mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 23:56:55 +07:00
fa08a39664
Some devices only have support for MSI, not MSI-X. While MSI is more limited, it still provides better performance than line-based interrupts. Signed-off-by: Ramachandra Gajula <rama@fastorsystems.com> Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
2108 lines
52 KiB
C
2108 lines
52 KiB
C
/*
|
|
* NVM Express device driver
|
|
* Copyright (c) 2011, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <linux/nvme.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kdev_t.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <scsi/sg.h>
|
|
#include <asm-generic/io-64-nonatomic-lo-hi.h>
|
|
|
|
#define NVME_Q_DEPTH 1024
|
|
#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
|
|
#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
|
|
#define NVME_MINORS 64
|
|
#define ADMIN_TIMEOUT (60 * HZ)
|
|
|
|
static int nvme_major;
|
|
module_param(nvme_major, int, 0);
|
|
|
|
static int use_threaded_interrupts;
|
|
module_param(use_threaded_interrupts, int, 0);
|
|
|
|
static DEFINE_SPINLOCK(dev_list_lock);
|
|
static LIST_HEAD(dev_list);
|
|
static struct task_struct *nvme_thread;
|
|
|
|
/*
|
|
* An NVM Express queue. Each device has at least two (one for admin
|
|
* commands and one for I/O commands).
|
|
*/
|
|
struct nvme_queue {
|
|
struct device *q_dmadev;
|
|
struct nvme_dev *dev;
|
|
spinlock_t q_lock;
|
|
struct nvme_command *sq_cmds;
|
|
volatile struct nvme_completion *cqes;
|
|
dma_addr_t sq_dma_addr;
|
|
dma_addr_t cq_dma_addr;
|
|
wait_queue_head_t sq_full;
|
|
wait_queue_t sq_cong_wait;
|
|
struct bio_list sq_cong;
|
|
u32 __iomem *q_db;
|
|
u16 q_depth;
|
|
u16 cq_vector;
|
|
u16 sq_head;
|
|
u16 sq_tail;
|
|
u16 cq_head;
|
|
u16 cq_phase;
|
|
unsigned long cmdid_data[];
|
|
};
|
|
|
|
/*
|
|
* Check we didin't inadvertently grow the command struct
|
|
*/
|
|
static inline void _nvme_check_size(void)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
|
|
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
|
|
}
|
|
|
|
typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
|
|
struct nvme_completion *);
|
|
|
|
struct nvme_cmd_info {
|
|
nvme_completion_fn fn;
|
|
void *ctx;
|
|
unsigned long timeout;
|
|
};
|
|
|
|
static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
|
|
{
|
|
return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
|
|
}
|
|
|
|
/**
|
|
* alloc_cmdid() - Allocate a Command ID
|
|
* @nvmeq: The queue that will be used for this command
|
|
* @ctx: A pointer that will be passed to the handler
|
|
* @handler: The function to call on completion
|
|
*
|
|
* Allocate a Command ID for a queue. The data passed in will
|
|
* be passed to the completion handler. This is implemented by using
|
|
* the bottom two bits of the ctx pointer to store the handler ID.
|
|
* Passing in a pointer that's not 4-byte aligned will cause a BUG.
|
|
* We can change this if it becomes a problem.
|
|
*
|
|
* May be called with local interrupts disabled and the q_lock held,
|
|
* or with interrupts enabled and no locks held.
|
|
*/
|
|
static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
|
|
nvme_completion_fn handler, unsigned timeout)
|
|
{
|
|
int depth = nvmeq->q_depth - 1;
|
|
struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
|
|
int cmdid;
|
|
|
|
do {
|
|
cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
|
|
if (cmdid >= depth)
|
|
return -EBUSY;
|
|
} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
|
|
|
|
info[cmdid].fn = handler;
|
|
info[cmdid].ctx = ctx;
|
|
info[cmdid].timeout = jiffies + timeout;
|
|
return cmdid;
|
|
}
|
|
|
|
static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
|
|
nvme_completion_fn handler, unsigned timeout)
|
|
{
|
|
int cmdid;
|
|
wait_event_killable(nvmeq->sq_full,
|
|
(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
|
|
return (cmdid < 0) ? -EINTR : cmdid;
|
|
}
|
|
|
|
/* Special values must be less than 0x1000 */
|
|
#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
|
|
#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
|
|
#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
|
|
#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
|
|
#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
|
|
|
|
static void special_completion(struct nvme_dev *dev, void *ctx,
|
|
struct nvme_completion *cqe)
|
|
{
|
|
if (ctx == CMD_CTX_CANCELLED)
|
|
return;
|
|
if (ctx == CMD_CTX_FLUSH)
|
|
return;
|
|
if (ctx == CMD_CTX_COMPLETED) {
|
|
dev_warn(&dev->pci_dev->dev,
|
|
"completed id %d twice on queue %d\n",
|
|
cqe->command_id, le16_to_cpup(&cqe->sq_id));
|
|
return;
|
|
}
|
|
if (ctx == CMD_CTX_INVALID) {
|
|
dev_warn(&dev->pci_dev->dev,
|
|
"invalid id %d completed on queue %d\n",
|
|
cqe->command_id, le16_to_cpup(&cqe->sq_id));
|
|
return;
|
|
}
|
|
|
|
dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
|
|
}
|
|
|
|
/*
|
|
* Called with local interrupts disabled and the q_lock held. May not sleep.
|
|
*/
|
|
static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
|
|
nvme_completion_fn *fn)
|
|
{
|
|
void *ctx;
|
|
struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
|
|
|
|
if (cmdid >= nvmeq->q_depth) {
|
|
*fn = special_completion;
|
|
return CMD_CTX_INVALID;
|
|
}
|
|
if (fn)
|
|
*fn = info[cmdid].fn;
|
|
ctx = info[cmdid].ctx;
|
|
info[cmdid].fn = special_completion;
|
|
info[cmdid].ctx = CMD_CTX_COMPLETED;
|
|
clear_bit(cmdid, nvmeq->cmdid_data);
|
|
wake_up(&nvmeq->sq_full);
|
|
return ctx;
|
|
}
|
|
|
|
static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
|
|
nvme_completion_fn *fn)
|
|
{
|
|
void *ctx;
|
|
struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
|
|
if (fn)
|
|
*fn = info[cmdid].fn;
|
|
ctx = info[cmdid].ctx;
|
|
info[cmdid].fn = special_completion;
|
|
info[cmdid].ctx = CMD_CTX_CANCELLED;
|
|
return ctx;
|
|
}
|
|
|
|
struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
|
|
{
|
|
return dev->queues[get_cpu() + 1];
|
|
}
|
|
|
|
void put_nvmeq(struct nvme_queue *nvmeq)
|
|
{
|
|
put_cpu();
|
|
}
|
|
|
|
/**
|
|
* nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
|
|
* @nvmeq: The queue to use
|
|
* @cmd: The command to send
|
|
*
|
|
* Safe to use from interrupt context
|
|
*/
|
|
static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
|
|
{
|
|
unsigned long flags;
|
|
u16 tail;
|
|
spin_lock_irqsave(&nvmeq->q_lock, flags);
|
|
tail = nvmeq->sq_tail;
|
|
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
|
|
if (++tail == nvmeq->q_depth)
|
|
tail = 0;
|
|
writel(tail, nvmeq->q_db);
|
|
nvmeq->sq_tail = tail;
|
|
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __le64 **iod_list(struct nvme_iod *iod)
|
|
{
|
|
return ((void *)iod) + iod->offset;
|
|
}
|
|
|
|
/*
|
|
* Will slightly overestimate the number of pages needed. This is OK
|
|
* as it only leads to a small amount of wasted memory for the lifetime of
|
|
* the I/O.
|
|
*/
|
|
static int nvme_npages(unsigned size)
|
|
{
|
|
unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
|
|
return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
|
|
}
|
|
|
|
static struct nvme_iod *
|
|
nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
|
|
{
|
|
struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
|
|
sizeof(__le64 *) * nvme_npages(nbytes) +
|
|
sizeof(struct scatterlist) * nseg, gfp);
|
|
|
|
if (iod) {
|
|
iod->offset = offsetof(struct nvme_iod, sg[nseg]);
|
|
iod->npages = -1;
|
|
iod->length = nbytes;
|
|
iod->nents = 0;
|
|
}
|
|
|
|
return iod;
|
|
}
|
|
|
|
void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
|
|
{
|
|
const int last_prp = PAGE_SIZE / 8 - 1;
|
|
int i;
|
|
__le64 **list = iod_list(iod);
|
|
dma_addr_t prp_dma = iod->first_dma;
|
|
|
|
if (iod->npages == 0)
|
|
dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
|
|
for (i = 0; i < iod->npages; i++) {
|
|
__le64 *prp_list = list[i];
|
|
dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
|
|
dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
|
|
prp_dma = next_prp_dma;
|
|
}
|
|
kfree(iod);
|
|
}
|
|
|
|
static void bio_completion(struct nvme_dev *dev, void *ctx,
|
|
struct nvme_completion *cqe)
|
|
{
|
|
struct nvme_iod *iod = ctx;
|
|
struct bio *bio = iod->private;
|
|
u16 status = le16_to_cpup(&cqe->status) >> 1;
|
|
|
|
if (iod->nents)
|
|
dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
|
|
bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
|
|
nvme_free_iod(dev, iod);
|
|
if (status)
|
|
bio_endio(bio, -EIO);
|
|
else
|
|
bio_endio(bio, 0);
|
|
}
|
|
|
|
/* length is in bytes. gfp flags indicates whether we may sleep. */
|
|
int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
|
|
struct nvme_iod *iod, int total_len, gfp_t gfp)
|
|
{
|
|
struct dma_pool *pool;
|
|
int length = total_len;
|
|
struct scatterlist *sg = iod->sg;
|
|
int dma_len = sg_dma_len(sg);
|
|
u64 dma_addr = sg_dma_address(sg);
|
|
int offset = offset_in_page(dma_addr);
|
|
__le64 *prp_list;
|
|
__le64 **list = iod_list(iod);
|
|
dma_addr_t prp_dma;
|
|
int nprps, i;
|
|
|
|
cmd->prp1 = cpu_to_le64(dma_addr);
|
|
length -= (PAGE_SIZE - offset);
|
|
if (length <= 0)
|
|
return total_len;
|
|
|
|
dma_len -= (PAGE_SIZE - offset);
|
|
if (dma_len) {
|
|
dma_addr += (PAGE_SIZE - offset);
|
|
} else {
|
|
sg = sg_next(sg);
|
|
dma_addr = sg_dma_address(sg);
|
|
dma_len = sg_dma_len(sg);
|
|
}
|
|
|
|
if (length <= PAGE_SIZE) {
|
|
cmd->prp2 = cpu_to_le64(dma_addr);
|
|
return total_len;
|
|
}
|
|
|
|
nprps = DIV_ROUND_UP(length, PAGE_SIZE);
|
|
if (nprps <= (256 / 8)) {
|
|
pool = dev->prp_small_pool;
|
|
iod->npages = 0;
|
|
} else {
|
|
pool = dev->prp_page_pool;
|
|
iod->npages = 1;
|
|
}
|
|
|
|
prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
|
|
if (!prp_list) {
|
|
cmd->prp2 = cpu_to_le64(dma_addr);
|
|
iod->npages = -1;
|
|
return (total_len - length) + PAGE_SIZE;
|
|
}
|
|
list[0] = prp_list;
|
|
iod->first_dma = prp_dma;
|
|
cmd->prp2 = cpu_to_le64(prp_dma);
|
|
i = 0;
|
|
for (;;) {
|
|
if (i == PAGE_SIZE / 8) {
|
|
__le64 *old_prp_list = prp_list;
|
|
prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
|
|
if (!prp_list)
|
|
return total_len - length;
|
|
list[iod->npages++] = prp_list;
|
|
prp_list[0] = old_prp_list[i - 1];
|
|
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
|
|
i = 1;
|
|
}
|
|
prp_list[i++] = cpu_to_le64(dma_addr);
|
|
dma_len -= PAGE_SIZE;
|
|
dma_addr += PAGE_SIZE;
|
|
length -= PAGE_SIZE;
|
|
if (length <= 0)
|
|
break;
|
|
if (dma_len > 0)
|
|
continue;
|
|
BUG_ON(dma_len < 0);
|
|
sg = sg_next(sg);
|
|
dma_addr = sg_dma_address(sg);
|
|
dma_len = sg_dma_len(sg);
|
|
}
|
|
|
|
return total_len;
|
|
}
|
|
|
|
struct nvme_bio_pair {
|
|
struct bio b1, b2, *parent;
|
|
struct bio_vec *bv1, *bv2;
|
|
int err;
|
|
atomic_t cnt;
|
|
};
|
|
|
|
static void nvme_bio_pair_endio(struct bio *bio, int err)
|
|
{
|
|
struct nvme_bio_pair *bp = bio->bi_private;
|
|
|
|
if (err)
|
|
bp->err = err;
|
|
|
|
if (atomic_dec_and_test(&bp->cnt)) {
|
|
bio_endio(bp->parent, bp->err);
|
|
if (bp->bv1)
|
|
kfree(bp->bv1);
|
|
if (bp->bv2)
|
|
kfree(bp->bv2);
|
|
kfree(bp);
|
|
}
|
|
}
|
|
|
|
static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
|
|
int len, int offset)
|
|
{
|
|
struct nvme_bio_pair *bp;
|
|
|
|
BUG_ON(len > bio->bi_size);
|
|
BUG_ON(idx > bio->bi_vcnt);
|
|
|
|
bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
|
|
if (!bp)
|
|
return NULL;
|
|
bp->err = 0;
|
|
|
|
bp->b1 = *bio;
|
|
bp->b2 = *bio;
|
|
|
|
bp->b1.bi_size = len;
|
|
bp->b2.bi_size -= len;
|
|
bp->b1.bi_vcnt = idx;
|
|
bp->b2.bi_idx = idx;
|
|
bp->b2.bi_sector += len >> 9;
|
|
|
|
if (offset) {
|
|
bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
|
|
GFP_ATOMIC);
|
|
if (!bp->bv1)
|
|
goto split_fail_1;
|
|
|
|
bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
|
|
GFP_ATOMIC);
|
|
if (!bp->bv2)
|
|
goto split_fail_2;
|
|
|
|
memcpy(bp->bv1, bio->bi_io_vec,
|
|
bio->bi_max_vecs * sizeof(struct bio_vec));
|
|
memcpy(bp->bv2, bio->bi_io_vec,
|
|
bio->bi_max_vecs * sizeof(struct bio_vec));
|
|
|
|
bp->b1.bi_io_vec = bp->bv1;
|
|
bp->b2.bi_io_vec = bp->bv2;
|
|
bp->b2.bi_io_vec[idx].bv_offset += offset;
|
|
bp->b2.bi_io_vec[idx].bv_len -= offset;
|
|
bp->b1.bi_io_vec[idx].bv_len = offset;
|
|
bp->b1.bi_vcnt++;
|
|
} else
|
|
bp->bv1 = bp->bv2 = NULL;
|
|
|
|
bp->b1.bi_private = bp;
|
|
bp->b2.bi_private = bp;
|
|
|
|
bp->b1.bi_end_io = nvme_bio_pair_endio;
|
|
bp->b2.bi_end_io = nvme_bio_pair_endio;
|
|
|
|
bp->parent = bio;
|
|
atomic_set(&bp->cnt, 2);
|
|
|
|
return bp;
|
|
|
|
split_fail_2:
|
|
kfree(bp->bv1);
|
|
split_fail_1:
|
|
kfree(bp);
|
|
return NULL;
|
|
}
|
|
|
|
static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
|
|
int idx, int len, int offset)
|
|
{
|
|
struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
|
|
if (!bp)
|
|
return -ENOMEM;
|
|
|
|
if (bio_list_empty(&nvmeq->sq_cong))
|
|
add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
|
|
bio_list_add(&nvmeq->sq_cong, &bp->b1);
|
|
bio_list_add(&nvmeq->sq_cong, &bp->b2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* NVMe scatterlists require no holes in the virtual address */
|
|
#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
|
|
(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
|
|
|
|
static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
|
|
struct bio *bio, enum dma_data_direction dma_dir, int psegs)
|
|
{
|
|
struct bio_vec *bvec, *bvprv = NULL;
|
|
struct scatterlist *sg = NULL;
|
|
int i, length = 0, nsegs = 0, split_len = bio->bi_size;
|
|
|
|
if (nvmeq->dev->stripe_size)
|
|
split_len = nvmeq->dev->stripe_size -
|
|
((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
|
|
|
|
sg_init_table(iod->sg, psegs);
|
|
bio_for_each_segment(bvec, bio, i) {
|
|
if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
|
|
sg->length += bvec->bv_len;
|
|
} else {
|
|
if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
|
|
return nvme_split_and_submit(bio, nvmeq, i,
|
|
length, 0);
|
|
|
|
sg = sg ? sg + 1 : iod->sg;
|
|
sg_set_page(sg, bvec->bv_page, bvec->bv_len,
|
|
bvec->bv_offset);
|
|
nsegs++;
|
|
}
|
|
|
|
if (split_len - length < bvec->bv_len)
|
|
return nvme_split_and_submit(bio, nvmeq, i, split_len,
|
|
split_len - length);
|
|
length += bvec->bv_len;
|
|
bvprv = bvec;
|
|
}
|
|
iod->nents = nsegs;
|
|
sg_mark_end(sg);
|
|
if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
|
|
return -ENOMEM;
|
|
|
|
BUG_ON(length != bio->bi_size);
|
|
return length;
|
|
}
|
|
|
|
/*
|
|
* We reuse the small pool to allocate the 16-byte range here as it is not
|
|
* worth having a special pool for these or additional cases to handle freeing
|
|
* the iod.
|
|
*/
|
|
static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
|
|
struct bio *bio, struct nvme_iod *iod, int cmdid)
|
|
{
|
|
struct nvme_dsm_range *range;
|
|
struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
|
|
|
|
range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
|
|
&iod->first_dma);
|
|
if (!range)
|
|
return -ENOMEM;
|
|
|
|
iod_list(iod)[0] = (__le64 *)range;
|
|
iod->npages = 0;
|
|
|
|
range->cattr = cpu_to_le32(0);
|
|
range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
|
|
range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
|
|
|
|
memset(cmnd, 0, sizeof(*cmnd));
|
|
cmnd->dsm.opcode = nvme_cmd_dsm;
|
|
cmnd->dsm.command_id = cmdid;
|
|
cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
|
|
cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
|
|
cmnd->dsm.nr = 0;
|
|
cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
|
|
|
|
if (++nvmeq->sq_tail == nvmeq->q_depth)
|
|
nvmeq->sq_tail = 0;
|
|
writel(nvmeq->sq_tail, nvmeq->q_db);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
|
|
int cmdid)
|
|
{
|
|
struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
|
|
|
|
memset(cmnd, 0, sizeof(*cmnd));
|
|
cmnd->common.opcode = nvme_cmd_flush;
|
|
cmnd->common.command_id = cmdid;
|
|
cmnd->common.nsid = cpu_to_le32(ns->ns_id);
|
|
|
|
if (++nvmeq->sq_tail == nvmeq->q_depth)
|
|
nvmeq->sq_tail = 0;
|
|
writel(nvmeq->sq_tail, nvmeq->q_db);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
|
|
{
|
|
int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
|
|
special_completion, NVME_IO_TIMEOUT);
|
|
if (unlikely(cmdid < 0))
|
|
return cmdid;
|
|
|
|
return nvme_submit_flush(nvmeq, ns, cmdid);
|
|
}
|
|
|
|
/*
|
|
* Called with local interrupts disabled and the q_lock held. May not sleep.
|
|
*/
|
|
static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
|
|
struct bio *bio)
|
|
{
|
|
struct nvme_command *cmnd;
|
|
struct nvme_iod *iod;
|
|
enum dma_data_direction dma_dir;
|
|
int cmdid, length, result;
|
|
u16 control;
|
|
u32 dsmgmt;
|
|
int psegs = bio_phys_segments(ns->queue, bio);
|
|
|
|
if ((bio->bi_rw & REQ_FLUSH) && psegs) {
|
|
result = nvme_submit_flush_data(nvmeq, ns);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
result = -ENOMEM;
|
|
iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
|
|
if (!iod)
|
|
goto nomem;
|
|
iod->private = bio;
|
|
|
|
result = -EBUSY;
|
|
cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
|
|
if (unlikely(cmdid < 0))
|
|
goto free_iod;
|
|
|
|
if (bio->bi_rw & REQ_DISCARD) {
|
|
result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
|
|
if (result)
|
|
goto free_cmdid;
|
|
return result;
|
|
}
|
|
if ((bio->bi_rw & REQ_FLUSH) && !psegs)
|
|
return nvme_submit_flush(nvmeq, ns, cmdid);
|
|
|
|
control = 0;
|
|
if (bio->bi_rw & REQ_FUA)
|
|
control |= NVME_RW_FUA;
|
|
if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
|
|
control |= NVME_RW_LR;
|
|
|
|
dsmgmt = 0;
|
|
if (bio->bi_rw & REQ_RAHEAD)
|
|
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
|
|
|
|
cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
|
|
|
|
memset(cmnd, 0, sizeof(*cmnd));
|
|
if (bio_data_dir(bio)) {
|
|
cmnd->rw.opcode = nvme_cmd_write;
|
|
dma_dir = DMA_TO_DEVICE;
|
|
} else {
|
|
cmnd->rw.opcode = nvme_cmd_read;
|
|
dma_dir = DMA_FROM_DEVICE;
|
|
}
|
|
|
|
result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
|
|
if (result <= 0)
|
|
goto free_cmdid;
|
|
length = result;
|
|
|
|
cmnd->rw.command_id = cmdid;
|
|
cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
|
|
length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
|
|
GFP_ATOMIC);
|
|
cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
|
|
cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
|
|
cmnd->rw.control = cpu_to_le16(control);
|
|
cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
|
|
|
|
if (++nvmeq->sq_tail == nvmeq->q_depth)
|
|
nvmeq->sq_tail = 0;
|
|
writel(nvmeq->sq_tail, nvmeq->q_db);
|
|
|
|
return 0;
|
|
|
|
free_cmdid:
|
|
free_cmdid(nvmeq, cmdid, NULL);
|
|
free_iod:
|
|
nvme_free_iod(nvmeq->dev, iod);
|
|
nomem:
|
|
return result;
|
|
}
|
|
|
|
static void nvme_make_request(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct nvme_ns *ns = q->queuedata;
|
|
struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
|
|
int result = -EBUSY;
|
|
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
if (bio_list_empty(&nvmeq->sq_cong))
|
|
result = nvme_submit_bio_queue(nvmeq, ns, bio);
|
|
if (unlikely(result)) {
|
|
if (bio_list_empty(&nvmeq->sq_cong))
|
|
add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
|
|
bio_list_add(&nvmeq->sq_cong, bio);
|
|
}
|
|
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
put_nvmeq(nvmeq);
|
|
}
|
|
|
|
static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
|
|
{
|
|
u16 head, phase;
|
|
|
|
head = nvmeq->cq_head;
|
|
phase = nvmeq->cq_phase;
|
|
|
|
for (;;) {
|
|
void *ctx;
|
|
nvme_completion_fn fn;
|
|
struct nvme_completion cqe = nvmeq->cqes[head];
|
|
if ((le16_to_cpu(cqe.status) & 1) != phase)
|
|
break;
|
|
nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
|
|
if (++head == nvmeq->q_depth) {
|
|
head = 0;
|
|
phase = !phase;
|
|
}
|
|
|
|
ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
|
|
fn(nvmeq->dev, ctx, &cqe);
|
|
}
|
|
|
|
/* If the controller ignores the cq head doorbell and continuously
|
|
* writes to the queue, it is theoretically possible to wrap around
|
|
* the queue twice and mistakenly return IRQ_NONE. Linux only
|
|
* requires that 0.1% of your interrupts are handled, so this isn't
|
|
* a big problem.
|
|
*/
|
|
if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
|
|
return IRQ_NONE;
|
|
|
|
writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
|
|
nvmeq->cq_head = head;
|
|
nvmeq->cq_phase = phase;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t nvme_irq(int irq, void *data)
|
|
{
|
|
irqreturn_t result;
|
|
struct nvme_queue *nvmeq = data;
|
|
spin_lock(&nvmeq->q_lock);
|
|
result = nvme_process_cq(nvmeq);
|
|
spin_unlock(&nvmeq->q_lock);
|
|
return result;
|
|
}
|
|
|
|
static irqreturn_t nvme_irq_check(int irq, void *data)
|
|
{
|
|
struct nvme_queue *nvmeq = data;
|
|
struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
|
|
if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
|
|
return IRQ_NONE;
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
|
|
{
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
cancel_cmdid(nvmeq, cmdid, NULL);
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
}
|
|
|
|
struct sync_cmd_info {
|
|
struct task_struct *task;
|
|
u32 result;
|
|
int status;
|
|
};
|
|
|
|
static void sync_completion(struct nvme_dev *dev, void *ctx,
|
|
struct nvme_completion *cqe)
|
|
{
|
|
struct sync_cmd_info *cmdinfo = ctx;
|
|
cmdinfo->result = le32_to_cpup(&cqe->result);
|
|
cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
|
|
wake_up_process(cmdinfo->task);
|
|
}
|
|
|
|
/*
|
|
* Returns 0 on success. If the result is negative, it's a Linux error code;
|
|
* if the result is positive, it's an NVM Express status code
|
|
*/
|
|
int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
|
|
u32 *result, unsigned timeout)
|
|
{
|
|
int cmdid;
|
|
struct sync_cmd_info cmdinfo;
|
|
|
|
cmdinfo.task = current;
|
|
cmdinfo.status = -EINTR;
|
|
|
|
cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
|
|
timeout);
|
|
if (cmdid < 0)
|
|
return cmdid;
|
|
cmd->common.command_id = cmdid;
|
|
|
|
set_current_state(TASK_KILLABLE);
|
|
nvme_submit_cmd(nvmeq, cmd);
|
|
schedule_timeout(timeout);
|
|
|
|
if (cmdinfo.status == -EINTR) {
|
|
nvme_abort_command(nvmeq, cmdid);
|
|
return -EINTR;
|
|
}
|
|
|
|
if (result)
|
|
*result = cmdinfo.result;
|
|
|
|
return cmdinfo.status;
|
|
}
|
|
|
|
int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
|
|
u32 *result)
|
|
{
|
|
return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
|
|
}
|
|
|
|
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
|
|
{
|
|
int status;
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.delete_queue.opcode = opcode;
|
|
c.delete_queue.qid = cpu_to_le16(id);
|
|
|
|
status = nvme_submit_admin_cmd(dev, &c, NULL);
|
|
if (status)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
|
|
struct nvme_queue *nvmeq)
|
|
{
|
|
int status;
|
|
struct nvme_command c;
|
|
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.create_cq.opcode = nvme_admin_create_cq;
|
|
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
|
|
c.create_cq.cqid = cpu_to_le16(qid);
|
|
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
|
c.create_cq.cq_flags = cpu_to_le16(flags);
|
|
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
|
|
|
|
status = nvme_submit_admin_cmd(dev, &c, NULL);
|
|
if (status)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
|
|
struct nvme_queue *nvmeq)
|
|
{
|
|
int status;
|
|
struct nvme_command c;
|
|
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.create_sq.opcode = nvme_admin_create_sq;
|
|
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
|
|
c.create_sq.sqid = cpu_to_le16(qid);
|
|
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
|
c.create_sq.sq_flags = cpu_to_le16(flags);
|
|
c.create_sq.cqid = cpu_to_le16(qid);
|
|
|
|
status = nvme_submit_admin_cmd(dev, &c, NULL);
|
|
if (status)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
|
|
{
|
|
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
|
|
}
|
|
|
|
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
|
|
{
|
|
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
|
|
}
|
|
|
|
int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
|
|
dma_addr_t dma_addr)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.nsid = cpu_to_le32(nsid);
|
|
c.identify.prp1 = cpu_to_le64(dma_addr);
|
|
c.identify.cns = cpu_to_le32(cns);
|
|
|
|
return nvme_submit_admin_cmd(dev, &c, NULL);
|
|
}
|
|
|
|
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
|
|
dma_addr_t dma_addr, u32 *result)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.features.opcode = nvme_admin_get_features;
|
|
c.features.nsid = cpu_to_le32(nsid);
|
|
c.features.prp1 = cpu_to_le64(dma_addr);
|
|
c.features.fid = cpu_to_le32(fid);
|
|
|
|
return nvme_submit_admin_cmd(dev, &c, result);
|
|
}
|
|
|
|
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
|
|
dma_addr_t dma_addr, u32 *result)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.features.opcode = nvme_admin_set_features;
|
|
c.features.prp1 = cpu_to_le64(dma_addr);
|
|
c.features.fid = cpu_to_le32(fid);
|
|
c.features.dword11 = cpu_to_le32(dword11);
|
|
|
|
return nvme_submit_admin_cmd(dev, &c, result);
|
|
}
|
|
|
|
/**
|
|
* nvme_cancel_ios - Cancel outstanding I/Os
|
|
* @queue: The queue to cancel I/Os on
|
|
* @timeout: True to only cancel I/Os which have timed out
|
|
*/
|
|
static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
|
|
{
|
|
int depth = nvmeq->q_depth - 1;
|
|
struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
|
|
unsigned long now = jiffies;
|
|
int cmdid;
|
|
|
|
for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
|
|
void *ctx;
|
|
nvme_completion_fn fn;
|
|
static struct nvme_completion cqe = {
|
|
.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
|
|
};
|
|
|
|
if (timeout && !time_after(now, info[cmdid].timeout))
|
|
continue;
|
|
if (info[cmdid].ctx == CMD_CTX_CANCELLED)
|
|
continue;
|
|
dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
|
|
ctx = cancel_cmdid(nvmeq, cmdid, &fn);
|
|
fn(nvmeq->dev, ctx, &cqe);
|
|
}
|
|
}
|
|
|
|
static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
|
|
{
|
|
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
|
|
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
|
|
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
|
|
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
|
|
kfree(nvmeq);
|
|
}
|
|
|
|
static void nvme_free_queue(struct nvme_dev *dev, int qid)
|
|
{
|
|
struct nvme_queue *nvmeq = dev->queues[qid];
|
|
int vector = dev->entry[nvmeq->cq_vector].vector;
|
|
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
nvme_cancel_ios(nvmeq, false);
|
|
while (bio_list_peek(&nvmeq->sq_cong)) {
|
|
struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
|
|
bio_endio(bio, -EIO);
|
|
}
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
|
|
irq_set_affinity_hint(vector, NULL);
|
|
free_irq(vector, nvmeq);
|
|
|
|
/* Don't tell the adapter to delete the admin queue */
|
|
if (qid) {
|
|
adapter_delete_sq(dev, qid);
|
|
adapter_delete_cq(dev, qid);
|
|
}
|
|
|
|
nvme_free_queue_mem(nvmeq);
|
|
}
|
|
|
|
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
|
|
int depth, int vector)
|
|
{
|
|
struct device *dmadev = &dev->pci_dev->dev;
|
|
unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
|
|
sizeof(struct nvme_cmd_info));
|
|
struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
|
|
if (!nvmeq)
|
|
return NULL;
|
|
|
|
nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
|
|
&nvmeq->cq_dma_addr, GFP_KERNEL);
|
|
if (!nvmeq->cqes)
|
|
goto free_nvmeq;
|
|
memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
|
|
|
|
nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
|
|
&nvmeq->sq_dma_addr, GFP_KERNEL);
|
|
if (!nvmeq->sq_cmds)
|
|
goto free_cqdma;
|
|
|
|
nvmeq->q_dmadev = dmadev;
|
|
nvmeq->dev = dev;
|
|
spin_lock_init(&nvmeq->q_lock);
|
|
nvmeq->cq_head = 0;
|
|
nvmeq->cq_phase = 1;
|
|
init_waitqueue_head(&nvmeq->sq_full);
|
|
init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
|
|
bio_list_init(&nvmeq->sq_cong);
|
|
nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
|
|
nvmeq->q_depth = depth;
|
|
nvmeq->cq_vector = vector;
|
|
|
|
return nvmeq;
|
|
|
|
free_cqdma:
|
|
dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
|
|
nvmeq->cq_dma_addr);
|
|
free_nvmeq:
|
|
kfree(nvmeq);
|
|
return NULL;
|
|
}
|
|
|
|
static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
|
|
const char *name)
|
|
{
|
|
if (use_threaded_interrupts)
|
|
return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
|
|
nvme_irq_check, nvme_irq,
|
|
IRQF_DISABLED | IRQF_SHARED,
|
|
name, nvmeq);
|
|
return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
|
|
IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
|
|
}
|
|
|
|
static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
|
|
int cq_size, int vector)
|
|
{
|
|
int result;
|
|
struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
|
|
|
|
if (!nvmeq)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
result = adapter_alloc_cq(dev, qid, nvmeq);
|
|
if (result < 0)
|
|
goto free_nvmeq;
|
|
|
|
result = adapter_alloc_sq(dev, qid, nvmeq);
|
|
if (result < 0)
|
|
goto release_cq;
|
|
|
|
result = queue_request_irq(dev, nvmeq, "nvme");
|
|
if (result < 0)
|
|
goto release_sq;
|
|
|
|
return nvmeq;
|
|
|
|
release_sq:
|
|
adapter_delete_sq(dev, qid);
|
|
release_cq:
|
|
adapter_delete_cq(dev, qid);
|
|
free_nvmeq:
|
|
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
|
|
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
|
|
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
|
|
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
|
|
kfree(nvmeq);
|
|
return ERR_PTR(result);
|
|
}
|
|
|
|
static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
|
|
{
|
|
unsigned long timeout;
|
|
u32 bit = enabled ? NVME_CSTS_RDY : 0;
|
|
|
|
timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
|
|
|
|
while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
|
|
msleep(100);
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
if (time_after(jiffies, timeout)) {
|
|
dev_err(&dev->pci_dev->dev,
|
|
"Device not ready; aborting initialisation\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the device has been passed off to us in an enabled state, just clear
|
|
* the enabled bit. The spec says we should set the 'shutdown notification
|
|
* bits', but doing so may cause the device to complete commands to the
|
|
* admin queue ... and we don't know what memory that might be pointing at!
|
|
*/
|
|
static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
|
|
{
|
|
u32 cc = readl(&dev->bar->cc);
|
|
|
|
if (cc & NVME_CC_ENABLE)
|
|
writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
|
|
return nvme_wait_ready(dev, cap, false);
|
|
}
|
|
|
|
static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
|
|
{
|
|
return nvme_wait_ready(dev, cap, true);
|
|
}
|
|
|
|
static int nvme_configure_admin_queue(struct nvme_dev *dev)
|
|
{
|
|
int result;
|
|
u32 aqa;
|
|
u64 cap = readq(&dev->bar->cap);
|
|
struct nvme_queue *nvmeq;
|
|
|
|
dev->dbs = ((void __iomem *)dev->bar) + 4096;
|
|
dev->db_stride = NVME_CAP_STRIDE(cap);
|
|
|
|
result = nvme_disable_ctrl(dev, cap);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
|
|
if (!nvmeq)
|
|
return -ENOMEM;
|
|
|
|
aqa = nvmeq->q_depth - 1;
|
|
aqa |= aqa << 16;
|
|
|
|
dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
|
|
dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
|
|
dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
|
|
dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
|
|
|
|
writel(aqa, &dev->bar->aqa);
|
|
writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
|
|
writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
|
|
writel(dev->ctrl_config, &dev->bar->cc);
|
|
|
|
result = nvme_enable_ctrl(dev, cap);
|
|
if (result)
|
|
goto free_q;
|
|
|
|
result = queue_request_irq(dev, nvmeq, "nvme admin");
|
|
if (result)
|
|
goto free_q;
|
|
|
|
dev->queues[0] = nvmeq;
|
|
return result;
|
|
|
|
free_q:
|
|
nvme_free_queue_mem(nvmeq);
|
|
return result;
|
|
}
|
|
|
|
struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
|
|
unsigned long addr, unsigned length)
|
|
{
|
|
int i, err, count, nents, offset;
|
|
struct scatterlist *sg;
|
|
struct page **pages;
|
|
struct nvme_iod *iod;
|
|
|
|
if (addr & 3)
|
|
return ERR_PTR(-EINVAL);
|
|
if (!length || length > INT_MAX - PAGE_SIZE)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
offset = offset_in_page(addr);
|
|
count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
|
|
pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
|
|
if (!pages)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = get_user_pages_fast(addr, count, 1, pages);
|
|
if (err < count) {
|
|
count = err;
|
|
err = -EFAULT;
|
|
goto put_pages;
|
|
}
|
|
|
|
iod = nvme_alloc_iod(count, length, GFP_KERNEL);
|
|
sg = iod->sg;
|
|
sg_init_table(sg, count);
|
|
for (i = 0; i < count; i++) {
|
|
sg_set_page(&sg[i], pages[i],
|
|
min_t(unsigned, length, PAGE_SIZE - offset),
|
|
offset);
|
|
length -= (PAGE_SIZE - offset);
|
|
offset = 0;
|
|
}
|
|
sg_mark_end(&sg[i - 1]);
|
|
iod->nents = count;
|
|
|
|
err = -ENOMEM;
|
|
nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
|
|
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
|
|
if (!nents)
|
|
goto free_iod;
|
|
|
|
kfree(pages);
|
|
return iod;
|
|
|
|
free_iod:
|
|
kfree(iod);
|
|
put_pages:
|
|
for (i = 0; i < count; i++)
|
|
put_page(pages[i]);
|
|
kfree(pages);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
|
|
struct nvme_iod *iod)
|
|
{
|
|
int i;
|
|
|
|
dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
|
|
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
|
|
|
|
for (i = 0; i < iod->nents; i++)
|
|
put_page(sg_page(&iod->sg[i]));
|
|
}
|
|
|
|
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
|
|
{
|
|
struct nvme_dev *dev = ns->dev;
|
|
struct nvme_queue *nvmeq;
|
|
struct nvme_user_io io;
|
|
struct nvme_command c;
|
|
unsigned length, meta_len;
|
|
int status, i;
|
|
struct nvme_iod *iod, *meta_iod = NULL;
|
|
dma_addr_t meta_dma_addr;
|
|
void *meta, *uninitialized_var(meta_mem);
|
|
|
|
if (copy_from_user(&io, uio, sizeof(io)))
|
|
return -EFAULT;
|
|
length = (io.nblocks + 1) << ns->lba_shift;
|
|
meta_len = (io.nblocks + 1) * ns->ms;
|
|
|
|
if (meta_len && ((io.metadata & 3) || !io.metadata))
|
|
return -EINVAL;
|
|
|
|
switch (io.opcode) {
|
|
case nvme_cmd_write:
|
|
case nvme_cmd_read:
|
|
case nvme_cmd_compare:
|
|
iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (IS_ERR(iod))
|
|
return PTR_ERR(iod);
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.rw.opcode = io.opcode;
|
|
c.rw.flags = io.flags;
|
|
c.rw.nsid = cpu_to_le32(ns->ns_id);
|
|
c.rw.slba = cpu_to_le64(io.slba);
|
|
c.rw.length = cpu_to_le16(io.nblocks);
|
|
c.rw.control = cpu_to_le16(io.control);
|
|
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
|
|
c.rw.reftag = cpu_to_le32(io.reftag);
|
|
c.rw.apptag = cpu_to_le16(io.apptag);
|
|
c.rw.appmask = cpu_to_le16(io.appmask);
|
|
|
|
if (meta_len) {
|
|
meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
|
|
if (IS_ERR(meta_iod)) {
|
|
status = PTR_ERR(meta_iod);
|
|
meta_iod = NULL;
|
|
goto unmap;
|
|
}
|
|
|
|
meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
|
|
&meta_dma_addr, GFP_KERNEL);
|
|
if (!meta_mem) {
|
|
status = -ENOMEM;
|
|
goto unmap;
|
|
}
|
|
|
|
if (io.opcode & 1) {
|
|
int meta_offset = 0;
|
|
|
|
for (i = 0; i < meta_iod->nents; i++) {
|
|
meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
|
|
meta_iod->sg[i].offset;
|
|
memcpy(meta_mem + meta_offset, meta,
|
|
meta_iod->sg[i].length);
|
|
kunmap_atomic(meta);
|
|
meta_offset += meta_iod->sg[i].length;
|
|
}
|
|
}
|
|
|
|
c.rw.metadata = cpu_to_le64(meta_dma_addr);
|
|
}
|
|
|
|
length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
|
|
|
|
nvmeq = get_nvmeq(dev);
|
|
/*
|
|
* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
|
|
* disabled. We may be preempted at any point, and be rescheduled
|
|
* to a different CPU. That will cause cacheline bouncing, but no
|
|
* additional races since q_lock already protects against other CPUs.
|
|
*/
|
|
put_nvmeq(nvmeq);
|
|
if (length != (io.nblocks + 1) << ns->lba_shift)
|
|
status = -ENOMEM;
|
|
else
|
|
status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
|
|
|
|
if (meta_len) {
|
|
if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
|
|
int meta_offset = 0;
|
|
|
|
for (i = 0; i < meta_iod->nents; i++) {
|
|
meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
|
|
meta_iod->sg[i].offset;
|
|
memcpy(meta, meta_mem + meta_offset,
|
|
meta_iod->sg[i].length);
|
|
kunmap_atomic(meta);
|
|
meta_offset += meta_iod->sg[i].length;
|
|
}
|
|
}
|
|
|
|
dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
|
|
meta_dma_addr);
|
|
}
|
|
|
|
unmap:
|
|
nvme_unmap_user_pages(dev, io.opcode & 1, iod);
|
|
nvme_free_iod(dev, iod);
|
|
|
|
if (meta_iod) {
|
|
nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
|
|
nvme_free_iod(dev, meta_iod);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int nvme_user_admin_cmd(struct nvme_dev *dev,
|
|
struct nvme_admin_cmd __user *ucmd)
|
|
{
|
|
struct nvme_admin_cmd cmd;
|
|
struct nvme_command c;
|
|
int status, length;
|
|
struct nvme_iod *uninitialized_var(iod);
|
|
unsigned timeout;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
|
|
return -EFAULT;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.common.opcode = cmd.opcode;
|
|
c.common.flags = cmd.flags;
|
|
c.common.nsid = cpu_to_le32(cmd.nsid);
|
|
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
|
|
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
|
|
c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
|
|
c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
|
|
c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
|
|
c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
|
|
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
|
|
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
|
|
|
|
length = cmd.data_len;
|
|
if (cmd.data_len) {
|
|
iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
|
|
length);
|
|
if (IS_ERR(iod))
|
|
return PTR_ERR(iod);
|
|
length = nvme_setup_prps(dev, &c.common, iod, length,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
|
|
ADMIN_TIMEOUT;
|
|
if (length != cmd.data_len)
|
|
status = -ENOMEM;
|
|
else
|
|
status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
|
|
timeout);
|
|
|
|
if (cmd.data_len) {
|
|
nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
|
|
nvme_free_iod(dev, iod);
|
|
}
|
|
|
|
if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
|
|
sizeof(cmd.result)))
|
|
status = -EFAULT;
|
|
|
|
return status;
|
|
}
|
|
|
|
static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct nvme_ns *ns = bdev->bd_disk->private_data;
|
|
|
|
switch (cmd) {
|
|
case NVME_IOCTL_ID:
|
|
return ns->ns_id;
|
|
case NVME_IOCTL_ADMIN_CMD:
|
|
return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
|
|
case NVME_IOCTL_SUBMIT_IO:
|
|
return nvme_submit_io(ns, (void __user *)arg);
|
|
case SG_GET_VERSION_NUM:
|
|
return nvme_sg_get_version_num((void __user *)arg);
|
|
case SG_IO:
|
|
return nvme_sg_io(ns, (void __user *)arg);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static const struct block_device_operations nvme_fops = {
|
|
.owner = THIS_MODULE,
|
|
.ioctl = nvme_ioctl,
|
|
.compat_ioctl = nvme_ioctl,
|
|
};
|
|
|
|
static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
|
|
{
|
|
while (bio_list_peek(&nvmeq->sq_cong)) {
|
|
struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
|
|
struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
|
|
|
|
if (bio_list_empty(&nvmeq->sq_cong))
|
|
remove_wait_queue(&nvmeq->sq_full,
|
|
&nvmeq->sq_cong_wait);
|
|
if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
|
|
if (bio_list_empty(&nvmeq->sq_cong))
|
|
add_wait_queue(&nvmeq->sq_full,
|
|
&nvmeq->sq_cong_wait);
|
|
bio_list_add_head(&nvmeq->sq_cong, bio);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int nvme_kthread(void *data)
|
|
{
|
|
struct nvme_dev *dev;
|
|
|
|
while (!kthread_should_stop()) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
spin_lock(&dev_list_lock);
|
|
list_for_each_entry(dev, &dev_list, node) {
|
|
int i;
|
|
for (i = 0; i < dev->queue_count; i++) {
|
|
struct nvme_queue *nvmeq = dev->queues[i];
|
|
if (!nvmeq)
|
|
continue;
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
if (nvme_process_cq(nvmeq))
|
|
printk("process_cq did something\n");
|
|
nvme_cancel_ios(nvmeq, true);
|
|
nvme_resubmit_bios(nvmeq);
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
}
|
|
}
|
|
spin_unlock(&dev_list_lock);
|
|
schedule_timeout(round_jiffies_relative(HZ));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_IDA(nvme_index_ida);
|
|
|
|
static int nvme_get_ns_idx(void)
|
|
{
|
|
int index, error;
|
|
|
|
do {
|
|
if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
|
|
return -1;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
error = ida_get_new(&nvme_index_ida, &index);
|
|
spin_unlock(&dev_list_lock);
|
|
} while (error == -EAGAIN);
|
|
|
|
if (error)
|
|
index = -1;
|
|
return index;
|
|
}
|
|
|
|
static void nvme_put_ns_idx(int index)
|
|
{
|
|
spin_lock(&dev_list_lock);
|
|
ida_remove(&nvme_index_ida, index);
|
|
spin_unlock(&dev_list_lock);
|
|
}
|
|
|
|
static void nvme_config_discard(struct nvme_ns *ns)
|
|
{
|
|
u32 logical_block_size = queue_logical_block_size(ns->queue);
|
|
ns->queue->limits.discard_zeroes_data = 0;
|
|
ns->queue->limits.discard_alignment = logical_block_size;
|
|
ns->queue->limits.discard_granularity = logical_block_size;
|
|
ns->queue->limits.max_discard_sectors = 0xffffffff;
|
|
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
|
|
}
|
|
|
|
static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
|
|
struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
|
|
{
|
|
struct nvme_ns *ns;
|
|
struct gendisk *disk;
|
|
int lbaf;
|
|
|
|
if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
|
|
return NULL;
|
|
|
|
ns = kzalloc(sizeof(*ns), GFP_KERNEL);
|
|
if (!ns)
|
|
return NULL;
|
|
ns->queue = blk_alloc_queue(GFP_KERNEL);
|
|
if (!ns->queue)
|
|
goto out_free_ns;
|
|
ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
|
|
blk_queue_make_request(ns->queue, nvme_make_request);
|
|
ns->dev = dev;
|
|
ns->queue->queuedata = ns;
|
|
|
|
disk = alloc_disk(NVME_MINORS);
|
|
if (!disk)
|
|
goto out_free_queue;
|
|
ns->ns_id = nsid;
|
|
ns->disk = disk;
|
|
lbaf = id->flbas & 0xf;
|
|
ns->lba_shift = id->lbaf[lbaf].ds;
|
|
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
|
|
blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
|
|
if (dev->max_hw_sectors)
|
|
blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
|
|
|
|
disk->major = nvme_major;
|
|
disk->minors = NVME_MINORS;
|
|
disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
|
|
disk->fops = &nvme_fops;
|
|
disk->private_data = ns;
|
|
disk->queue = ns->queue;
|
|
disk->driverfs_dev = &dev->pci_dev->dev;
|
|
sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
|
|
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
|
|
|
|
if (dev->oncs & NVME_CTRL_ONCS_DSM)
|
|
nvme_config_discard(ns);
|
|
|
|
return ns;
|
|
|
|
out_free_queue:
|
|
blk_cleanup_queue(ns->queue);
|
|
out_free_ns:
|
|
kfree(ns);
|
|
return NULL;
|
|
}
|
|
|
|
static void nvme_ns_free(struct nvme_ns *ns)
|
|
{
|
|
int index = ns->disk->first_minor / NVME_MINORS;
|
|
put_disk(ns->disk);
|
|
nvme_put_ns_idx(index);
|
|
blk_cleanup_queue(ns->queue);
|
|
kfree(ns);
|
|
}
|
|
|
|
static int set_queue_count(struct nvme_dev *dev, int count)
|
|
{
|
|
int status;
|
|
u32 result;
|
|
u32 q_count = (count - 1) | ((count - 1) << 16);
|
|
|
|
status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
|
|
&result);
|
|
if (status)
|
|
return -EIO;
|
|
return min(result & 0xffff, result >> 16) + 1;
|
|
}
|
|
|
|
static int nvme_setup_io_queues(struct nvme_dev *dev)
|
|
{
|
|
struct pci_dev *pdev = dev->pci_dev;
|
|
int result, cpu, i, nr_io_queues, db_bar_size, q_depth, q_count;
|
|
|
|
nr_io_queues = num_online_cpus();
|
|
result = set_queue_count(dev, nr_io_queues);
|
|
if (result < 0)
|
|
return result;
|
|
if (result < nr_io_queues)
|
|
nr_io_queues = result;
|
|
|
|
q_count = nr_io_queues;
|
|
/* Deregister the admin queue's interrupt */
|
|
free_irq(dev->entry[0].vector, dev->queues[0]);
|
|
|
|
db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
|
|
if (db_bar_size > 8192) {
|
|
iounmap(dev->bar);
|
|
dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
|
|
dev->dbs = ((void __iomem *)dev->bar) + 4096;
|
|
dev->queues[0]->q_db = dev->dbs;
|
|
}
|
|
|
|
for (i = 0; i < nr_io_queues; i++)
|
|
dev->entry[i].entry = i;
|
|
for (;;) {
|
|
result = pci_enable_msix(pdev, dev->entry, nr_io_queues);
|
|
if (result == 0) {
|
|
break;
|
|
} else if (result > 0) {
|
|
nr_io_queues = result;
|
|
continue;
|
|
} else {
|
|
nr_io_queues = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (nr_io_queues == 0) {
|
|
nr_io_queues = q_count;
|
|
for (;;) {
|
|
result = pci_enable_msi_block(pdev, nr_io_queues);
|
|
if (result == 0) {
|
|
for (i = 0; i < nr_io_queues; i++)
|
|
dev->entry[i].vector = i + pdev->irq;
|
|
break;
|
|
} else if (result > 0) {
|
|
nr_io_queues = result;
|
|
continue;
|
|
} else {
|
|
nr_io_queues = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
result = queue_request_irq(dev, dev->queues[0], "nvme admin");
|
|
/* XXX: handle failure here */
|
|
|
|
cpu = cpumask_first(cpu_online_mask);
|
|
for (i = 0; i < nr_io_queues; i++) {
|
|
irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
|
|
cpu = cpumask_next(cpu, cpu_online_mask);
|
|
}
|
|
|
|
q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
|
|
NVME_Q_DEPTH);
|
|
for (i = 0; i < nr_io_queues; i++) {
|
|
dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
|
|
if (IS_ERR(dev->queues[i + 1]))
|
|
return PTR_ERR(dev->queues[i + 1]);
|
|
dev->queue_count++;
|
|
}
|
|
|
|
for (; i < num_possible_cpus(); i++) {
|
|
int target = i % rounddown_pow_of_two(dev->queue_count - 1);
|
|
dev->queues[i + 1] = dev->queues[target + 1];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_free_queues(struct nvme_dev *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = dev->queue_count - 1; i >= 0; i--)
|
|
nvme_free_queue(dev, i);
|
|
}
|
|
|
|
/*
|
|
* Return: error value if an error occurred setting up the queues or calling
|
|
* Identify Device. 0 if these succeeded, even if adding some of the
|
|
* namespaces failed. At the moment, these failures are silent. TBD which
|
|
* failures should be reported.
|
|
*/
|
|
static int nvme_dev_add(struct nvme_dev *dev)
|
|
{
|
|
int res, nn, i;
|
|
struct nvme_ns *ns;
|
|
struct nvme_id_ctrl *ctrl;
|
|
struct nvme_id_ns *id_ns;
|
|
void *mem;
|
|
dma_addr_t dma_addr;
|
|
int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
|
|
|
|
res = nvme_setup_io_queues(dev);
|
|
if (res)
|
|
return res;
|
|
|
|
mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
|
|
GFP_KERNEL);
|
|
if (!mem)
|
|
return -ENOMEM;
|
|
|
|
res = nvme_identify(dev, 0, 1, dma_addr);
|
|
if (res) {
|
|
res = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
ctrl = mem;
|
|
nn = le32_to_cpup(&ctrl->nn);
|
|
dev->oncs = le16_to_cpup(&ctrl->oncs);
|
|
memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
|
|
memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
|
|
memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
|
|
if (ctrl->mdts)
|
|
dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
|
|
if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
|
|
(dev->pci_dev->device == 0x0953) && ctrl->vs[3])
|
|
dev->stripe_size = 1 << (ctrl->vs[3] + shift);
|
|
|
|
id_ns = mem;
|
|
for (i = 1; i <= nn; i++) {
|
|
res = nvme_identify(dev, i, 0, dma_addr);
|
|
if (res)
|
|
continue;
|
|
|
|
if (id_ns->ncap == 0)
|
|
continue;
|
|
|
|
res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
|
|
dma_addr + 4096, NULL);
|
|
if (res)
|
|
memset(mem + 4096, 0, 4096);
|
|
|
|
ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
|
|
if (ns)
|
|
list_add_tail(&ns->list, &dev->namespaces);
|
|
}
|
|
list_for_each_entry(ns, &dev->namespaces, list)
|
|
add_disk(ns->disk);
|
|
res = 0;
|
|
|
|
out:
|
|
dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
|
|
return res;
|
|
}
|
|
|
|
static int nvme_dev_remove(struct nvme_dev *dev)
|
|
{
|
|
struct nvme_ns *ns, *next;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
list_del(&dev->node);
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
|
|
list_del(&ns->list);
|
|
del_gendisk(ns->disk);
|
|
nvme_ns_free(ns);
|
|
}
|
|
|
|
nvme_free_queues(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_setup_prp_pools(struct nvme_dev *dev)
|
|
{
|
|
struct device *dmadev = &dev->pci_dev->dev;
|
|
dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
|
|
PAGE_SIZE, PAGE_SIZE, 0);
|
|
if (!dev->prp_page_pool)
|
|
return -ENOMEM;
|
|
|
|
/* Optimisation for I/Os between 4k and 128k */
|
|
dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
|
|
256, 256, 0);
|
|
if (!dev->prp_small_pool) {
|
|
dma_pool_destroy(dev->prp_page_pool);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_release_prp_pools(struct nvme_dev *dev)
|
|
{
|
|
dma_pool_destroy(dev->prp_page_pool);
|
|
dma_pool_destroy(dev->prp_small_pool);
|
|
}
|
|
|
|
static DEFINE_IDA(nvme_instance_ida);
|
|
|
|
static int nvme_set_instance(struct nvme_dev *dev)
|
|
{
|
|
int instance, error;
|
|
|
|
do {
|
|
if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
|
|
return -ENODEV;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
error = ida_get_new(&nvme_instance_ida, &instance);
|
|
spin_unlock(&dev_list_lock);
|
|
} while (error == -EAGAIN);
|
|
|
|
if (error)
|
|
return -ENODEV;
|
|
|
|
dev->instance = instance;
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_release_instance(struct nvme_dev *dev)
|
|
{
|
|
spin_lock(&dev_list_lock);
|
|
ida_remove(&nvme_instance_ida, dev->instance);
|
|
spin_unlock(&dev_list_lock);
|
|
}
|
|
|
|
static void nvme_free_dev(struct kref *kref)
|
|
{
|
|
struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
|
|
nvme_dev_remove(dev);
|
|
if (dev->pci_dev->msi_enabled)
|
|
pci_disable_msi(dev->pci_dev);
|
|
else if (dev->pci_dev->msix_enabled)
|
|
pci_disable_msix(dev->pci_dev);
|
|
iounmap(dev->bar);
|
|
nvme_release_instance(dev);
|
|
nvme_release_prp_pools(dev);
|
|
pci_disable_device(dev->pci_dev);
|
|
pci_release_regions(dev->pci_dev);
|
|
kfree(dev->queues);
|
|
kfree(dev->entry);
|
|
kfree(dev);
|
|
}
|
|
|
|
static int nvme_dev_open(struct inode *inode, struct file *f)
|
|
{
|
|
struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
|
|
miscdev);
|
|
kref_get(&dev->kref);
|
|
f->private_data = dev;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_dev_release(struct inode *inode, struct file *f)
|
|
{
|
|
struct nvme_dev *dev = f->private_data;
|
|
kref_put(&dev->kref, nvme_free_dev);
|
|
return 0;
|
|
}
|
|
|
|
static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct nvme_dev *dev = f->private_data;
|
|
switch (cmd) {
|
|
case NVME_IOCTL_ADMIN_CMD:
|
|
return nvme_user_admin_cmd(dev, (void __user *)arg);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static const struct file_operations nvme_dev_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = nvme_dev_open,
|
|
.release = nvme_dev_release,
|
|
.unlocked_ioctl = nvme_dev_ioctl,
|
|
.compat_ioctl = nvme_dev_ioctl,
|
|
};
|
|
|
|
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
int bars, result = -ENOMEM;
|
|
struct nvme_dev *dev;
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
|
|
GFP_KERNEL);
|
|
if (!dev->entry)
|
|
goto free;
|
|
dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
|
|
GFP_KERNEL);
|
|
if (!dev->queues)
|
|
goto free;
|
|
|
|
if (pci_enable_device_mem(pdev))
|
|
goto free;
|
|
pci_set_master(pdev);
|
|
bars = pci_select_bars(pdev, IORESOURCE_MEM);
|
|
if (pci_request_selected_regions(pdev, bars, "nvme"))
|
|
goto disable;
|
|
|
|
INIT_LIST_HEAD(&dev->namespaces);
|
|
dev->pci_dev = pdev;
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
|
|
dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
|
|
else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
|
|
dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
|
|
else
|
|
goto disable;
|
|
|
|
result = nvme_set_instance(dev);
|
|
if (result)
|
|
goto disable;
|
|
|
|
dev->entry[0].vector = pdev->irq;
|
|
|
|
result = nvme_setup_prp_pools(dev);
|
|
if (result)
|
|
goto disable_msix;
|
|
|
|
dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
|
|
if (!dev->bar) {
|
|
result = -ENOMEM;
|
|
goto disable_msix;
|
|
}
|
|
|
|
result = nvme_configure_admin_queue(dev);
|
|
if (result)
|
|
goto unmap;
|
|
dev->queue_count++;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
list_add(&dev->node, &dev_list);
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
result = nvme_dev_add(dev);
|
|
if (result)
|
|
goto delete;
|
|
|
|
scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
|
|
dev->miscdev.minor = MISC_DYNAMIC_MINOR;
|
|
dev->miscdev.parent = &pdev->dev;
|
|
dev->miscdev.name = dev->name;
|
|
dev->miscdev.fops = &nvme_dev_fops;
|
|
result = misc_register(&dev->miscdev);
|
|
if (result)
|
|
goto remove;
|
|
|
|
kref_init(&dev->kref);
|
|
return 0;
|
|
|
|
remove:
|
|
nvme_dev_remove(dev);
|
|
delete:
|
|
spin_lock(&dev_list_lock);
|
|
list_del(&dev->node);
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
nvme_free_queues(dev);
|
|
unmap:
|
|
iounmap(dev->bar);
|
|
disable_msix:
|
|
if (dev->pci_dev->msi_enabled)
|
|
pci_disable_msi(dev->pci_dev);
|
|
else if (dev->pci_dev->msix_enabled)
|
|
pci_disable_msix(dev->pci_dev);
|
|
nvme_release_instance(dev);
|
|
nvme_release_prp_pools(dev);
|
|
disable:
|
|
pci_disable_device(pdev);
|
|
pci_release_regions(pdev);
|
|
free:
|
|
kfree(dev->queues);
|
|
kfree(dev->entry);
|
|
kfree(dev);
|
|
return result;
|
|
}
|
|
|
|
static void nvme_remove(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
misc_deregister(&dev->miscdev);
|
|
kref_put(&dev->kref, nvme_free_dev);
|
|
}
|
|
|
|
/* These functions are yet to be implemented */
|
|
#define nvme_error_detected NULL
|
|
#define nvme_dump_registers NULL
|
|
#define nvme_link_reset NULL
|
|
#define nvme_slot_reset NULL
|
|
#define nvme_error_resume NULL
|
|
#define nvme_suspend NULL
|
|
#define nvme_resume NULL
|
|
|
|
static const struct pci_error_handlers nvme_err_handler = {
|
|
.error_detected = nvme_error_detected,
|
|
.mmio_enabled = nvme_dump_registers,
|
|
.link_reset = nvme_link_reset,
|
|
.slot_reset = nvme_slot_reset,
|
|
.resume = nvme_error_resume,
|
|
};
|
|
|
|
/* Move to pci_ids.h later */
|
|
#define PCI_CLASS_STORAGE_EXPRESS 0x010802
|
|
|
|
static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
|
|
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
|
|
{ 0, }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, nvme_id_table);
|
|
|
|
static struct pci_driver nvme_driver = {
|
|
.name = "nvme",
|
|
.id_table = nvme_id_table,
|
|
.probe = nvme_probe,
|
|
.remove = nvme_remove,
|
|
.suspend = nvme_suspend,
|
|
.resume = nvme_resume,
|
|
.err_handler = &nvme_err_handler,
|
|
};
|
|
|
|
static int __init nvme_init(void)
|
|
{
|
|
int result;
|
|
|
|
nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
|
|
if (IS_ERR(nvme_thread))
|
|
return PTR_ERR(nvme_thread);
|
|
|
|
result = register_blkdev(nvme_major, "nvme");
|
|
if (result < 0)
|
|
goto kill_kthread;
|
|
else if (result > 0)
|
|
nvme_major = result;
|
|
|
|
result = pci_register_driver(&nvme_driver);
|
|
if (result)
|
|
goto unregister_blkdev;
|
|
return 0;
|
|
|
|
unregister_blkdev:
|
|
unregister_blkdev(nvme_major, "nvme");
|
|
kill_kthread:
|
|
kthread_stop(nvme_thread);
|
|
return result;
|
|
}
|
|
|
|
static void __exit nvme_exit(void)
|
|
{
|
|
pci_unregister_driver(&nvme_driver);
|
|
unregister_blkdev(nvme_major, "nvme");
|
|
kthread_stop(nvme_thread);
|
|
}
|
|
|
|
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION("0.8");
|
|
module_init(nvme_init);
|
|
module_exit(nvme_exit);
|