s++;
i++;
}
STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
mclk->sai_data = sai;
hw = &mclk->hw;
dev_dbg(dev, "Register master clock %s\n", mclk_name);
ret = devm_clk_hw_register(&sai->pdev->dev, hw);
if (ret) {
dev_err(dev, "mclk register returned %d\n", ret);
return ret;
}
sai->sai_mclk = hw->clk;
/* register mclk provider */
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
}
static irqreturn_t stm32_sai_isr(int irq, void *devid)
{
struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
struct platform_device *pdev = sai->pdev;
unsigned int sr, imr, flags;
snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
regmap_read(sai->regmap, STM_SAI_IMR_REGX, &imr);
regmap_read(sai->regmap, STM_SAI_SR_REGX, &sr);
flags = sr & imr;
if (!flags)
return IRQ_NONE;
regmap_write_bits(sai->regmap, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
SAI_XCLRFR_MASK);
if (!sai->substream) {
dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
return IRQ_NONE;
}
if (flags & SAI_XIMR_OVRUDRIE) {
dev_err(&pdev->dev, "IRQ %s\n",
STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
status = SNDRV_PCM_STATE_XRUN;
}
if (flags & SAI_XIMR_MUTEDETIE)
dev_dbg(&pdev->dev, "IRQ mute detected\n");
if (flags & SAI_XIMR_WCKCFGIE) {
dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
status = SNDRV_PCM_STATE_DISCONNECTED;
}
if (flags & SAI_XIMR_CNRDYIE)
dev_err(&pdev->dev, "IRQ Codec not ready\n");
if (flags & SAI_XIMR_AFSDETIE) {
dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
status = SNDRV_PCM_STATE_XRUN;
}
if (flags & SAI_XIMR_LFSDETIE) {
dev_err(&pdev->dev, "IRQ Late frame synchro\n");
status = SNDRV_PCM_STATE_XRUN;
}
spin_lock(&sai->irq_lock);
if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
snd_pcm_stop_xrun(sai->substream);
spin_unlock(&sai->irq_lock);
return IRQ_HANDLED;
}
static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_NODIV,
(unsigned int)~SAI_XCR1_NODIV);
if (ret < 0)
return ret;
/* If master clock is used, set parent clock now */
ret = stm32_sai_set_parent_clock(sai, freq);
if (ret)
return ret;
ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
if (ret) {
dev_err(cpu_dai->dev,
ret == -EBUSY ?
"Active streams have incompatible rates" :
"Could not set mclk rate\n");
return ret;
}
dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
sai->mclk_rate = freq;
}
return 0;
}
static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int slotr, slotr_mask, slot_size;
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
return 0;
}
dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
tx_mask, rx_mask, slots, slot_width);
switch (slot_width) {
case 16:
slot_size = SAI_SLOT_SIZE_16;
break;
case 32:
slot_size = SAI_SLOT_SIZE_32;
break;
default:
slot_size = SAI_SLOT_SIZE_AUTO;
break;
}
slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
SAI_XSLOTR_NBSLOT_SET(slots - 1);
slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
/* tx/rx mask set in machine init, if slot number defined in DT */
if (STM_SAI_IS_PLAYBACK(sai)) {
sai->slot_mask = tx_mask;
slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
}
if (STM_SAI_IS_CAPTURE(sai)) {
sai->slot_mask = rx_mask;
slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
}
slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
sai->slot_width = slot_width;
sai->slots = slots;
return 0;
}
static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int cr1, frcr = 0;
int cr1_mask, frcr_mask = 0;
int ret;
dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
/* Do not generate master by default */
cr1 = SAI_XCR1_NODIV;
cr1_mask = SAI_XCR1_NODIV;
cr1_mask |= SAI_XCR1_PRTCFG_MASK;
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
goto conf_update;
}
cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
/* SCK active high for all protocols */
case SND_SOC_DAIFMT_I2S:
cr1 |= SAI_XCR1_CKSTR;
frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
break;
/* Left justified */
case SND_SOC_DAIFMT_MSB:
frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
break;
/* Right justified */
case SND_SOC_DAIFMT_LSB:
frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
break;
case SND_SOC_DAIFMT_DSP_A:
frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
break;
case SND_SOC_DAIFMT_DSP_B:
frcr |= SAI_XFRCR_FSPOL;
break;
default:
dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
cr1_mask |= SAI_XCR1_CKSTR;
frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
SAI_XFRCR_FSDEF;
/* DAI clock strobing. Invert setting previously set */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
cr1 ^= SAI_XCR1_CKSTR;
break;
case SND_SOC_DAIFMT_NB_IF:
frcr ^= SAI_XFRCR_FSPOL;
break;
case SND_SOC_DAIFMT_IB_IF:
/* Invert fs & sck */
cr1 ^= SAI_XCR1_CKSTR;
frcr ^= SAI_XFRCR_FSPOL;
break;
default:
dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
fmt & SND_SOC_DAIFMT_INV_MASK);
return -EINVAL;
}
cr1_mask |= SAI_XCR1_CKSTR;
frcr_mask |= SAI_XFRCR_FSPOL;
regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr);
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
/* codec is master */
cr1 |= SAI_XCR1_SLAVE;
sai->master = false;
break;
case SND_SOC_DAIFMT_CBS_CFS:
sai->master = true;
break;
default:
dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
fmt & SND_SOC_DAIFMT_MASTER_MASK);
return -EINVAL;
}
/* Set slave mode if sub-block is synchronized with another SAI */
if (sai->sync) {
dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
cr1 |= SAI_XCR1_SLAVE;
sai->master = false;
}
cr1_mask |= SAI_XCR1_SLAVE;
conf_update:
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
return ret;
}
sai->fmt = fmt;
return 0;
}
static int stm32_sai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int imr, cr2, ret;
unsigned long flags;
spin_lock_irqsave(&sai->irq_lock, flags);
sai->substream = substream;
spin_unlock_irqrestore(&sai->irq_lock, flags);
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
snd_pcm_hw_constraint_mask64(substream->runtime,
SNDRV_PCM_HW_PARAM_FORMAT,
SNDRV_PCM_FMTBIT_S32_LE);
snd_pcm_hw_constraint_single(substream->runtime,
SNDRV_PCM_HW_PARAM_CHANNELS, 2);
}
ret = clk_prepare_enable(sai->sai_ck);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
return ret;
}
/* Enable ITs */
regmap_write_bits(sai->regmap, STM_SAI_CLRFR_REGX,
SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
imr = SAI_XIMR_OVRUDRIE;
if (STM_SAI_IS_CAPTURE(sai)) {
regmap_read(sai->regmap, STM_SAI_CR2_REGX, &cr2);
if (cr2 & SAI_XCR2_MUTECNT_MASK)
imr |= SAI_XIMR_MUTEDETIE;
}
if (sai->master)
imr |= SAI_XIMR_WCKCFGIE;
else
imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX,
SAI_XIMR_MASK, imr);
return 0;
}
static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int cr1, cr1_mask, ret;
/*
* DMA bursts increment is set to 4 words.
* SAI fifo threshold is set to half fifo, to keep enough space
* for DMA incoming bursts.
*/
regmap_write_bits(sai->regmap, STM_SAI_CR2_REGX,
SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
SAI_XCR2_FFLUSH |
SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
sai->spdif_frm_cnt = 0;
return 0;
}
/* Mode, data format and channel config */
cr1_mask = SAI_XCR1_DS_MASK;
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S8:
cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
break;
case SNDRV_PCM_FORMAT_S16_LE:
cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
break;
case SNDRV_PCM_FORMAT_S32_LE:
cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
break;
default:
dev_err(cpu_dai->dev, "Data format not supported");
return -EINVAL;
}
cr1_mask |= SAI_XCR1_MONO;
if ((sai->slots == 2) && (params_channels(params) == 1))
cr1 |= SAI_XCR1_MONO;
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
return ret;
}
return 0;
}
static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int slotr, slot_sz;
regmap_read(sai->regmap, STM_SAI_SLOTR_REGX, &slotr);
/*
* If SLOTSZ is set to auto in SLOTR, align slot width on data size
* By default slot width = data size, if not forced from DT
*/
slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
sai->slot_width = sai->data_size;
if (sai->slot_width < sai->data_size) {
dev_err(cpu_dai->dev,
"Data size %d larger than slot width\n",
sai->data_size);
return -EINVAL;
}
/* Slot number is set to 2, if not specified in DT */
if (!sai->slots)
sai->slots = 2;
/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX,
SAI_XSLOTR_NBSLOT_MASK,
SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
/* Set default slots mask if not already set from DT */
if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
sai->slot_mask = (1 << sai->slots) - 1;
regmap_update_bits(sai->regmap,
STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
}
dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
sai->slots, sai->slot_width);
return 0;
}
static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int fs_active, offset, format;
int frcr, frcr_mask;
format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
sai->fs_length = sai->slot_width * sai->slots;
fs_active = sai->fs_length / 2;
if ((format == SND_SOC_DAIFMT_DSP_A) ||
(format == SND_SOC_DAIFMT_DSP_B))
fs_active = 1;
frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
sai->fs_length, fs_active);
regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr);
if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
offset = sai->slot_width - sai->data_size;
regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX,
SAI_XSLOTR_FBOFF_MASK,
SAI_XSLOTR_FBOFF_SET(offset));
}
}
static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
{
unsigned char *cs = sai->iec958.status;
cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
cs[1] = IEC958_AES1_CON_GENERAL;
cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
}
static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
struct snd_pcm_runtime *runtime)
{
if (!runtime)
return;
/* Force the sample rate according to runtime rate */
mutex_lock(&sai->ctrl_lock);
switch (runtime->rate) {
case 22050:
sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
break;
case 44100:
sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
break;
case 88200:
sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
break;
case 176400:
sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
break;
case 24000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
break;
case 48000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
break;
case 96000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
break;
case 192000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
break;
case 32000:
sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
break;
default:
sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
break;
}
mutex_unlock(&sai->ctrl_lock);
}
static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
struct snd_pcm_hw_params *params)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int div = 0, cr1 = 0;
int sai_clk_rate, mclk_ratio, den;
unsigned int rate = params_rate(params);
int ret;
if (!sai->sai_mclk) {
ret = stm32_sai_set_parent_clock(sai, rate);
if (ret)
return ret;
}
sai_clk_rate = clk_get_rate(sai->sai_ck);
if (STM_SAI_IS_F4(sai->pdata)) {
/* mclk on (NODIV=0)
* mclk_rate = 256 * fs
* MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
* MCKDIV = sai_ck / (2 * mclk_rate) otherwise
* mclk off (NODIV=1)
* MCKDIV ignored. sck = sai_ck
*/
if (!sai->mclk_rate)
return 0;
if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
div = stm32_sai_get_clk_div(sai, sai_clk_rate,
2 * sai->mclk_rate);
if (div < 0)
return div;
}
} else {
/*
* TDM mode :
* mclk on
* MCKDIV = sai_ck / (ws x 256) (NOMCK=0. OSR=0)
* MCKDIV = sai_ck / (ws x 512) (NOMCK=0. OSR=1)
* mclk off
* MCKDIV = sai_ck / (frl x ws) (NOMCK=1)
* Note: NOMCK/NODIV correspond to same bit.
*/
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
div = stm32_sai_get_clk_div(sai, sai_clk_rate,
rate * 128);
if (div < 0)
return div;
} else {
if (sai->mclk_rate) {
mclk_ratio = sai->mclk_rate / rate;
if (mclk_ratio == 512) {
cr1 = SAI_XCR1_OSR;
} else if (mclk_ratio != 256) {
dev_err(cpu_dai->dev,
"Wrong mclk ratio %d\n",
mclk_ratio);
return -EINVAL;
}
regmap_update_bits(sai->regmap,
STM_SAI_CR1_REGX,
SAI_XCR1_OSR, cr1);
div = stm32_sai_get_clk_div(sai, sai_clk_rate,
sai->mclk_rate);
if (div < 0)
return div;
} else {
/* mclk-fs not set, master clock not active */
den = sai->fs_length * params_rate(params);
div = stm32_sai_get_clk_div(sai, sai_clk_rate,
den);
if (div < 0)
return div;
}
}
}
return stm32_sai_set_clk_div(sai, div);
}
static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
sai->data_size = params_width(params);
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
/* Rate not already set in runtime structure */
substream->runtime->rate = params_rate(params);
stm32_sai_set_iec958_status(sai, substream->runtime);
} else {
ret = stm32_sai_set_slots(cpu_dai);
if (ret < 0)
return ret;
stm32_sai_set_frame(cpu_dai);
}
ret = stm32_sai_set_config(cpu_dai, substream, params);
if (ret)
return ret;
if (sai->master)
ret = stm32_sai_configure_clock(cpu_dai, params);
return ret;
}
static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
/* Enable SAI */
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
if (ret < 0)
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_STOP:
dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX,
SAI_XIMR_MASK, 0);
regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_SAIEN,
(unsigned int)~SAI_XCR1_SAIEN);
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_DMAEN,
(unsigned int)~SAI_XCR1_DMAEN);
if (ret < 0)
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
sai->spdif_frm_cnt = 0;
break;
default:
return -EINVAL;
}
return ret;
}
static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
unsigned long flags;
regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_NODIV,
SAI_XCR1_NODIV);
/* Release mclk rate only if rate was actually set */
if (sai->mclk_rate) {
clk_rate_exclusive_put(sai->sai_mclk);
sai->mclk_rate = 0;
}
clk_disable_unprepare(sai->sai_ck);
spin_lock_irqsave(&sai->irq_lock, flags);
sai->substream = NULL;
spin_unlock_irqrestore(&sai->irq_lock, flags);
}
static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
struct snd_kcontrol_new knew = iec958_ctls;
if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
knew.device = rtd->pcm->device;
return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
}
return 0;
}
static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
int cr1 = 0, cr1_mask, ret;
sai->cpu_dai = cpu_dai;
sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
/*
* DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
* as it allows bytes, half-word and words transfers. (See DMA fifos
* constraints).
*/
sai->dma_params.maxburst = 4;
/* Buswidth will be set by framework at runtime */
sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
if (STM_SAI_IS_PLAYBACK(sai))
snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
else
snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
/* Next settings are not relevant for spdif mode */
if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
return 0;
cr1_mask = SAI_XCR1_RX_TX;
if (STM_SAI_IS_CAPTURE(sai))
cr1 |= SAI_XCR1_RX_TX;
/* Configure synchronization */
if (sai->sync == SAI_SYNC_EXTERNAL) {
/* Configure synchro client and provider */
ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
sai->synco, sai->synci);
if (ret)
return ret;
}
cr1_mask |= SAI_XCR1_SYNCEN_MASK;
cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
return regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
}
static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
.set_sysclk = stm32_sai_set_sysclk,
.set_fmt = stm32_sai_set_dai_fmt,
.set_tdm_slot = stm32_sai_set_dai_tdm_slot,
.startup = stm32_sai_startup,
.hw_params = stm32_sai_hw_params,
.trigger = stm32_sai_trigger,
.shutdown = stm32_sai_shutdown,
};
static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
int channel, unsigned long hwoff,
void *buf, unsigned long bytes)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
int *ptr = (int *)(runtime->dma_area + hwoff +
channel * (runtime->dma_bytes / runtime->channels));
ssize_t cnt = bytes_to_samples(runtime, bytes);
unsigned int frm_cnt = sai->spdif_frm_cnt;
unsigned int byte;
unsigned int mask;
do {
*ptr = ((*ptr >> 8) & 0x00ffffff);
/* Set channel status bit */
byte = frm_cnt >> 3;
mask = 1 << (frm_cnt - (byte << 3));
if (sai->iec958.status[byte] & mask)
*ptr |= 0x04000000;
ptr++;
if (!(cnt % 2))
frm_cnt++;
if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
frm_cnt = 0;
} while (--cnt);
sai->spdif_frm_cnt = frm_cnt;
return 0;
}
static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
.buffer_bytes_max = 8 * PAGE_SIZE,
.period_bytes_min = 1024, /* 5ms at 48kHz */
.period_bytes_max = PAGE_SIZE,
.periods_min = 2,
.periods_max = 8,
};
static struct snd_soc_dai_driver stm32_sai_playback_dai = {
.probe = stm32_sai_dai_probe,
.pcm_new = stm32_sai_pcm_new,
.id = 1, /* avoid call to fmt_single_name() */
.playback = {
.channels_min = 1,
.channels_max = 2,
.rate_min = 8000,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
/* DMA does not support 24 bits transfers */
.formats =
SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &stm32_sai_pcm_dai_ops,
};
static struct snd_soc_dai_driver stm32_sai_capture_dai = {
.probe = stm32_sai_dai_probe,
.id = 1, /* avoid call to fmt_single_name() */
.capture = {
.channels_min = 1,
.channels_max = 2,
.rate_min = 8000,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
/* DMA does not support 24 bits transfers */
.formats =
SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &stm32_sai_pcm_dai_ops,
};
static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
.pcm_hardware = &stm32_sai_pcm_hw,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
.pcm_hardware = &stm32_sai_pcm_hw,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
.process = stm32_sai_pcm_process_spdif,
};
static const struct snd_soc_component_driver stm32_component = {
.name = "stm32-sai",
};
static const struct of_device_id stm32_sai_sub_ids[] = {
{ .compatible = "st,stm32-sai-sub-a",
.data = (void *)STM_SAI_A_ID},
{ .compatible = "st,stm32-sai-sub-b",
.data = (void *)STM_SAI_B_ID},
{}
};
MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
static int stm32_sai_sub_parse_of(struct platform_device *pdev,
struct stm32_sai_sub_data *sai)
{
struct device_node *np = pdev->dev.of_node;
struct resource *res;
void __iomem *base;
struct of_phandle_args args;
int ret;
if (!np)
return -ENODEV;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
sai->phys_addr = res->start;
sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
/* Note: PDM registers not available for H7 sub-block B */
if (STM_SAI_IS_H7(sai->pdata) && STM_SAI_IS_SUB_A(sai))
sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "sai_ck",
base, sai->regmap_config);
if (IS_ERR(sai->regmap)) {
dev_err(&pdev->dev, "Failed to initialize MMIO\n");
return PTR_ERR(sai->regmap);
}
/* Get direction property */
if (of_property_match_string(np, "dma-names", "tx") >= 0) {
sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
sai->dir = SNDRV_PCM_STREAM_CAPTURE;
} else {
dev_err(&pdev->dev, "Unsupported direction\n");
return -EINVAL;
}
/* Get spdif iec60958 property */
sai->spdif = false;
if (of_get_property(np, "st,iec60958", NULL)) {
if (!STM_SAI_HAS_SPDIF(sai) ||
sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
return -EINVAL;
}
stm32_sai_init_iec958_status(sai);
sai->spdif = true;
sai->master = true;
}
/* Get synchronization property */
args.np = NULL;
ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
if (ret < 0 && ret != -ENOENT) {
dev_err(&pdev->dev, "Failed to get st,sync property\n");
return ret;
}
sai->sync = SAI_SYNC_NONE;
if (args.np) {
if (args.np == np) {
dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
of_node_put(args.np);
return -EINVAL;
}
sai->np_sync_provider = of_get_parent(args.np);
if (!sai->np_sync_provider) {
dev_err(&pdev->dev, "%pOFn parent node not found\n",
np);
of_node_put(args.np);
return -ENODEV;
}
sai->sync = SAI_SYNC_INTERNAL;
if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
if (!STM_SAI_HAS_EXT_SYNC(sai)) {
dev_err(&pdev->dev,
"External synchro not supported\n");
of_node_put(args.np);
return -EINVAL;
}
sai->sync = SAI_SYNC_EXTERNAL;
sai->synci = args.args[0];
if (sai->synci < 1 ||
(sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
dev_err(&pdev->dev, "Wrong SAI index\n");
of_node_put(args.np);
return -EINVAL;
}
if (of_property_match_string(args.np, "compatible",
"st,stm32-sai-sub-a") >= 0)
sai->synco = STM_SAI_SYNC_OUT_A;
if (of_property_match_string(args.np, "compatible",
"st,stm32-sai-sub-b") >= 0)
sai->synco = STM_SAI_SYNC_OUT_B;
if (!sai->synco) {
dev_err(&pdev->dev, "Unknown SAI sub-block\n");
of_node_put(args.np);
return -EINVAL;
}
}
dev_dbg(&pdev->dev, "%s synchronized with %s\n",
pdev->name, args.np->full_name);
}
of_node_put(args.np);
sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
if (IS_ERR(sai->sai_ck)) {
dev_err(&pdev->dev, "Missing kernel clock sai_ck\n");
return PTR_ERR(sai->sai_ck);
}
if (STM_SAI_IS_F4(sai->pdata))
return 0;
/* Register mclk provider if requested */
if (of_find_property(np, "#clock-cells", NULL)) {
ret = stm32_sai_add_mclk_provider(sai);
if (ret < 0)
return ret;
} else {
sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK");
if (IS_ERR(sai->sai_mclk)) {
if (PTR_ERR(sai->sai_mclk) != -ENOENT)
return PTR_ERR(sai->sai_mclk);
sai->sai_mclk = NULL;
}
}
return 0;
}
static int stm32_sai_sub_probe(struct platform_device *pdev)
{
struct stm32_sai_sub_data *sai;
const struct of_device_id *of_id;
const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
int ret;
sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
if (!sai)
return -ENOMEM;
of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
if (!of_id)
return -EINVAL;
sai->id = (uintptr_t)of_id->data;
sai->pdev = pdev;
mutex_init(&sai->ctrl_lock);
spin_lock_init(&sai->irq_lock);
platform_set_drvdata(pdev, sai);
sai->pdata = dev_get_drvdata(pdev->dev.parent);
if (!sai->pdata) {
dev_err(&pdev->dev, "Parent device data not available\n");
return -EINVAL;
}
ret = stm32_sai_sub_parse_of(pdev, sai);
if (ret)
return ret;
if (STM_SAI_IS_PLAYBACK(sai))
sai->cpu_dai_drv = stm32_sai_playback_dai;
else
sai->cpu_dai_drv = stm32_sai_capture_dai;
sai->cpu_dai_drv.name = dev_name(&pdev->dev);
ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
IRQF_SHARED, dev_name(&pdev->dev), sai);
if (ret) {
dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(&pdev->dev, &stm32_component,
&sai->cpu_dai_drv, 1);
if (ret)
return ret;
if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
conf = &stm32_sai_pcm_config_spdif;
ret = devm_snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
if (ret) {
dev_err(&pdev->dev, "Could not register pcm dma\n");
return ret;
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int stm32_sai_sub_suspend(struct device *dev)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
regcache_cache_only(sai->regmap, true);
regcache_mark_dirty(sai->regmap);
return 0;
}
static int stm32_sai_sub_resume(struct device *dev)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
regcache_cache_only(sai->regmap, false);
return regcache_sync(sai->regmap);
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
};
static struct platform_driver stm32_sai_sub_driver = {
.driver = {
.name = "st,stm32-sai-sub",
.of_match_table = stm32_sai_sub_ids,
.pm = &stm32_sai_sub_pm_ops,
},
.probe = stm32_sai_sub_probe,
};
module_platform_driver(stm32_sai_sub_driver);
MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
MODULE_ALIAS("platform:st,stm32-sai-sub");
MODULE_LICENSE("GPL v2");