mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 08:46:45 +07:00
61c4628b53
Split the FPU save area from the task struct. This allows easy migration of FPU context, and it's generally cleaner. It also allows the following two optimizations: 1) only allocate when the application actually uses FPU, so in the first lazy FPU trap. This could save memory for non-fpu using apps. Next patch does this lazy allocation. 2) allocate the right size for the actual cpu rather than 512 bytes always. Patches enabling xsave/xrstor support (coming shortly) will take advantage of this. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
1220 lines
32 KiB
C
1220 lines
32 KiB
C
/*---------------------------------------------------------------------------+
|
|
| reg_ld_str.c |
|
|
| |
|
|
| All of the functions which transfer data between user memory and FPU_REGs.|
|
|
| |
|
|
| Copyright (C) 1992,1993,1994,1996,1997 |
|
|
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
|
|
| E-mail billm@suburbia.net |
|
|
| |
|
|
| |
|
|
+---------------------------------------------------------------------------*/
|
|
|
|
/*---------------------------------------------------------------------------+
|
|
| Note: |
|
|
| The file contains code which accesses user memory. |
|
|
| Emulator static data may change when user memory is accessed, due to |
|
|
| other processes using the emulator while swapping is in progress. |
|
|
+---------------------------------------------------------------------------*/
|
|
|
|
#include "fpu_emu.h"
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include "fpu_system.h"
|
|
#include "exception.h"
|
|
#include "reg_constant.h"
|
|
#include "control_w.h"
|
|
#include "status_w.h"
|
|
|
|
#define DOUBLE_Emax 1023 /* largest valid exponent */
|
|
#define DOUBLE_Ebias 1023
|
|
#define DOUBLE_Emin (-1022) /* smallest valid exponent */
|
|
|
|
#define SINGLE_Emax 127 /* largest valid exponent */
|
|
#define SINGLE_Ebias 127
|
|
#define SINGLE_Emin (-126) /* smallest valid exponent */
|
|
|
|
static u_char normalize_no_excep(FPU_REG *r, int exp, int sign)
|
|
{
|
|
u_char tag;
|
|
|
|
setexponent16(r, exp);
|
|
|
|
tag = FPU_normalize_nuo(r);
|
|
stdexp(r);
|
|
if (sign)
|
|
setnegative(r);
|
|
|
|
return tag;
|
|
}
|
|
|
|
int FPU_tagof(FPU_REG *ptr)
|
|
{
|
|
int exp;
|
|
|
|
exp = exponent16(ptr) & 0x7fff;
|
|
if (exp == 0) {
|
|
if (!(ptr->sigh | ptr->sigl)) {
|
|
return TAG_Zero;
|
|
}
|
|
/* The number is a de-normal or pseudodenormal. */
|
|
return TAG_Special;
|
|
}
|
|
|
|
if (exp == 0x7fff) {
|
|
/* Is an Infinity, a NaN, or an unsupported data type. */
|
|
return TAG_Special;
|
|
}
|
|
|
|
if (!(ptr->sigh & 0x80000000)) {
|
|
/* Unsupported data type. */
|
|
/* Valid numbers have the ms bit set to 1. */
|
|
/* Unnormal. */
|
|
return TAG_Special;
|
|
}
|
|
|
|
return TAG_Valid;
|
|
}
|
|
|
|
/* Get a long double from user memory */
|
|
int FPU_load_extended(long double __user *s, int stnr)
|
|
{
|
|
FPU_REG *sti_ptr = &st(stnr);
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, s, 10);
|
|
__copy_from_user(sti_ptr, s, 10);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return FPU_tagof(sti_ptr);
|
|
}
|
|
|
|
/* Get a double from user memory */
|
|
int FPU_load_double(double __user *dfloat, FPU_REG *loaded_data)
|
|
{
|
|
int exp, tag, negative;
|
|
unsigned m64, l64;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, dfloat, 8);
|
|
FPU_get_user(m64, 1 + (unsigned long __user *)dfloat);
|
|
FPU_get_user(l64, (unsigned long __user *)dfloat);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
negative = (m64 & 0x80000000) ? SIGN_Negative : SIGN_Positive;
|
|
exp = ((m64 & 0x7ff00000) >> 20) - DOUBLE_Ebias + EXTENDED_Ebias;
|
|
m64 &= 0xfffff;
|
|
if (exp > DOUBLE_Emax + EXTENDED_Ebias) {
|
|
/* Infinity or NaN */
|
|
if ((m64 == 0) && (l64 == 0)) {
|
|
/* +- infinity */
|
|
loaded_data->sigh = 0x80000000;
|
|
loaded_data->sigl = 0x00000000;
|
|
exp = EXP_Infinity + EXTENDED_Ebias;
|
|
tag = TAG_Special;
|
|
} else {
|
|
/* Must be a signaling or quiet NaN */
|
|
exp = EXP_NaN + EXTENDED_Ebias;
|
|
loaded_data->sigh = (m64 << 11) | 0x80000000;
|
|
loaded_data->sigh |= l64 >> 21;
|
|
loaded_data->sigl = l64 << 11;
|
|
tag = TAG_Special; /* The calling function must look for NaNs */
|
|
}
|
|
} else if (exp < DOUBLE_Emin + EXTENDED_Ebias) {
|
|
/* Zero or de-normal */
|
|
if ((m64 == 0) && (l64 == 0)) {
|
|
/* Zero */
|
|
reg_copy(&CONST_Z, loaded_data);
|
|
exp = 0;
|
|
tag = TAG_Zero;
|
|
} else {
|
|
/* De-normal */
|
|
loaded_data->sigh = m64 << 11;
|
|
loaded_data->sigh |= l64 >> 21;
|
|
loaded_data->sigl = l64 << 11;
|
|
|
|
return normalize_no_excep(loaded_data, DOUBLE_Emin,
|
|
negative)
|
|
| (denormal_operand() < 0 ? FPU_Exception : 0);
|
|
}
|
|
} else {
|
|
loaded_data->sigh = (m64 << 11) | 0x80000000;
|
|
loaded_data->sigh |= l64 >> 21;
|
|
loaded_data->sigl = l64 << 11;
|
|
|
|
tag = TAG_Valid;
|
|
}
|
|
|
|
setexponent16(loaded_data, exp | negative);
|
|
|
|
return tag;
|
|
}
|
|
|
|
/* Get a float from user memory */
|
|
int FPU_load_single(float __user *single, FPU_REG *loaded_data)
|
|
{
|
|
unsigned m32;
|
|
int exp, tag, negative;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, single, 4);
|
|
FPU_get_user(m32, (unsigned long __user *)single);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
negative = (m32 & 0x80000000) ? SIGN_Negative : SIGN_Positive;
|
|
|
|
if (!(m32 & 0x7fffffff)) {
|
|
/* Zero */
|
|
reg_copy(&CONST_Z, loaded_data);
|
|
addexponent(loaded_data, negative);
|
|
return TAG_Zero;
|
|
}
|
|
exp = ((m32 & 0x7f800000) >> 23) - SINGLE_Ebias + EXTENDED_Ebias;
|
|
m32 = (m32 & 0x7fffff) << 8;
|
|
if (exp < SINGLE_Emin + EXTENDED_Ebias) {
|
|
/* De-normals */
|
|
loaded_data->sigh = m32;
|
|
loaded_data->sigl = 0;
|
|
|
|
return normalize_no_excep(loaded_data, SINGLE_Emin, negative)
|
|
| (denormal_operand() < 0 ? FPU_Exception : 0);
|
|
} else if (exp > SINGLE_Emax + EXTENDED_Ebias) {
|
|
/* Infinity or NaN */
|
|
if (m32 == 0) {
|
|
/* +- infinity */
|
|
loaded_data->sigh = 0x80000000;
|
|
loaded_data->sigl = 0x00000000;
|
|
exp = EXP_Infinity + EXTENDED_Ebias;
|
|
tag = TAG_Special;
|
|
} else {
|
|
/* Must be a signaling or quiet NaN */
|
|
exp = EXP_NaN + EXTENDED_Ebias;
|
|
loaded_data->sigh = m32 | 0x80000000;
|
|
loaded_data->sigl = 0;
|
|
tag = TAG_Special; /* The calling function must look for NaNs */
|
|
}
|
|
} else {
|
|
loaded_data->sigh = m32 | 0x80000000;
|
|
loaded_data->sigl = 0;
|
|
tag = TAG_Valid;
|
|
}
|
|
|
|
setexponent16(loaded_data, exp | negative); /* Set the sign. */
|
|
|
|
return tag;
|
|
}
|
|
|
|
/* Get a long long from user memory */
|
|
int FPU_load_int64(long long __user *_s)
|
|
{
|
|
long long s;
|
|
int sign;
|
|
FPU_REG *st0_ptr = &st(0);
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, _s, 8);
|
|
if (copy_from_user(&s, _s, 8))
|
|
FPU_abort;
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (s == 0) {
|
|
reg_copy(&CONST_Z, st0_ptr);
|
|
return TAG_Zero;
|
|
}
|
|
|
|
if (s > 0)
|
|
sign = SIGN_Positive;
|
|
else {
|
|
s = -s;
|
|
sign = SIGN_Negative;
|
|
}
|
|
|
|
significand(st0_ptr) = s;
|
|
|
|
return normalize_no_excep(st0_ptr, 63, sign);
|
|
}
|
|
|
|
/* Get a long from user memory */
|
|
int FPU_load_int32(long __user *_s, FPU_REG *loaded_data)
|
|
{
|
|
long s;
|
|
int negative;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, _s, 4);
|
|
FPU_get_user(s, _s);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (s == 0) {
|
|
reg_copy(&CONST_Z, loaded_data);
|
|
return TAG_Zero;
|
|
}
|
|
|
|
if (s > 0)
|
|
negative = SIGN_Positive;
|
|
else {
|
|
s = -s;
|
|
negative = SIGN_Negative;
|
|
}
|
|
|
|
loaded_data->sigh = s;
|
|
loaded_data->sigl = 0;
|
|
|
|
return normalize_no_excep(loaded_data, 31, negative);
|
|
}
|
|
|
|
/* Get a short from user memory */
|
|
int FPU_load_int16(short __user *_s, FPU_REG *loaded_data)
|
|
{
|
|
int s, negative;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, _s, 2);
|
|
/* Cast as short to get the sign extended. */
|
|
FPU_get_user(s, _s);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (s == 0) {
|
|
reg_copy(&CONST_Z, loaded_data);
|
|
return TAG_Zero;
|
|
}
|
|
|
|
if (s > 0)
|
|
negative = SIGN_Positive;
|
|
else {
|
|
s = -s;
|
|
negative = SIGN_Negative;
|
|
}
|
|
|
|
loaded_data->sigh = s << 16;
|
|
loaded_data->sigl = 0;
|
|
|
|
return normalize_no_excep(loaded_data, 15, negative);
|
|
}
|
|
|
|
/* Get a packed bcd array from user memory */
|
|
int FPU_load_bcd(u_char __user *s)
|
|
{
|
|
FPU_REG *st0_ptr = &st(0);
|
|
int pos;
|
|
u_char bcd;
|
|
long long l = 0;
|
|
int sign;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, s, 10);
|
|
RE_ENTRANT_CHECK_ON;
|
|
for (pos = 8; pos >= 0; pos--) {
|
|
l *= 10;
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_get_user(bcd, s + pos);
|
|
RE_ENTRANT_CHECK_ON;
|
|
l += bcd >> 4;
|
|
l *= 10;
|
|
l += bcd & 0x0f;
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_get_user(sign, s + 9);
|
|
sign = sign & 0x80 ? SIGN_Negative : SIGN_Positive;
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
if (l == 0) {
|
|
reg_copy(&CONST_Z, st0_ptr);
|
|
addexponent(st0_ptr, sign); /* Set the sign. */
|
|
return TAG_Zero;
|
|
} else {
|
|
significand(st0_ptr) = l;
|
|
return normalize_no_excep(st0_ptr, 63, sign);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*/
|
|
|
|
/* Put a long double into user memory */
|
|
int FPU_store_extended(FPU_REG *st0_ptr, u_char st0_tag,
|
|
long double __user * d)
|
|
{
|
|
/*
|
|
The only exception raised by an attempt to store to an
|
|
extended format is the Invalid Stack exception, i.e.
|
|
attempting to store from an empty register.
|
|
*/
|
|
|
|
if (st0_tag != TAG_Empty) {
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 10);
|
|
|
|
FPU_put_user(st0_ptr->sigl, (unsigned long __user *)d);
|
|
FPU_put_user(st0_ptr->sigh,
|
|
(unsigned long __user *)((u_char __user *) d + 4));
|
|
FPU_put_user(exponent16(st0_ptr),
|
|
(unsigned short __user *)((u_char __user *) d +
|
|
8));
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
if (control_word & CW_Invalid) {
|
|
/* The masked response */
|
|
/* Put out the QNaN indefinite */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 10);
|
|
FPU_put_user(0, (unsigned long __user *)d);
|
|
FPU_put_user(0xc0000000, 1 + (unsigned long __user *)d);
|
|
FPU_put_user(0xffff, 4 + (short __user *)d);
|
|
RE_ENTRANT_CHECK_ON;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* Put a double into user memory */
|
|
int FPU_store_double(FPU_REG *st0_ptr, u_char st0_tag, double __user *dfloat)
|
|
{
|
|
unsigned long l[2];
|
|
unsigned long increment = 0; /* avoid gcc warnings */
|
|
int precision_loss;
|
|
int exp;
|
|
FPU_REG tmp;
|
|
|
|
l[0] = 0;
|
|
l[1] = 0;
|
|
if (st0_tag == TAG_Valid) {
|
|
reg_copy(st0_ptr, &tmp);
|
|
exp = exponent(&tmp);
|
|
|
|
if (exp < DOUBLE_Emin) { /* It may be a denormal */
|
|
addexponent(&tmp, -DOUBLE_Emin + 52); /* largest exp to be 51 */
|
|
denormal_arg:
|
|
if ((precision_loss = FPU_round_to_int(&tmp, st0_tag))) {
|
|
#ifdef PECULIAR_486
|
|
/* Did it round to a non-denormal ? */
|
|
/* This behaviour might be regarded as peculiar, it appears
|
|
that the 80486 rounds to the dest precision, then
|
|
converts to decide underflow. */
|
|
if (!
|
|
((tmp.sigh == 0x00100000) && (tmp.sigl == 0)
|
|
&& (st0_ptr->sigl & 0x000007ff)))
|
|
#endif /* PECULIAR_486 */
|
|
{
|
|
EXCEPTION(EX_Underflow);
|
|
/* This is a special case: see sec 16.2.5.1 of
|
|
the 80486 book */
|
|
if (!(control_word & CW_Underflow))
|
|
return 0;
|
|
}
|
|
EXCEPTION(precision_loss);
|
|
if (!(control_word & CW_Precision))
|
|
return 0;
|
|
}
|
|
l[0] = tmp.sigl;
|
|
l[1] = tmp.sigh;
|
|
} else {
|
|
if (tmp.sigl & 0x000007ff) {
|
|
precision_loss = 1;
|
|
switch (control_word & CW_RC) {
|
|
case RC_RND:
|
|
/* Rounding can get a little messy.. */
|
|
increment = ((tmp.sigl & 0x7ff) > 0x400) | /* nearest */
|
|
((tmp.sigl & 0xc00) == 0xc00); /* odd -> even */
|
|
break;
|
|
case RC_DOWN: /* towards -infinity */
|
|
increment =
|
|
signpositive(&tmp) ? 0 : tmp.
|
|
sigl & 0x7ff;
|
|
break;
|
|
case RC_UP: /* towards +infinity */
|
|
increment =
|
|
signpositive(&tmp) ? tmp.
|
|
sigl & 0x7ff : 0;
|
|
break;
|
|
case RC_CHOP:
|
|
increment = 0;
|
|
break;
|
|
}
|
|
|
|
/* Truncate the mantissa */
|
|
tmp.sigl &= 0xfffff800;
|
|
|
|
if (increment) {
|
|
if (tmp.sigl >= 0xfffff800) {
|
|
/* the sigl part overflows */
|
|
if (tmp.sigh == 0xffffffff) {
|
|
/* The sigh part overflows */
|
|
tmp.sigh = 0x80000000;
|
|
exp++;
|
|
if (exp >= EXP_OVER)
|
|
goto overflow;
|
|
} else {
|
|
tmp.sigh++;
|
|
}
|
|
tmp.sigl = 0x00000000;
|
|
} else {
|
|
/* We only need to increment sigl */
|
|
tmp.sigl += 0x00000800;
|
|
}
|
|
}
|
|
} else
|
|
precision_loss = 0;
|
|
|
|
l[0] = (tmp.sigl >> 11) | (tmp.sigh << 21);
|
|
l[1] = ((tmp.sigh >> 11) & 0xfffff);
|
|
|
|
if (exp > DOUBLE_Emax) {
|
|
overflow:
|
|
EXCEPTION(EX_Overflow);
|
|
if (!(control_word & CW_Overflow))
|
|
return 0;
|
|
set_precision_flag_up();
|
|
if (!(control_word & CW_Precision))
|
|
return 0;
|
|
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
/* Overflow to infinity */
|
|
l[1] = 0x7ff00000; /* Set to + INF */
|
|
} else {
|
|
if (precision_loss) {
|
|
if (increment)
|
|
set_precision_flag_up();
|
|
else
|
|
set_precision_flag_down();
|
|
}
|
|
/* Add the exponent */
|
|
l[1] |= (((exp + DOUBLE_Ebias) & 0x7ff) << 20);
|
|
}
|
|
}
|
|
} else if (st0_tag == TAG_Zero) {
|
|
/* Number is zero */
|
|
} else if (st0_tag == TAG_Special) {
|
|
st0_tag = FPU_Special(st0_ptr);
|
|
if (st0_tag == TW_Denormal) {
|
|
/* A denormal will always underflow. */
|
|
#ifndef PECULIAR_486
|
|
/* An 80486 is supposed to be able to generate
|
|
a denormal exception here, but... */
|
|
/* Underflow has priority. */
|
|
if (control_word & CW_Underflow)
|
|
denormal_operand();
|
|
#endif /* PECULIAR_486 */
|
|
reg_copy(st0_ptr, &tmp);
|
|
goto denormal_arg;
|
|
} else if (st0_tag == TW_Infinity) {
|
|
l[1] = 0x7ff00000;
|
|
} else if (st0_tag == TW_NaN) {
|
|
/* Is it really a NaN ? */
|
|
if ((exponent(st0_ptr) == EXP_OVER)
|
|
&& (st0_ptr->sigh & 0x80000000)) {
|
|
/* See if we can get a valid NaN from the FPU_REG */
|
|
l[0] =
|
|
(st0_ptr->sigl >> 11) | (st0_ptr->
|
|
sigh << 21);
|
|
l[1] = ((st0_ptr->sigh >> 11) & 0xfffff);
|
|
if (!(st0_ptr->sigh & 0x40000000)) {
|
|
/* It is a signalling NaN */
|
|
EXCEPTION(EX_Invalid);
|
|
if (!(control_word & CW_Invalid))
|
|
return 0;
|
|
l[1] |= (0x40000000 >> 11);
|
|
}
|
|
l[1] |= 0x7ff00000;
|
|
} else {
|
|
/* It is an unsupported data type */
|
|
EXCEPTION(EX_Invalid);
|
|
if (!(control_word & CW_Invalid))
|
|
return 0;
|
|
l[1] = 0xfff80000;
|
|
}
|
|
}
|
|
} else if (st0_tag == TAG_Empty) {
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
if (control_word & CW_Invalid) {
|
|
/* The masked response */
|
|
/* Put out the QNaN indefinite */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, dfloat, 8);
|
|
FPU_put_user(0, (unsigned long __user *)dfloat);
|
|
FPU_put_user(0xfff80000,
|
|
1 + (unsigned long __user *)dfloat);
|
|
RE_ENTRANT_CHECK_ON;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
}
|
|
if (getsign(st0_ptr))
|
|
l[1] |= 0x80000000;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, dfloat, 8);
|
|
FPU_put_user(l[0], (unsigned long __user *)dfloat);
|
|
FPU_put_user(l[1], 1 + (unsigned long __user *)dfloat);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Put a float into user memory */
|
|
int FPU_store_single(FPU_REG *st0_ptr, u_char st0_tag, float __user *single)
|
|
{
|
|
long templ = 0;
|
|
unsigned long increment = 0; /* avoid gcc warnings */
|
|
int precision_loss;
|
|
int exp;
|
|
FPU_REG tmp;
|
|
|
|
if (st0_tag == TAG_Valid) {
|
|
|
|
reg_copy(st0_ptr, &tmp);
|
|
exp = exponent(&tmp);
|
|
|
|
if (exp < SINGLE_Emin) {
|
|
addexponent(&tmp, -SINGLE_Emin + 23); /* largest exp to be 22 */
|
|
|
|
denormal_arg:
|
|
|
|
if ((precision_loss = FPU_round_to_int(&tmp, st0_tag))) {
|
|
#ifdef PECULIAR_486
|
|
/* Did it round to a non-denormal ? */
|
|
/* This behaviour might be regarded as peculiar, it appears
|
|
that the 80486 rounds to the dest precision, then
|
|
converts to decide underflow. */
|
|
if (!((tmp.sigl == 0x00800000) &&
|
|
((st0_ptr->sigh & 0x000000ff)
|
|
|| st0_ptr->sigl)))
|
|
#endif /* PECULIAR_486 */
|
|
{
|
|
EXCEPTION(EX_Underflow);
|
|
/* This is a special case: see sec 16.2.5.1 of
|
|
the 80486 book */
|
|
if (!(control_word & CW_Underflow))
|
|
return 0;
|
|
}
|
|
EXCEPTION(precision_loss);
|
|
if (!(control_word & CW_Precision))
|
|
return 0;
|
|
}
|
|
templ = tmp.sigl;
|
|
} else {
|
|
if (tmp.sigl | (tmp.sigh & 0x000000ff)) {
|
|
unsigned long sigh = tmp.sigh;
|
|
unsigned long sigl = tmp.sigl;
|
|
|
|
precision_loss = 1;
|
|
switch (control_word & CW_RC) {
|
|
case RC_RND:
|
|
increment = ((sigh & 0xff) > 0x80) /* more than half */
|
|
||(((sigh & 0xff) == 0x80) && sigl) /* more than half */
|
|
||((sigh & 0x180) == 0x180); /* round to even */
|
|
break;
|
|
case RC_DOWN: /* towards -infinity */
|
|
increment = signpositive(&tmp)
|
|
? 0 : (sigl | (sigh & 0xff));
|
|
break;
|
|
case RC_UP: /* towards +infinity */
|
|
increment = signpositive(&tmp)
|
|
? (sigl | (sigh & 0xff)) : 0;
|
|
break;
|
|
case RC_CHOP:
|
|
increment = 0;
|
|
break;
|
|
}
|
|
|
|
/* Truncate part of the mantissa */
|
|
tmp.sigl = 0;
|
|
|
|
if (increment) {
|
|
if (sigh >= 0xffffff00) {
|
|
/* The sigh part overflows */
|
|
tmp.sigh = 0x80000000;
|
|
exp++;
|
|
if (exp >= EXP_OVER)
|
|
goto overflow;
|
|
} else {
|
|
tmp.sigh &= 0xffffff00;
|
|
tmp.sigh += 0x100;
|
|
}
|
|
} else {
|
|
tmp.sigh &= 0xffffff00; /* Finish the truncation */
|
|
}
|
|
} else
|
|
precision_loss = 0;
|
|
|
|
templ = (tmp.sigh >> 8) & 0x007fffff;
|
|
|
|
if (exp > SINGLE_Emax) {
|
|
overflow:
|
|
EXCEPTION(EX_Overflow);
|
|
if (!(control_word & CW_Overflow))
|
|
return 0;
|
|
set_precision_flag_up();
|
|
if (!(control_word & CW_Precision))
|
|
return 0;
|
|
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book. */
|
|
/* Masked response is overflow to infinity. */
|
|
templ = 0x7f800000;
|
|
} else {
|
|
if (precision_loss) {
|
|
if (increment)
|
|
set_precision_flag_up();
|
|
else
|
|
set_precision_flag_down();
|
|
}
|
|
/* Add the exponent */
|
|
templ |= ((exp + SINGLE_Ebias) & 0xff) << 23;
|
|
}
|
|
}
|
|
} else if (st0_tag == TAG_Zero) {
|
|
templ = 0;
|
|
} else if (st0_tag == TAG_Special) {
|
|
st0_tag = FPU_Special(st0_ptr);
|
|
if (st0_tag == TW_Denormal) {
|
|
reg_copy(st0_ptr, &tmp);
|
|
|
|
/* A denormal will always underflow. */
|
|
#ifndef PECULIAR_486
|
|
/* An 80486 is supposed to be able to generate
|
|
a denormal exception here, but... */
|
|
/* Underflow has priority. */
|
|
if (control_word & CW_Underflow)
|
|
denormal_operand();
|
|
#endif /* PECULIAR_486 */
|
|
goto denormal_arg;
|
|
} else if (st0_tag == TW_Infinity) {
|
|
templ = 0x7f800000;
|
|
} else if (st0_tag == TW_NaN) {
|
|
/* Is it really a NaN ? */
|
|
if ((exponent(st0_ptr) == EXP_OVER)
|
|
&& (st0_ptr->sigh & 0x80000000)) {
|
|
/* See if we can get a valid NaN from the FPU_REG */
|
|
templ = st0_ptr->sigh >> 8;
|
|
if (!(st0_ptr->sigh & 0x40000000)) {
|
|
/* It is a signalling NaN */
|
|
EXCEPTION(EX_Invalid);
|
|
if (!(control_word & CW_Invalid))
|
|
return 0;
|
|
templ |= (0x40000000 >> 8);
|
|
}
|
|
templ |= 0x7f800000;
|
|
} else {
|
|
/* It is an unsupported data type */
|
|
EXCEPTION(EX_Invalid);
|
|
if (!(control_word & CW_Invalid))
|
|
return 0;
|
|
templ = 0xffc00000;
|
|
}
|
|
}
|
|
#ifdef PARANOID
|
|
else {
|
|
EXCEPTION(EX_INTERNAL | 0x164);
|
|
return 0;
|
|
}
|
|
#endif
|
|
} else if (st0_tag == TAG_Empty) {
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
if (control_word & EX_Invalid) {
|
|
/* The masked response */
|
|
/* Put out the QNaN indefinite */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, single, 4);
|
|
FPU_put_user(0xffc00000,
|
|
(unsigned long __user *)single);
|
|
RE_ENTRANT_CHECK_ON;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
}
|
|
#ifdef PARANOID
|
|
else {
|
|
EXCEPTION(EX_INTERNAL | 0x163);
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (getsign(st0_ptr))
|
|
templ |= 0x80000000;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, single, 4);
|
|
FPU_put_user(templ, (unsigned long __user *)single);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Put a long long into user memory */
|
|
int FPU_store_int64(FPU_REG *st0_ptr, u_char st0_tag, long long __user *d)
|
|
{
|
|
FPU_REG t;
|
|
long long tll;
|
|
int precision_loss;
|
|
|
|
if (st0_tag == TAG_Empty) {
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
goto invalid_operand;
|
|
} else if (st0_tag == TAG_Special) {
|
|
st0_tag = FPU_Special(st0_ptr);
|
|
if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) {
|
|
EXCEPTION(EX_Invalid);
|
|
goto invalid_operand;
|
|
}
|
|
}
|
|
|
|
reg_copy(st0_ptr, &t);
|
|
precision_loss = FPU_round_to_int(&t, st0_tag);
|
|
((long *)&tll)[0] = t.sigl;
|
|
((long *)&tll)[1] = t.sigh;
|
|
if ((precision_loss == 1) ||
|
|
((t.sigh & 0x80000000) &&
|
|
!((t.sigh == 0x80000000) && (t.sigl == 0) && signnegative(&t)))) {
|
|
EXCEPTION(EX_Invalid);
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
invalid_operand:
|
|
if (control_word & EX_Invalid) {
|
|
/* Produce something like QNaN "indefinite" */
|
|
tll = 0x8000000000000000LL;
|
|
} else
|
|
return 0;
|
|
} else {
|
|
if (precision_loss)
|
|
set_precision_flag(precision_loss);
|
|
if (signnegative(&t))
|
|
tll = -tll;
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 8);
|
|
if (copy_to_user(d, &tll, 8))
|
|
FPU_abort;
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Put a long into user memory */
|
|
int FPU_store_int32(FPU_REG *st0_ptr, u_char st0_tag, long __user *d)
|
|
{
|
|
FPU_REG t;
|
|
int precision_loss;
|
|
|
|
if (st0_tag == TAG_Empty) {
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
goto invalid_operand;
|
|
} else if (st0_tag == TAG_Special) {
|
|
st0_tag = FPU_Special(st0_ptr);
|
|
if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) {
|
|
EXCEPTION(EX_Invalid);
|
|
goto invalid_operand;
|
|
}
|
|
}
|
|
|
|
reg_copy(st0_ptr, &t);
|
|
precision_loss = FPU_round_to_int(&t, st0_tag);
|
|
if (t.sigh ||
|
|
((t.sigl & 0x80000000) &&
|
|
!((t.sigl == 0x80000000) && signnegative(&t)))) {
|
|
EXCEPTION(EX_Invalid);
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
invalid_operand:
|
|
if (control_word & EX_Invalid) {
|
|
/* Produce something like QNaN "indefinite" */
|
|
t.sigl = 0x80000000;
|
|
} else
|
|
return 0;
|
|
} else {
|
|
if (precision_loss)
|
|
set_precision_flag(precision_loss);
|
|
if (signnegative(&t))
|
|
t.sigl = -(long)t.sigl;
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 4);
|
|
FPU_put_user(t.sigl, (unsigned long __user *)d);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Put a short into user memory */
|
|
int FPU_store_int16(FPU_REG *st0_ptr, u_char st0_tag, short __user *d)
|
|
{
|
|
FPU_REG t;
|
|
int precision_loss;
|
|
|
|
if (st0_tag == TAG_Empty) {
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
goto invalid_operand;
|
|
} else if (st0_tag == TAG_Special) {
|
|
st0_tag = FPU_Special(st0_ptr);
|
|
if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) {
|
|
EXCEPTION(EX_Invalid);
|
|
goto invalid_operand;
|
|
}
|
|
}
|
|
|
|
reg_copy(st0_ptr, &t);
|
|
precision_loss = FPU_round_to_int(&t, st0_tag);
|
|
if (t.sigh ||
|
|
((t.sigl & 0xffff8000) &&
|
|
!((t.sigl == 0x8000) && signnegative(&t)))) {
|
|
EXCEPTION(EX_Invalid);
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
invalid_operand:
|
|
if (control_word & EX_Invalid) {
|
|
/* Produce something like QNaN "indefinite" */
|
|
t.sigl = 0x8000;
|
|
} else
|
|
return 0;
|
|
} else {
|
|
if (precision_loss)
|
|
set_precision_flag(precision_loss);
|
|
if (signnegative(&t))
|
|
t.sigl = -t.sigl;
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 2);
|
|
FPU_put_user((short)t.sigl, d);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Put a packed bcd array into user memory */
|
|
int FPU_store_bcd(FPU_REG *st0_ptr, u_char st0_tag, u_char __user *d)
|
|
{
|
|
FPU_REG t;
|
|
unsigned long long ll;
|
|
u_char b;
|
|
int i, precision_loss;
|
|
u_char sign = (getsign(st0_ptr) == SIGN_NEG) ? 0x80 : 0;
|
|
|
|
if (st0_tag == TAG_Empty) {
|
|
/* Empty register (stack underflow) */
|
|
EXCEPTION(EX_StackUnder);
|
|
goto invalid_operand;
|
|
} else if (st0_tag == TAG_Special) {
|
|
st0_tag = FPU_Special(st0_ptr);
|
|
if ((st0_tag == TW_Infinity) || (st0_tag == TW_NaN)) {
|
|
EXCEPTION(EX_Invalid);
|
|
goto invalid_operand;
|
|
}
|
|
}
|
|
|
|
reg_copy(st0_ptr, &t);
|
|
precision_loss = FPU_round_to_int(&t, st0_tag);
|
|
ll = significand(&t);
|
|
|
|
/* Check for overflow, by comparing with 999999999999999999 decimal. */
|
|
if ((t.sigh > 0x0de0b6b3) ||
|
|
((t.sigh == 0x0de0b6b3) && (t.sigl > 0xa763ffff))) {
|
|
EXCEPTION(EX_Invalid);
|
|
/* This is a special case: see sec 16.2.5.1 of the 80486 book */
|
|
invalid_operand:
|
|
if (control_word & CW_Invalid) {
|
|
/* Produce the QNaN "indefinite" */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 10);
|
|
for (i = 0; i < 7; i++)
|
|
FPU_put_user(0, d + i); /* These bytes "undefined" */
|
|
FPU_put_user(0xc0, d + 7); /* This byte "undefined" */
|
|
FPU_put_user(0xff, d + 8);
|
|
FPU_put_user(0xff, d + 9);
|
|
RE_ENTRANT_CHECK_ON;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
} else if (precision_loss) {
|
|
/* Precision loss doesn't stop the data transfer */
|
|
set_precision_flag(precision_loss);
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 10);
|
|
RE_ENTRANT_CHECK_ON;
|
|
for (i = 0; i < 9; i++) {
|
|
b = FPU_div_small(&ll, 10);
|
|
b |= (FPU_div_small(&ll, 10)) << 4;
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_put_user(b, d + i);
|
|
RE_ENTRANT_CHECK_ON;
|
|
}
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_put_user(sign, d + 9);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*===========================================================================*/
|
|
|
|
/* r gets mangled such that sig is int, sign:
|
|
it is NOT normalized */
|
|
/* The return value (in eax) is zero if the result is exact,
|
|
if bits are changed due to rounding, truncation, etc, then
|
|
a non-zero value is returned */
|
|
/* Overflow is signalled by a non-zero return value (in eax).
|
|
In the case of overflow, the returned significand always has the
|
|
largest possible value */
|
|
int FPU_round_to_int(FPU_REG *r, u_char tag)
|
|
{
|
|
u_char very_big;
|
|
unsigned eax;
|
|
|
|
if (tag == TAG_Zero) {
|
|
/* Make sure that zero is returned */
|
|
significand(r) = 0;
|
|
return 0; /* o.k. */
|
|
}
|
|
|
|
if (exponent(r) > 63) {
|
|
r->sigl = r->sigh = ~0; /* The largest representable number */
|
|
return 1; /* overflow */
|
|
}
|
|
|
|
eax = FPU_shrxs(&r->sigl, 63 - exponent(r));
|
|
very_big = !(~(r->sigh) | ~(r->sigl)); /* test for 0xfff...fff */
|
|
#define half_or_more (eax & 0x80000000)
|
|
#define frac_part (eax)
|
|
#define more_than_half ((eax & 0x80000001) == 0x80000001)
|
|
switch (control_word & CW_RC) {
|
|
case RC_RND:
|
|
if (more_than_half /* nearest */
|
|
|| (half_or_more && (r->sigl & 1))) { /* odd -> even */
|
|
if (very_big)
|
|
return 1; /* overflow */
|
|
significand(r)++;
|
|
return PRECISION_LOST_UP;
|
|
}
|
|
break;
|
|
case RC_DOWN:
|
|
if (frac_part && getsign(r)) {
|
|
if (very_big)
|
|
return 1; /* overflow */
|
|
significand(r)++;
|
|
return PRECISION_LOST_UP;
|
|
}
|
|
break;
|
|
case RC_UP:
|
|
if (frac_part && !getsign(r)) {
|
|
if (very_big)
|
|
return 1; /* overflow */
|
|
significand(r)++;
|
|
return PRECISION_LOST_UP;
|
|
}
|
|
break;
|
|
case RC_CHOP:
|
|
break;
|
|
}
|
|
|
|
return eax ? PRECISION_LOST_DOWN : 0;
|
|
|
|
}
|
|
|
|
/*===========================================================================*/
|
|
|
|
u_char __user *fldenv(fpu_addr_modes addr_modes, u_char __user *s)
|
|
{
|
|
unsigned short tag_word = 0;
|
|
u_char tag;
|
|
int i;
|
|
|
|
if ((addr_modes.default_mode == VM86) ||
|
|
((addr_modes.default_mode == PM16)
|
|
^ (addr_modes.override.operand_size == OP_SIZE_PREFIX))) {
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, s, 0x0e);
|
|
FPU_get_user(control_word, (unsigned short __user *)s);
|
|
FPU_get_user(partial_status, (unsigned short __user *)(s + 2));
|
|
FPU_get_user(tag_word, (unsigned short __user *)(s + 4));
|
|
FPU_get_user(instruction_address.offset,
|
|
(unsigned short __user *)(s + 6));
|
|
FPU_get_user(instruction_address.selector,
|
|
(unsigned short __user *)(s + 8));
|
|
FPU_get_user(operand_address.offset,
|
|
(unsigned short __user *)(s + 0x0a));
|
|
FPU_get_user(operand_address.selector,
|
|
(unsigned short __user *)(s + 0x0c));
|
|
RE_ENTRANT_CHECK_ON;
|
|
s += 0x0e;
|
|
if (addr_modes.default_mode == VM86) {
|
|
instruction_address.offset
|
|
+= (instruction_address.selector & 0xf000) << 4;
|
|
operand_address.offset +=
|
|
(operand_address.selector & 0xf000) << 4;
|
|
}
|
|
} else {
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, s, 0x1c);
|
|
FPU_get_user(control_word, (unsigned short __user *)s);
|
|
FPU_get_user(partial_status, (unsigned short __user *)(s + 4));
|
|
FPU_get_user(tag_word, (unsigned short __user *)(s + 8));
|
|
FPU_get_user(instruction_address.offset,
|
|
(unsigned long __user *)(s + 0x0c));
|
|
FPU_get_user(instruction_address.selector,
|
|
(unsigned short __user *)(s + 0x10));
|
|
FPU_get_user(instruction_address.opcode,
|
|
(unsigned short __user *)(s + 0x12));
|
|
FPU_get_user(operand_address.offset,
|
|
(unsigned long __user *)(s + 0x14));
|
|
FPU_get_user(operand_address.selector,
|
|
(unsigned long __user *)(s + 0x18));
|
|
RE_ENTRANT_CHECK_ON;
|
|
s += 0x1c;
|
|
}
|
|
|
|
#ifdef PECULIAR_486
|
|
control_word &= ~0xe080;
|
|
#endif /* PECULIAR_486 */
|
|
|
|
top = (partial_status >> SW_Top_Shift) & 7;
|
|
|
|
if (partial_status & ~control_word & CW_Exceptions)
|
|
partial_status |= (SW_Summary | SW_Backward);
|
|
else
|
|
partial_status &= ~(SW_Summary | SW_Backward);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tag = tag_word & 3;
|
|
tag_word >>= 2;
|
|
|
|
if (tag == TAG_Empty)
|
|
/* New tag is empty. Accept it */
|
|
FPU_settag(i, TAG_Empty);
|
|
else if (FPU_gettag(i) == TAG_Empty) {
|
|
/* Old tag is empty and new tag is not empty. New tag is determined
|
|
by old reg contents */
|
|
if (exponent(&fpu_register(i)) == -EXTENDED_Ebias) {
|
|
if (!
|
|
(fpu_register(i).sigl | fpu_register(i).
|
|
sigh))
|
|
FPU_settag(i, TAG_Zero);
|
|
else
|
|
FPU_settag(i, TAG_Special);
|
|
} else if (exponent(&fpu_register(i)) ==
|
|
0x7fff - EXTENDED_Ebias) {
|
|
FPU_settag(i, TAG_Special);
|
|
} else if (fpu_register(i).sigh & 0x80000000)
|
|
FPU_settag(i, TAG_Valid);
|
|
else
|
|
FPU_settag(i, TAG_Special); /* An Un-normal */
|
|
}
|
|
/* Else old tag is not empty and new tag is not empty. Old tag
|
|
remains correct */
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
void frstor(fpu_addr_modes addr_modes, u_char __user *data_address)
|
|
{
|
|
int i, regnr;
|
|
u_char __user *s = fldenv(addr_modes, data_address);
|
|
int offset = (top & 7) * 10, other = 80 - offset;
|
|
|
|
/* Copy all registers in stack order. */
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_READ, s, 80);
|
|
__copy_from_user(register_base + offset, s, other);
|
|
if (offset)
|
|
__copy_from_user(register_base, s + other, offset);
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
regnr = (i + top) & 7;
|
|
if (FPU_gettag(regnr) != TAG_Empty)
|
|
/* The loaded data over-rides all other cases. */
|
|
FPU_settag(regnr, FPU_tagof(&st(i)));
|
|
}
|
|
|
|
}
|
|
|
|
u_char __user *fstenv(fpu_addr_modes addr_modes, u_char __user *d)
|
|
{
|
|
if ((addr_modes.default_mode == VM86) ||
|
|
((addr_modes.default_mode == PM16)
|
|
^ (addr_modes.override.operand_size == OP_SIZE_PREFIX))) {
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 14);
|
|
#ifdef PECULIAR_486
|
|
FPU_put_user(control_word & ~0xe080, (unsigned long __user *)d);
|
|
#else
|
|
FPU_put_user(control_word, (unsigned short __user *)d);
|
|
#endif /* PECULIAR_486 */
|
|
FPU_put_user(status_word(), (unsigned short __user *)(d + 2));
|
|
FPU_put_user(fpu_tag_word, (unsigned short __user *)(d + 4));
|
|
FPU_put_user(instruction_address.offset,
|
|
(unsigned short __user *)(d + 6));
|
|
FPU_put_user(operand_address.offset,
|
|
(unsigned short __user *)(d + 0x0a));
|
|
if (addr_modes.default_mode == VM86) {
|
|
FPU_put_user((instruction_address.
|
|
offset & 0xf0000) >> 4,
|
|
(unsigned short __user *)(d + 8));
|
|
FPU_put_user((operand_address.offset & 0xf0000) >> 4,
|
|
(unsigned short __user *)(d + 0x0c));
|
|
} else {
|
|
FPU_put_user(instruction_address.selector,
|
|
(unsigned short __user *)(d + 8));
|
|
FPU_put_user(operand_address.selector,
|
|
(unsigned short __user *)(d + 0x0c));
|
|
}
|
|
RE_ENTRANT_CHECK_ON;
|
|
d += 0x0e;
|
|
} else {
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 7 * 4);
|
|
#ifdef PECULIAR_486
|
|
control_word &= ~0xe080;
|
|
/* An 80486 sets nearly all of the reserved bits to 1. */
|
|
control_word |= 0xffff0040;
|
|
partial_status = status_word() | 0xffff0000;
|
|
fpu_tag_word |= 0xffff0000;
|
|
I387->soft.fcs &= ~0xf8000000;
|
|
I387->soft.fos |= 0xffff0000;
|
|
#endif /* PECULIAR_486 */
|
|
if (__copy_to_user(d, &control_word, 7 * 4))
|
|
FPU_abort;
|
|
RE_ENTRANT_CHECK_ON;
|
|
d += 0x1c;
|
|
}
|
|
|
|
control_word |= CW_Exceptions;
|
|
partial_status &= ~(SW_Summary | SW_Backward);
|
|
|
|
return d;
|
|
}
|
|
|
|
void fsave(fpu_addr_modes addr_modes, u_char __user *data_address)
|
|
{
|
|
u_char __user *d;
|
|
int offset = (top & 7) * 10, other = 80 - offset;
|
|
|
|
d = fstenv(addr_modes, data_address);
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
FPU_access_ok(VERIFY_WRITE, d, 80);
|
|
|
|
/* Copy all registers in stack order. */
|
|
if (__copy_to_user(d, register_base + offset, other))
|
|
FPU_abort;
|
|
if (offset)
|
|
if (__copy_to_user(d + other, register_base, offset))
|
|
FPU_abort;
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
finit();
|
|
}
|
|
|
|
/*===========================================================================*/
|