mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 17:19:25 +07:00
be3cb3d84b
SGI machines with WD33C93 allow usage of burst mode DMA, which increases performance noticable. To make this selectable by the sgiwd93 stub, setting the values for no_sync, fast and dma_mode has been moved to the individual platform stubs. Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Acked-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2239 lines
66 KiB
C
2239 lines
66 KiB
C
/*
|
|
* Copyright (c) 1996 John Shifflett, GeoLog Consulting
|
|
* john@geolog.com
|
|
* jshiffle@netcom.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
/*
|
|
* Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
|
|
* provided much of the inspiration and some of the code for this
|
|
* driver. Everything I know about Amiga DMA was gleaned from careful
|
|
* reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
|
|
* borrowed shamelessly from all over that source. Thanks Hamish!
|
|
*
|
|
* _This_ driver is (I feel) an improvement over the old one in
|
|
* several respects:
|
|
*
|
|
* - Target Disconnection/Reconnection is now supported. Any
|
|
* system with more than one device active on the SCSI bus
|
|
* will benefit from this. The driver defaults to what I
|
|
* call 'adaptive disconnect' - meaning that each command
|
|
* is evaluated individually as to whether or not it should
|
|
* be run with the option to disconnect/reselect (if the
|
|
* device chooses), or as a "SCSI-bus-hog".
|
|
*
|
|
* - Synchronous data transfers are now supported. Because of
|
|
* a few devices that choke after telling the driver that
|
|
* they can do sync transfers, we don't automatically use
|
|
* this faster protocol - it can be enabled via the command-
|
|
* line on a device-by-device basis.
|
|
*
|
|
* - Runtime operating parameters can now be specified through
|
|
* the 'amiboot' or the 'insmod' command line. For amiboot do:
|
|
* "amiboot [usual stuff] wd33c93=blah,blah,blah"
|
|
* The defaults should be good for most people. See the comment
|
|
* for 'setup_strings' below for more details.
|
|
*
|
|
* - The old driver relied exclusively on what the Western Digital
|
|
* docs call "Combination Level 2 Commands", which are a great
|
|
* idea in that the CPU is relieved of a lot of interrupt
|
|
* overhead. However, by accepting a certain (user-settable)
|
|
* amount of additional interrupts, this driver achieves
|
|
* better control over the SCSI bus, and data transfers are
|
|
* almost as fast while being much easier to define, track,
|
|
* and debug.
|
|
*
|
|
*
|
|
* TODO:
|
|
* more speed. linked commands.
|
|
*
|
|
*
|
|
* People with bug reports, wish-lists, complaints, comments,
|
|
* or improvements are asked to pah-leeez email me (John Shifflett)
|
|
* at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
|
|
* this thing into as good a shape as possible, and I'm positive
|
|
* there are lots of lurking bugs and "Stupid Places".
|
|
*
|
|
* Updates:
|
|
*
|
|
* Added support for pre -A chips, which don't have advanced features
|
|
* and will generate CSR_RESEL rather than CSR_RESEL_AM.
|
|
* Richard Hirst <richard@sleepie.demon.co.uk> August 2000
|
|
*
|
|
* Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
|
|
* default_sx_per for asynchronous data transfers. Added adjustment
|
|
* of transfer periods in sx_table to the actual input-clock.
|
|
* peter fuerst <post@pfrst.de> February 2007
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/blkdev.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_host.h>
|
|
|
|
#include <asm/irq.h>
|
|
|
|
#include "wd33c93.h"
|
|
|
|
#define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns
|
|
|
|
|
|
#define WD33C93_VERSION "1.26++"
|
|
#define WD33C93_DATE "10/Feb/2007"
|
|
|
|
MODULE_AUTHOR("John Shifflett");
|
|
MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/*
|
|
* 'setup_strings' is a single string used to pass operating parameters and
|
|
* settings from the kernel/module command-line to the driver. 'setup_args[]'
|
|
* is an array of strings that define the compile-time default values for
|
|
* these settings. If Linux boots with an amiboot or insmod command-line,
|
|
* those settings are combined with 'setup_args[]'. Note that amiboot
|
|
* command-lines are prefixed with "wd33c93=" while insmod uses a
|
|
* "setup_strings=" prefix. The driver recognizes the following keywords
|
|
* (lower case required) and arguments:
|
|
*
|
|
* - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
|
|
* the 7 possible SCSI devices. Set a bit to negotiate for
|
|
* asynchronous transfers on that device. To maintain
|
|
* backwards compatibility, a command-line such as
|
|
* "wd33c93=255" will be automatically translated to
|
|
* "wd33c93=nosync:0xff".
|
|
* - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is
|
|
* optional - if not present, same as "nodma:1".
|
|
* - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
|
|
* period. Default is 500; acceptable values are 250 - 1000.
|
|
* - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
|
|
* x = 1 does 'adaptive' disconnects, which is the default
|
|
* and generally the best choice.
|
|
* - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
|
|
* various types of debug output to printed - see the DB_xxx
|
|
* defines in wd33c93.h
|
|
* - clock:x -x = clock input in MHz for WD33c93 chip. Normal values
|
|
* would be from 8 through 20. Default is 8.
|
|
* - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
|
|
* Single Byte DMA, which is the default. Argument is
|
|
* optional - if not present, same as "burst:1".
|
|
* - fast:x -x = 1 to enable Fast SCSI, which is only effective with
|
|
* input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
|
|
* it, which is the default. Argument is optional - if not
|
|
* present, same as "fast:1".
|
|
* - next -No argument. Used to separate blocks of keywords when
|
|
* there's more than one host adapter in the system.
|
|
*
|
|
* Syntax Notes:
|
|
* - Numeric arguments can be decimal or the '0x' form of hex notation. There
|
|
* _must_ be a colon between a keyword and its numeric argument, with no
|
|
* spaces.
|
|
* - Keywords are separated by commas, no spaces, in the standard kernel
|
|
* command-line manner.
|
|
* - A keyword in the 'nth' comma-separated command-line member will overwrite
|
|
* the 'nth' element of setup_args[]. A blank command-line member (in
|
|
* other words, a comma with no preceding keyword) will _not_ overwrite
|
|
* the corresponding setup_args[] element.
|
|
* - If a keyword is used more than once, the first one applies to the first
|
|
* SCSI host found, the second to the second card, etc, unless the 'next'
|
|
* keyword is used to change the order.
|
|
*
|
|
* Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
|
|
* - wd33c93=nosync:255
|
|
* - wd33c93=nodma
|
|
* - wd33c93=nodma:1
|
|
* - wd33c93=disconnect:2,nosync:0x08,period:250
|
|
* - wd33c93=debug:0x1c
|
|
*/
|
|
|
|
/* Normally, no defaults are specified */
|
|
static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };
|
|
|
|
static char *setup_strings;
|
|
module_param(setup_strings, charp, 0);
|
|
|
|
static void wd33c93_execute(struct Scsi_Host *instance);
|
|
|
|
#ifdef CONFIG_WD33C93_PIO
|
|
static inline uchar
|
|
read_wd33c93(const wd33c93_regs regs, uchar reg_num)
|
|
{
|
|
uchar data;
|
|
|
|
outb(reg_num, regs.SASR);
|
|
data = inb(regs.SCMD);
|
|
return data;
|
|
}
|
|
|
|
static inline unsigned long
|
|
read_wd33c93_count(const wd33c93_regs regs)
|
|
{
|
|
unsigned long value;
|
|
|
|
outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
|
|
value = inb(regs.SCMD) << 16;
|
|
value |= inb(regs.SCMD) << 8;
|
|
value |= inb(regs.SCMD);
|
|
return value;
|
|
}
|
|
|
|
static inline uchar
|
|
read_aux_stat(const wd33c93_regs regs)
|
|
{
|
|
return inb(regs.SASR);
|
|
}
|
|
|
|
static inline void
|
|
write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
|
|
{
|
|
outb(reg_num, regs.SASR);
|
|
outb(value, regs.SCMD);
|
|
}
|
|
|
|
static inline void
|
|
write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
|
|
{
|
|
outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
|
|
outb((value >> 16) & 0xff, regs.SCMD);
|
|
outb((value >> 8) & 0xff, regs.SCMD);
|
|
outb( value & 0xff, regs.SCMD);
|
|
}
|
|
|
|
#define write_wd33c93_cmd(regs, cmd) \
|
|
write_wd33c93((regs), WD_COMMAND, (cmd))
|
|
|
|
static inline void
|
|
write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
|
|
{
|
|
int i;
|
|
|
|
outb(WD_CDB_1, regs.SASR);
|
|
for (i=0; i<len; i++)
|
|
outb(cmnd[i], regs.SCMD);
|
|
}
|
|
|
|
#else /* CONFIG_WD33C93_PIO */
|
|
static inline uchar
|
|
read_wd33c93(const wd33c93_regs regs, uchar reg_num)
|
|
{
|
|
*regs.SASR = reg_num;
|
|
mb();
|
|
return (*regs.SCMD);
|
|
}
|
|
|
|
static unsigned long
|
|
read_wd33c93_count(const wd33c93_regs regs)
|
|
{
|
|
unsigned long value;
|
|
|
|
*regs.SASR = WD_TRANSFER_COUNT_MSB;
|
|
mb();
|
|
value = *regs.SCMD << 16;
|
|
value |= *regs.SCMD << 8;
|
|
value |= *regs.SCMD;
|
|
mb();
|
|
return value;
|
|
}
|
|
|
|
static inline uchar
|
|
read_aux_stat(const wd33c93_regs regs)
|
|
{
|
|
return *regs.SASR;
|
|
}
|
|
|
|
static inline void
|
|
write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
|
|
{
|
|
*regs.SASR = reg_num;
|
|
mb();
|
|
*regs.SCMD = value;
|
|
mb();
|
|
}
|
|
|
|
static void
|
|
write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
|
|
{
|
|
*regs.SASR = WD_TRANSFER_COUNT_MSB;
|
|
mb();
|
|
*regs.SCMD = value >> 16;
|
|
*regs.SCMD = value >> 8;
|
|
*regs.SCMD = value;
|
|
mb();
|
|
}
|
|
|
|
static inline void
|
|
write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
|
|
{
|
|
*regs.SASR = WD_COMMAND;
|
|
mb();
|
|
*regs.SCMD = cmd;
|
|
mb();
|
|
}
|
|
|
|
static inline void
|
|
write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
|
|
{
|
|
int i;
|
|
|
|
*regs.SASR = WD_CDB_1;
|
|
for (i = 0; i < len; i++)
|
|
*regs.SCMD = cmnd[i];
|
|
}
|
|
#endif /* CONFIG_WD33C93_PIO */
|
|
|
|
static inline uchar
|
|
read_1_byte(const wd33c93_regs regs)
|
|
{
|
|
uchar asr;
|
|
uchar x = 0;
|
|
|
|
write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
|
write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
|
|
do {
|
|
asr = read_aux_stat(regs);
|
|
if (asr & ASR_DBR)
|
|
x = read_wd33c93(regs, WD_DATA);
|
|
} while (!(asr & ASR_INT));
|
|
return x;
|
|
}
|
|
|
|
static int
|
|
round_period(unsigned int period, const struct sx_period *sx_table)
|
|
{
|
|
int x;
|
|
|
|
for (x = 1; sx_table[x].period_ns; x++) {
|
|
if ((period <= sx_table[x - 0].period_ns) &&
|
|
(period > sx_table[x - 1].period_ns)) {
|
|
return x;
|
|
}
|
|
}
|
|
return 7;
|
|
}
|
|
|
|
/*
|
|
* Calculate Synchronous Transfer Register value from SDTR code.
|
|
*/
|
|
static uchar
|
|
calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
|
|
const struct sx_period *sx_table)
|
|
{
|
|
/* When doing Fast SCSI synchronous data transfers, the corresponding
|
|
* value in 'sx_table' is two times the actually used transfer period.
|
|
*/
|
|
uchar result;
|
|
|
|
if (offset && fast) {
|
|
fast = STR_FSS;
|
|
period *= 2;
|
|
} else {
|
|
fast = 0;
|
|
}
|
|
period *= 4; /* convert SDTR code to ns */
|
|
result = sx_table[round_period(period,sx_table)].reg_value;
|
|
result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
|
|
result |= fast;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Calculate SDTR code bytes [3],[4] from period and offset.
|
|
*/
|
|
static inline void
|
|
calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
|
|
uchar msg[2])
|
|
{
|
|
/* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
|
|
* actually used transfer period for Fast SCSI synchronous data
|
|
* transfers is half that value.
|
|
*/
|
|
period /= 4;
|
|
if (offset && fast)
|
|
period /= 2;
|
|
msg[0] = period;
|
|
msg[1] = offset;
|
|
}
|
|
|
|
int
|
|
wd33c93_queuecommand(struct scsi_cmnd *cmd,
|
|
void (*done)(struct scsi_cmnd *))
|
|
{
|
|
struct WD33C93_hostdata *hostdata;
|
|
struct scsi_cmnd *tmp;
|
|
|
|
hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
|
|
|
|
DB(DB_QUEUE_COMMAND,
|
|
printk("Q-%d-%02x-%ld( ", cmd->device->id, cmd->cmnd[0], cmd->serial_number))
|
|
|
|
/* Set up a few fields in the scsi_cmnd structure for our own use:
|
|
* - host_scribble is the pointer to the next cmd in the input queue
|
|
* - scsi_done points to the routine we call when a cmd is finished
|
|
* - result is what you'd expect
|
|
*/
|
|
cmd->host_scribble = NULL;
|
|
cmd->scsi_done = done;
|
|
cmd->result = 0;
|
|
|
|
/* We use the Scsi_Pointer structure that's included with each command
|
|
* as a scratchpad (as it's intended to be used!). The handy thing about
|
|
* the SCp.xxx fields is that they're always associated with a given
|
|
* cmd, and are preserved across disconnect-reselect. This means we
|
|
* can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
|
|
* if we keep all the critical pointers and counters in SCp:
|
|
* - SCp.ptr is the pointer into the RAM buffer
|
|
* - SCp.this_residual is the size of that buffer
|
|
* - SCp.buffer points to the current scatter-gather buffer
|
|
* - SCp.buffers_residual tells us how many S.G. buffers there are
|
|
* - SCp.have_data_in is not used
|
|
* - SCp.sent_command is not used
|
|
* - SCp.phase records this command's SRCID_ER bit setting
|
|
*/
|
|
|
|
if (scsi_bufflen(cmd)) {
|
|
cmd->SCp.buffer = scsi_sglist(cmd);
|
|
cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
|
|
cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
|
|
cmd->SCp.this_residual = cmd->SCp.buffer->length;
|
|
} else {
|
|
cmd->SCp.buffer = NULL;
|
|
cmd->SCp.buffers_residual = 0;
|
|
cmd->SCp.ptr = NULL;
|
|
cmd->SCp.this_residual = 0;
|
|
}
|
|
|
|
/* WD docs state that at the conclusion of a "LEVEL2" command, the
|
|
* status byte can be retrieved from the LUN register. Apparently,
|
|
* this is the case only for *uninterrupted* LEVEL2 commands! If
|
|
* there are any unexpected phases entered, even if they are 100%
|
|
* legal (different devices may choose to do things differently),
|
|
* the LEVEL2 command sequence is exited. This often occurs prior
|
|
* to receiving the status byte, in which case the driver does a
|
|
* status phase interrupt and gets the status byte on its own.
|
|
* While such a command can then be "resumed" (ie restarted to
|
|
* finish up as a LEVEL2 command), the LUN register will NOT be
|
|
* a valid status byte at the command's conclusion, and we must
|
|
* use the byte obtained during the earlier interrupt. Here, we
|
|
* preset SCp.Status to an illegal value (0xff) so that when
|
|
* this command finally completes, we can tell where the actual
|
|
* status byte is stored.
|
|
*/
|
|
|
|
cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
|
|
|
|
/*
|
|
* Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
|
|
* commands are added to the head of the queue so that the desired
|
|
* sense data is not lost before REQUEST_SENSE executes.
|
|
*/
|
|
|
|
spin_lock_irq(&hostdata->lock);
|
|
|
|
if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
|
|
cmd->host_scribble = (uchar *) hostdata->input_Q;
|
|
hostdata->input_Q = cmd;
|
|
} else { /* find the end of the queue */
|
|
for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
|
|
tmp->host_scribble;
|
|
tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
|
|
tmp->host_scribble = (uchar *) cmd;
|
|
}
|
|
|
|
/* We know that there's at least one command in 'input_Q' now.
|
|
* Go see if any of them are runnable!
|
|
*/
|
|
|
|
wd33c93_execute(cmd->device->host);
|
|
|
|
DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->serial_number))
|
|
|
|
spin_unlock_irq(&hostdata->lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine attempts to start a scsi command. If the host_card is
|
|
* already connected, we give up immediately. Otherwise, look through
|
|
* the input_Q, using the first command we find that's intended
|
|
* for a currently non-busy target/lun.
|
|
*
|
|
* wd33c93_execute() is always called with interrupts disabled or from
|
|
* the wd33c93_intr itself, which means that a wd33c93 interrupt
|
|
* cannot occur while we are in here.
|
|
*/
|
|
static void
|
|
wd33c93_execute(struct Scsi_Host *instance)
|
|
{
|
|
struct WD33C93_hostdata *hostdata =
|
|
(struct WD33C93_hostdata *) instance->hostdata;
|
|
const wd33c93_regs regs = hostdata->regs;
|
|
struct scsi_cmnd *cmd, *prev;
|
|
|
|
DB(DB_EXECUTE, printk("EX("))
|
|
if (hostdata->selecting || hostdata->connected) {
|
|
DB(DB_EXECUTE, printk(")EX-0 "))
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Search through the input_Q for a command destined
|
|
* for an idle target/lun.
|
|
*/
|
|
|
|
cmd = (struct scsi_cmnd *) hostdata->input_Q;
|
|
prev = NULL;
|
|
while (cmd) {
|
|
if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
|
|
break;
|
|
prev = cmd;
|
|
cmd = (struct scsi_cmnd *) cmd->host_scribble;
|
|
}
|
|
|
|
/* quit if queue empty or all possible targets are busy */
|
|
|
|
if (!cmd) {
|
|
DB(DB_EXECUTE, printk(")EX-1 "))
|
|
return;
|
|
}
|
|
|
|
/* remove command from queue */
|
|
|
|
if (prev)
|
|
prev->host_scribble = cmd->host_scribble;
|
|
else
|
|
hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;
|
|
|
|
#ifdef PROC_STATISTICS
|
|
hostdata->cmd_cnt[cmd->device->id]++;
|
|
#endif
|
|
|
|
/*
|
|
* Start the selection process
|
|
*/
|
|
|
|
if (cmd->sc_data_direction == DMA_TO_DEVICE)
|
|
write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
|
|
else
|
|
write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
|
|
|
|
/* Now we need to figure out whether or not this command is a good
|
|
* candidate for disconnect/reselect. We guess to the best of our
|
|
* ability, based on a set of hierarchical rules. When several
|
|
* devices are operating simultaneously, disconnects are usually
|
|
* an advantage. In a single device system, or if only 1 device
|
|
* is being accessed, transfers usually go faster if disconnects
|
|
* are not allowed:
|
|
*
|
|
* + Commands should NEVER disconnect if hostdata->disconnect =
|
|
* DIS_NEVER (this holds for tape drives also), and ALWAYS
|
|
* disconnect if hostdata->disconnect = DIS_ALWAYS.
|
|
* + Tape drive commands should always be allowed to disconnect.
|
|
* + Disconnect should be allowed if disconnected_Q isn't empty.
|
|
* + Commands should NOT disconnect if input_Q is empty.
|
|
* + Disconnect should be allowed if there are commands in input_Q
|
|
* for a different target/lun. In this case, the other commands
|
|
* should be made disconnect-able, if not already.
|
|
*
|
|
* I know, I know - this code would flunk me out of any
|
|
* "C Programming 101" class ever offered. But it's easy
|
|
* to change around and experiment with for now.
|
|
*/
|
|
|
|
cmd->SCp.phase = 0; /* assume no disconnect */
|
|
if (hostdata->disconnect == DIS_NEVER)
|
|
goto no;
|
|
if (hostdata->disconnect == DIS_ALWAYS)
|
|
goto yes;
|
|
if (cmd->device->type == 1) /* tape drive? */
|
|
goto yes;
|
|
if (hostdata->disconnected_Q) /* other commands disconnected? */
|
|
goto yes;
|
|
if (!(hostdata->input_Q)) /* input_Q empty? */
|
|
goto no;
|
|
for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
|
|
prev = (struct scsi_cmnd *) prev->host_scribble) {
|
|
if ((prev->device->id != cmd->device->id) ||
|
|
(prev->device->lun != cmd->device->lun)) {
|
|
for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
|
|
prev = (struct scsi_cmnd *) prev->host_scribble)
|
|
prev->SCp.phase = 1;
|
|
goto yes;
|
|
}
|
|
}
|
|
|
|
goto no;
|
|
|
|
yes:
|
|
cmd->SCp.phase = 1;
|
|
|
|
#ifdef PROC_STATISTICS
|
|
hostdata->disc_allowed_cnt[cmd->device->id]++;
|
|
#endif
|
|
|
|
no:
|
|
|
|
write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
|
|
|
|
write_wd33c93(regs, WD_TARGET_LUN, cmd->device->lun);
|
|
write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
|
|
hostdata->sync_xfer[cmd->device->id]);
|
|
hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
|
|
|
|
if ((hostdata->level2 == L2_NONE) ||
|
|
(hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
|
|
|
|
/*
|
|
* Do a 'Select-With-ATN' command. This will end with
|
|
* one of the following interrupts:
|
|
* CSR_RESEL_AM: failure - can try again later.
|
|
* CSR_TIMEOUT: failure - give up.
|
|
* CSR_SELECT: success - proceed.
|
|
*/
|
|
|
|
hostdata->selecting = cmd;
|
|
|
|
/* Every target has its own synchronous transfer setting, kept in the
|
|
* sync_xfer array, and a corresponding status byte in sync_stat[].
|
|
* Each target's sync_stat[] entry is initialized to SX_UNSET, and its
|
|
* sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
|
|
* means that the parameters are undetermined as yet, and that we
|
|
* need to send an SDTR message to this device after selection is
|
|
* complete: We set SS_FIRST to tell the interrupt routine to do so.
|
|
* If we've been asked not to try synchronous transfers on this
|
|
* target (and _all_ luns within it), we'll still send the SDTR message
|
|
* later, but at that time we'll negotiate for async by specifying a
|
|
* sync fifo depth of 0.
|
|
*/
|
|
if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
|
|
hostdata->sync_stat[cmd->device->id] = SS_FIRST;
|
|
hostdata->state = S_SELECTING;
|
|
write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
|
|
write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
|
|
} else {
|
|
|
|
/*
|
|
* Do a 'Select-With-ATN-Xfer' command. This will end with
|
|
* one of the following interrupts:
|
|
* CSR_RESEL_AM: failure - can try again later.
|
|
* CSR_TIMEOUT: failure - give up.
|
|
* anything else: success - proceed.
|
|
*/
|
|
|
|
hostdata->connected = cmd;
|
|
write_wd33c93(regs, WD_COMMAND_PHASE, 0);
|
|
|
|
/* copy command_descriptor_block into WD chip
|
|
* (take advantage of auto-incrementing)
|
|
*/
|
|
|
|
write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);
|
|
|
|
/* The wd33c93 only knows about Group 0, 1, and 5 commands when
|
|
* it's doing a 'select-and-transfer'. To be safe, we write the
|
|
* size of the CDB into the OWN_ID register for every case. This
|
|
* way there won't be problems with vendor-unique, audio, etc.
|
|
*/
|
|
|
|
write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);
|
|
|
|
/* When doing a non-disconnect command with DMA, we can save
|
|
* ourselves a DATA phase interrupt later by setting everything
|
|
* up ahead of time.
|
|
*/
|
|
|
|
if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) {
|
|
if (hostdata->dma_setup(cmd,
|
|
(cmd->sc_data_direction == DMA_TO_DEVICE) ?
|
|
DATA_OUT_DIR : DATA_IN_DIR))
|
|
write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
|
|
else {
|
|
write_wd33c93_count(regs,
|
|
cmd->SCp.this_residual);
|
|
write_wd33c93(regs, WD_CONTROL,
|
|
CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
|
|
hostdata->dma = D_DMA_RUNNING;
|
|
}
|
|
} else
|
|
write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
|
|
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
|
write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
|
|
}
|
|
|
|
/*
|
|
* Since the SCSI bus can handle only 1 connection at a time,
|
|
* we get out of here now. If the selection fails, or when
|
|
* the command disconnects, we'll come back to this routine
|
|
* to search the input_Q again...
|
|
*/
|
|
|
|
DB(DB_EXECUTE,
|
|
printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->serial_number))
|
|
}
|
|
|
|
static void
|
|
transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
|
|
int data_in_dir, struct WD33C93_hostdata *hostdata)
|
|
{
|
|
uchar asr;
|
|
|
|
DB(DB_TRANSFER,
|
|
printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))
|
|
|
|
write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
|
write_wd33c93_count(regs, cnt);
|
|
write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
|
|
if (data_in_dir) {
|
|
do {
|
|
asr = read_aux_stat(regs);
|
|
if (asr & ASR_DBR)
|
|
*buf++ = read_wd33c93(regs, WD_DATA);
|
|
} while (!(asr & ASR_INT));
|
|
} else {
|
|
do {
|
|
asr = read_aux_stat(regs);
|
|
if (asr & ASR_DBR)
|
|
write_wd33c93(regs, WD_DATA, *buf++);
|
|
} while (!(asr & ASR_INT));
|
|
}
|
|
|
|
/* Note: we are returning with the interrupt UN-cleared.
|
|
* Since (presumably) an entire I/O operation has
|
|
* completed, the bus phase is probably different, and
|
|
* the interrupt routine will discover this when it
|
|
* responds to the uncleared int.
|
|
*/
|
|
|
|
}
|
|
|
|
static void
|
|
transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
|
|
int data_in_dir)
|
|
{
|
|
struct WD33C93_hostdata *hostdata;
|
|
unsigned long length;
|
|
|
|
hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
|
|
|
|
/* Normally, you'd expect 'this_residual' to be non-zero here.
|
|
* In a series of scatter-gather transfers, however, this
|
|
* routine will usually be called with 'this_residual' equal
|
|
* to 0 and 'buffers_residual' non-zero. This means that a
|
|
* previous transfer completed, clearing 'this_residual', and
|
|
* now we need to setup the next scatter-gather buffer as the
|
|
* source or destination for THIS transfer.
|
|
*/
|
|
if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
|
|
++cmd->SCp.buffer;
|
|
--cmd->SCp.buffers_residual;
|
|
cmd->SCp.this_residual = cmd->SCp.buffer->length;
|
|
cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
|
|
}
|
|
if (!cmd->SCp.this_residual) /* avoid bogus setups */
|
|
return;
|
|
|
|
write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
|
|
hostdata->sync_xfer[cmd->device->id]);
|
|
|
|
/* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
|
|
* Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
|
|
*/
|
|
|
|
if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
|
|
#ifdef PROC_STATISTICS
|
|
hostdata->pio_cnt++;
|
|
#endif
|
|
transfer_pio(regs, (uchar *) cmd->SCp.ptr,
|
|
cmd->SCp.this_residual, data_in_dir, hostdata);
|
|
length = cmd->SCp.this_residual;
|
|
cmd->SCp.this_residual = read_wd33c93_count(regs);
|
|
cmd->SCp.ptr += (length - cmd->SCp.this_residual);
|
|
}
|
|
|
|
/* We are able to do DMA (in fact, the Amiga hardware is
|
|
* already going!), so start up the wd33c93 in DMA mode.
|
|
* We set 'hostdata->dma' = D_DMA_RUNNING so that when the
|
|
* transfer completes and causes an interrupt, we're
|
|
* reminded to tell the Amiga to shut down its end. We'll
|
|
* postpone the updating of 'this_residual' and 'ptr'
|
|
* until then.
|
|
*/
|
|
|
|
else {
|
|
#ifdef PROC_STATISTICS
|
|
hostdata->dma_cnt++;
|
|
#endif
|
|
write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
|
|
write_wd33c93_count(regs, cmd->SCp.this_residual);
|
|
|
|
if ((hostdata->level2 >= L2_DATA) ||
|
|
(hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
|
|
write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
|
|
write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
|
} else
|
|
write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
|
|
|
|
hostdata->dma = D_DMA_RUNNING;
|
|
}
|
|
}
|
|
|
|
void
|
|
wd33c93_intr(struct Scsi_Host *instance)
|
|
{
|
|
struct WD33C93_hostdata *hostdata =
|
|
(struct WD33C93_hostdata *) instance->hostdata;
|
|
const wd33c93_regs regs = hostdata->regs;
|
|
struct scsi_cmnd *patch, *cmd;
|
|
uchar asr, sr, phs, id, lun, *ucp, msg;
|
|
unsigned long length, flags;
|
|
|
|
asr = read_aux_stat(regs);
|
|
if (!(asr & ASR_INT) || (asr & ASR_BSY))
|
|
return;
|
|
|
|
spin_lock_irqsave(&hostdata->lock, flags);
|
|
|
|
#ifdef PROC_STATISTICS
|
|
hostdata->int_cnt++;
|
|
#endif
|
|
|
|
cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */
|
|
sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */
|
|
phs = read_wd33c93(regs, WD_COMMAND_PHASE);
|
|
|
|
DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
|
|
|
|
/* After starting a DMA transfer, the next interrupt
|
|
* is guaranteed to be in response to completion of
|
|
* the transfer. Since the Amiga DMA hardware runs in
|
|
* in an open-ended fashion, it needs to be told when
|
|
* to stop; do that here if D_DMA_RUNNING is true.
|
|
* Also, we have to update 'this_residual' and 'ptr'
|
|
* based on the contents of the TRANSFER_COUNT register,
|
|
* in case the device decided to do an intermediate
|
|
* disconnect (a device may do this if it has to do a
|
|
* seek, or just to be nice and let other devices have
|
|
* some bus time during long transfers). After doing
|
|
* whatever is needed, we go on and service the WD3393
|
|
* interrupt normally.
|
|
*/
|
|
if (hostdata->dma == D_DMA_RUNNING) {
|
|
DB(DB_TRANSFER,
|
|
printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual))
|
|
hostdata->dma_stop(cmd->device->host, cmd, 1);
|
|
hostdata->dma = D_DMA_OFF;
|
|
length = cmd->SCp.this_residual;
|
|
cmd->SCp.this_residual = read_wd33c93_count(regs);
|
|
cmd->SCp.ptr += (length - cmd->SCp.this_residual);
|
|
DB(DB_TRANSFER,
|
|
printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual))
|
|
}
|
|
|
|
/* Respond to the specific WD3393 interrupt - there are quite a few! */
|
|
switch (sr) {
|
|
case CSR_TIMEOUT:
|
|
DB(DB_INTR, printk("TIMEOUT"))
|
|
|
|
if (hostdata->state == S_RUNNING_LEVEL2)
|
|
hostdata->connected = NULL;
|
|
else {
|
|
cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */
|
|
hostdata->selecting = NULL;
|
|
}
|
|
|
|
cmd->result = DID_NO_CONNECT << 16;
|
|
hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
|
|
hostdata->state = S_UNCONNECTED;
|
|
cmd->scsi_done(cmd);
|
|
|
|
/* From esp.c:
|
|
* There is a window of time within the scsi_done() path
|
|
* of execution where interrupts are turned back on full
|
|
* blast and left that way. During that time we could
|
|
* reconnect to a disconnected command, then we'd bomb
|
|
* out below. We could also end up executing two commands
|
|
* at _once_. ...just so you know why the restore_flags()
|
|
* is here...
|
|
*/
|
|
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
|
|
/* We are not connected to a target - check to see if there
|
|
* are commands waiting to be executed.
|
|
*/
|
|
|
|
wd33c93_execute(instance);
|
|
break;
|
|
|
|
/* Note: this interrupt should not occur in a LEVEL2 command */
|
|
|
|
case CSR_SELECT:
|
|
DB(DB_INTR, printk("SELECT"))
|
|
hostdata->connected = cmd =
|
|
(struct scsi_cmnd *) hostdata->selecting;
|
|
hostdata->selecting = NULL;
|
|
|
|
/* construct an IDENTIFY message with correct disconnect bit */
|
|
|
|
hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
|
|
if (cmd->SCp.phase)
|
|
hostdata->outgoing_msg[0] |= 0x40;
|
|
|
|
if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
|
|
|
|
hostdata->sync_stat[cmd->device->id] = SS_WAITING;
|
|
|
|
/* Tack on a 2nd message to ask about synchronous transfers. If we've
|
|
* been asked to do only asynchronous transfers on this device, we
|
|
* request a fifo depth of 0, which is equivalent to async - should
|
|
* solve the problems some people have had with GVP's Guru ROM.
|
|
*/
|
|
|
|
hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
|
|
hostdata->outgoing_msg[2] = 3;
|
|
hostdata->outgoing_msg[3] = EXTENDED_SDTR;
|
|
if (hostdata->no_sync & (1 << cmd->device->id)) {
|
|
calc_sync_msg(hostdata->default_sx_per, 0,
|
|
0, hostdata->outgoing_msg + 4);
|
|
} else {
|
|
calc_sync_msg(optimum_sx_per(hostdata),
|
|
OPTIMUM_SX_OFF,
|
|
hostdata->fast,
|
|
hostdata->outgoing_msg + 4);
|
|
}
|
|
hostdata->outgoing_len = 6;
|
|
#ifdef SYNC_DEBUG
|
|
ucp = hostdata->outgoing_msg + 1;
|
|
printk(" sending SDTR %02x03%02x%02x%02x ",
|
|
ucp[0], ucp[2], ucp[3], ucp[4]);
|
|
#endif
|
|
} else
|
|
hostdata->outgoing_len = 1;
|
|
|
|
hostdata->state = S_CONNECTED;
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
break;
|
|
|
|
case CSR_XFER_DONE | PHS_DATA_IN:
|
|
case CSR_UNEXP | PHS_DATA_IN:
|
|
case CSR_SRV_REQ | PHS_DATA_IN:
|
|
DB(DB_INTR,
|
|
printk("IN-%d.%d", cmd->SCp.this_residual,
|
|
cmd->SCp.buffers_residual))
|
|
transfer_bytes(regs, cmd, DATA_IN_DIR);
|
|
if (hostdata->state != S_RUNNING_LEVEL2)
|
|
hostdata->state = S_CONNECTED;
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
break;
|
|
|
|
case CSR_XFER_DONE | PHS_DATA_OUT:
|
|
case CSR_UNEXP | PHS_DATA_OUT:
|
|
case CSR_SRV_REQ | PHS_DATA_OUT:
|
|
DB(DB_INTR,
|
|
printk("OUT-%d.%d", cmd->SCp.this_residual,
|
|
cmd->SCp.buffers_residual))
|
|
transfer_bytes(regs, cmd, DATA_OUT_DIR);
|
|
if (hostdata->state != S_RUNNING_LEVEL2)
|
|
hostdata->state = S_CONNECTED;
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
break;
|
|
|
|
/* Note: this interrupt should not occur in a LEVEL2 command */
|
|
|
|
case CSR_XFER_DONE | PHS_COMMAND:
|
|
case CSR_UNEXP | PHS_COMMAND:
|
|
case CSR_SRV_REQ | PHS_COMMAND:
|
|
DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->serial_number))
|
|
transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
|
|
hostdata);
|
|
hostdata->state = S_CONNECTED;
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
break;
|
|
|
|
case CSR_XFER_DONE | PHS_STATUS:
|
|
case CSR_UNEXP | PHS_STATUS:
|
|
case CSR_SRV_REQ | PHS_STATUS:
|
|
DB(DB_INTR, printk("STATUS="))
|
|
cmd->SCp.Status = read_1_byte(regs);
|
|
DB(DB_INTR, printk("%02x", cmd->SCp.Status))
|
|
if (hostdata->level2 >= L2_BASIC) {
|
|
sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
|
|
udelay(7);
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
|
write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
|
|
write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
|
|
} else {
|
|
hostdata->state = S_CONNECTED;
|
|
}
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
break;
|
|
|
|
case CSR_XFER_DONE | PHS_MESS_IN:
|
|
case CSR_UNEXP | PHS_MESS_IN:
|
|
case CSR_SRV_REQ | PHS_MESS_IN:
|
|
DB(DB_INTR, printk("MSG_IN="))
|
|
|
|
msg = read_1_byte(regs);
|
|
sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
|
|
udelay(7);
|
|
|
|
hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
|
|
if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
|
|
msg = EXTENDED_MESSAGE;
|
|
else
|
|
hostdata->incoming_ptr = 0;
|
|
|
|
cmd->SCp.Message = msg;
|
|
switch (msg) {
|
|
|
|
case COMMAND_COMPLETE:
|
|
DB(DB_INTR, printk("CCMP-%ld", cmd->serial_number))
|
|
write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_PRE_CMP_DISC;
|
|
break;
|
|
|
|
case SAVE_POINTERS:
|
|
DB(DB_INTR, printk("SDP"))
|
|
write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_CONNECTED;
|
|
break;
|
|
|
|
case RESTORE_POINTERS:
|
|
DB(DB_INTR, printk("RDP"))
|
|
if (hostdata->level2 >= L2_BASIC) {
|
|
write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
|
|
write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
|
} else {
|
|
write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_CONNECTED;
|
|
}
|
|
break;
|
|
|
|
case DISCONNECT:
|
|
DB(DB_INTR, printk("DIS"))
|
|
cmd->device->disconnect = 1;
|
|
write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_PRE_TMP_DISC;
|
|
break;
|
|
|
|
case MESSAGE_REJECT:
|
|
DB(DB_INTR, printk("REJ"))
|
|
#ifdef SYNC_DEBUG
|
|
printk("-REJ-");
|
|
#endif
|
|
if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
|
|
hostdata->sync_stat[cmd->device->id] = SS_SET;
|
|
/* we want default_sx_per, not DEFAULT_SX_PER */
|
|
hostdata->sync_xfer[cmd->device->id] =
|
|
calc_sync_xfer(hostdata->default_sx_per
|
|
/ 4, 0, 0, hostdata->sx_table);
|
|
}
|
|
write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_CONNECTED;
|
|
break;
|
|
|
|
case EXTENDED_MESSAGE:
|
|
DB(DB_INTR, printk("EXT"))
|
|
|
|
ucp = hostdata->incoming_msg;
|
|
|
|
#ifdef SYNC_DEBUG
|
|
printk("%02x", ucp[hostdata->incoming_ptr]);
|
|
#endif
|
|
/* Is this the last byte of the extended message? */
|
|
|
|
if ((hostdata->incoming_ptr >= 2) &&
|
|
(hostdata->incoming_ptr == (ucp[1] + 1))) {
|
|
|
|
switch (ucp[2]) { /* what's the EXTENDED code? */
|
|
case EXTENDED_SDTR:
|
|
/* default to default async period */
|
|
id = calc_sync_xfer(hostdata->
|
|
default_sx_per / 4, 0,
|
|
0, hostdata->sx_table);
|
|
if (hostdata->sync_stat[cmd->device->id] !=
|
|
SS_WAITING) {
|
|
|
|
/* A device has sent an unsolicited SDTR message; rather than go
|
|
* through the effort of decoding it and then figuring out what
|
|
* our reply should be, we're just gonna say that we have a
|
|
* synchronous fifo depth of 0. This will result in asynchronous
|
|
* transfers - not ideal but so much easier.
|
|
* Actually, this is OK because it assures us that if we don't
|
|
* specifically ask for sync transfers, we won't do any.
|
|
*/
|
|
|
|
write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
|
|
hostdata->outgoing_msg[0] =
|
|
EXTENDED_MESSAGE;
|
|
hostdata->outgoing_msg[1] = 3;
|
|
hostdata->outgoing_msg[2] =
|
|
EXTENDED_SDTR;
|
|
calc_sync_msg(hostdata->
|
|
default_sx_per, 0,
|
|
0, hostdata->outgoing_msg + 3);
|
|
hostdata->outgoing_len = 5;
|
|
} else {
|
|
if (ucp[4]) /* well, sync transfer */
|
|
id = calc_sync_xfer(ucp[3], ucp[4],
|
|
hostdata->fast,
|
|
hostdata->sx_table);
|
|
else if (ucp[3]) /* very unlikely... */
|
|
id = calc_sync_xfer(ucp[3], ucp[4],
|
|
0, hostdata->sx_table);
|
|
}
|
|
hostdata->sync_xfer[cmd->device->id] = id;
|
|
#ifdef SYNC_DEBUG
|
|
printk(" sync_xfer=%02x\n",
|
|
hostdata->sync_xfer[cmd->device->id]);
|
|
#endif
|
|
hostdata->sync_stat[cmd->device->id] =
|
|
SS_SET;
|
|
write_wd33c93_cmd(regs,
|
|
WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_CONNECTED;
|
|
break;
|
|
case EXTENDED_WDTR:
|
|
write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
|
|
printk("sending WDTR ");
|
|
hostdata->outgoing_msg[0] =
|
|
EXTENDED_MESSAGE;
|
|
hostdata->outgoing_msg[1] = 2;
|
|
hostdata->outgoing_msg[2] =
|
|
EXTENDED_WDTR;
|
|
hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
|
|
hostdata->outgoing_len = 4;
|
|
write_wd33c93_cmd(regs,
|
|
WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_CONNECTED;
|
|
break;
|
|
default:
|
|
write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
|
|
printk
|
|
("Rejecting Unknown Extended Message(%02x). ",
|
|
ucp[2]);
|
|
hostdata->outgoing_msg[0] =
|
|
MESSAGE_REJECT;
|
|
hostdata->outgoing_len = 1;
|
|
write_wd33c93_cmd(regs,
|
|
WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_CONNECTED;
|
|
break;
|
|
}
|
|
hostdata->incoming_ptr = 0;
|
|
}
|
|
|
|
/* We need to read more MESS_IN bytes for the extended message */
|
|
|
|
else {
|
|
hostdata->incoming_ptr++;
|
|
write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_CONNECTED;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
printk("Rejecting Unknown Message(%02x) ", msg);
|
|
write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
|
|
hostdata->outgoing_msg[0] = MESSAGE_REJECT;
|
|
hostdata->outgoing_len = 1;
|
|
write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
|
|
hostdata->state = S_CONNECTED;
|
|
}
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
break;
|
|
|
|
/* Note: this interrupt will occur only after a LEVEL2 command */
|
|
|
|
case CSR_SEL_XFER_DONE:
|
|
|
|
/* Make sure that reselection is enabled at this point - it may
|
|
* have been turned off for the command that just completed.
|
|
*/
|
|
|
|
write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
|
|
if (phs == 0x60) {
|
|
DB(DB_INTR, printk("SX-DONE-%ld", cmd->serial_number))
|
|
cmd->SCp.Message = COMMAND_COMPLETE;
|
|
lun = read_wd33c93(regs, WD_TARGET_LUN);
|
|
DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
|
|
hostdata->connected = NULL;
|
|
hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
|
|
hostdata->state = S_UNCONNECTED;
|
|
if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
|
|
cmd->SCp.Status = lun;
|
|
if (cmd->cmnd[0] == REQUEST_SENSE
|
|
&& cmd->SCp.Status != GOOD)
|
|
cmd->result =
|
|
(cmd->
|
|
result & 0x00ffff) | (DID_ERROR << 16);
|
|
else
|
|
cmd->result =
|
|
cmd->SCp.Status | (cmd->SCp.Message << 8);
|
|
cmd->scsi_done(cmd);
|
|
|
|
/* We are no longer connected to a target - check to see if
|
|
* there are commands waiting to be executed.
|
|
*/
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
wd33c93_execute(instance);
|
|
} else {
|
|
printk
|
|
("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",
|
|
asr, sr, phs, cmd->serial_number);
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
}
|
|
break;
|
|
|
|
/* Note: this interrupt will occur only after a LEVEL2 command */
|
|
|
|
case CSR_SDP:
|
|
DB(DB_INTR, printk("SDP"))
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
|
write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
|
|
write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
break;
|
|
|
|
case CSR_XFER_DONE | PHS_MESS_OUT:
|
|
case CSR_UNEXP | PHS_MESS_OUT:
|
|
case CSR_SRV_REQ | PHS_MESS_OUT:
|
|
DB(DB_INTR, printk("MSG_OUT="))
|
|
|
|
/* To get here, we've probably requested MESSAGE_OUT and have
|
|
* already put the correct bytes in outgoing_msg[] and filled
|
|
* in outgoing_len. We simply send them out to the SCSI bus.
|
|
* Sometimes we get MESSAGE_OUT phase when we're not expecting
|
|
* it - like when our SDTR message is rejected by a target. Some
|
|
* targets send the REJECT before receiving all of the extended
|
|
* message, and then seem to go back to MESSAGE_OUT for a byte
|
|
* or two. Not sure why, or if I'm doing something wrong to
|
|
* cause this to happen. Regardless, it seems that sending
|
|
* NOP messages in these situations results in no harm and
|
|
* makes everyone happy.
|
|
*/
|
|
if (hostdata->outgoing_len == 0) {
|
|
hostdata->outgoing_len = 1;
|
|
hostdata->outgoing_msg[0] = NOP;
|
|
}
|
|
transfer_pio(regs, hostdata->outgoing_msg,
|
|
hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
|
|
DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
|
|
hostdata->outgoing_len = 0;
|
|
hostdata->state = S_CONNECTED;
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
break;
|
|
|
|
case CSR_UNEXP_DISC:
|
|
|
|
/* I think I've seen this after a request-sense that was in response
|
|
* to an error condition, but not sure. We certainly need to do
|
|
* something when we get this interrupt - the question is 'what?'.
|
|
* Let's think positively, and assume some command has finished
|
|
* in a legal manner (like a command that provokes a request-sense),
|
|
* so we treat it as a normal command-complete-disconnect.
|
|
*/
|
|
|
|
/* Make sure that reselection is enabled at this point - it may
|
|
* have been turned off for the command that just completed.
|
|
*/
|
|
|
|
write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
|
|
if (cmd == NULL) {
|
|
printk(" - Already disconnected! ");
|
|
hostdata->state = S_UNCONNECTED;
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
return;
|
|
}
|
|
DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->serial_number))
|
|
hostdata->connected = NULL;
|
|
hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
|
|
hostdata->state = S_UNCONNECTED;
|
|
if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
|
|
cmd->result =
|
|
(cmd->result & 0x00ffff) | (DID_ERROR << 16);
|
|
else
|
|
cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
|
|
cmd->scsi_done(cmd);
|
|
|
|
/* We are no longer connected to a target - check to see if
|
|
* there are commands waiting to be executed.
|
|
*/
|
|
/* look above for comments on scsi_done() */
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
wd33c93_execute(instance);
|
|
break;
|
|
|
|
case CSR_DISC:
|
|
|
|
/* Make sure that reselection is enabled at this point - it may
|
|
* have been turned off for the command that just completed.
|
|
*/
|
|
|
|
write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
|
|
DB(DB_INTR, printk("DISC-%ld", cmd->serial_number))
|
|
if (cmd == NULL) {
|
|
printk(" - Already disconnected! ");
|
|
hostdata->state = S_UNCONNECTED;
|
|
}
|
|
switch (hostdata->state) {
|
|
case S_PRE_CMP_DISC:
|
|
hostdata->connected = NULL;
|
|
hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
|
|
hostdata->state = S_UNCONNECTED;
|
|
DB(DB_INTR, printk(":%d", cmd->SCp.Status))
|
|
if (cmd->cmnd[0] == REQUEST_SENSE
|
|
&& cmd->SCp.Status != GOOD)
|
|
cmd->result =
|
|
(cmd->
|
|
result & 0x00ffff) | (DID_ERROR << 16);
|
|
else
|
|
cmd->result =
|
|
cmd->SCp.Status | (cmd->SCp.Message << 8);
|
|
cmd->scsi_done(cmd);
|
|
break;
|
|
case S_PRE_TMP_DISC:
|
|
case S_RUNNING_LEVEL2:
|
|
cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
|
|
hostdata->disconnected_Q = cmd;
|
|
hostdata->connected = NULL;
|
|
hostdata->state = S_UNCONNECTED;
|
|
|
|
#ifdef PROC_STATISTICS
|
|
hostdata->disc_done_cnt[cmd->device->id]++;
|
|
#endif
|
|
|
|
break;
|
|
default:
|
|
printk("*** Unexpected DISCONNECT interrupt! ***");
|
|
hostdata->state = S_UNCONNECTED;
|
|
}
|
|
|
|
/* We are no longer connected to a target - check to see if
|
|
* there are commands waiting to be executed.
|
|
*/
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
wd33c93_execute(instance);
|
|
break;
|
|
|
|
case CSR_RESEL_AM:
|
|
case CSR_RESEL:
|
|
DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))
|
|
|
|
/* Old chips (pre -A ???) don't have advanced features and will
|
|
* generate CSR_RESEL. In that case we have to extract the LUN the
|
|
* hard way (see below).
|
|
* First we have to make sure this reselection didn't
|
|
* happen during Arbitration/Selection of some other device.
|
|
* If yes, put losing command back on top of input_Q.
|
|
*/
|
|
if (hostdata->level2 <= L2_NONE) {
|
|
|
|
if (hostdata->selecting) {
|
|
cmd = (struct scsi_cmnd *) hostdata->selecting;
|
|
hostdata->selecting = NULL;
|
|
hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
|
|
cmd->host_scribble =
|
|
(uchar *) hostdata->input_Q;
|
|
hostdata->input_Q = cmd;
|
|
}
|
|
}
|
|
|
|
else {
|
|
|
|
if (cmd) {
|
|
if (phs == 0x00) {
|
|
hostdata->busy[cmd->device->id] &=
|
|
~(1 << cmd->device->lun);
|
|
cmd->host_scribble =
|
|
(uchar *) hostdata->input_Q;
|
|
hostdata->input_Q = cmd;
|
|
} else {
|
|
printk
|
|
("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
|
|
asr, sr, phs);
|
|
while (1)
|
|
printk("\r");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* OK - find out which device reselected us. */
|
|
|
|
id = read_wd33c93(regs, WD_SOURCE_ID);
|
|
id &= SRCID_MASK;
|
|
|
|
/* and extract the lun from the ID message. (Note that we don't
|
|
* bother to check for a valid message here - I guess this is
|
|
* not the right way to go, but...)
|
|
*/
|
|
|
|
if (sr == CSR_RESEL_AM) {
|
|
lun = read_wd33c93(regs, WD_DATA);
|
|
if (hostdata->level2 < L2_RESELECT)
|
|
write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
|
|
lun &= 7;
|
|
} else {
|
|
/* Old chip; wait for msgin phase to pick up the LUN. */
|
|
for (lun = 255; lun; lun--) {
|
|
if ((asr = read_aux_stat(regs)) & ASR_INT)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
if (!(asr & ASR_INT)) {
|
|
printk
|
|
("wd33c93: Reselected without IDENTIFY\n");
|
|
lun = 0;
|
|
} else {
|
|
/* Verify this is a change to MSG_IN and read the message */
|
|
sr = read_wd33c93(regs, WD_SCSI_STATUS);
|
|
udelay(7);
|
|
if (sr == (CSR_ABORT | PHS_MESS_IN) ||
|
|
sr == (CSR_UNEXP | PHS_MESS_IN) ||
|
|
sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
|
|
/* Got MSG_IN, grab target LUN */
|
|
lun = read_1_byte(regs);
|
|
/* Now we expect a 'paused with ACK asserted' int.. */
|
|
asr = read_aux_stat(regs);
|
|
if (!(asr & ASR_INT)) {
|
|
udelay(10);
|
|
asr = read_aux_stat(regs);
|
|
if (!(asr & ASR_INT))
|
|
printk
|
|
("wd33c93: No int after LUN on RESEL (%02x)\n",
|
|
asr);
|
|
}
|
|
sr = read_wd33c93(regs, WD_SCSI_STATUS);
|
|
udelay(7);
|
|
if (sr != CSR_MSGIN)
|
|
printk
|
|
("wd33c93: Not paused with ACK on RESEL (%02x)\n",
|
|
sr);
|
|
lun &= 7;
|
|
write_wd33c93_cmd(regs,
|
|
WD_CMD_NEGATE_ACK);
|
|
} else {
|
|
printk
|
|
("wd33c93: Not MSG_IN on reselect (%02x)\n",
|
|
sr);
|
|
lun = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now we look for the command that's reconnecting. */
|
|
|
|
cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
|
|
patch = NULL;
|
|
while (cmd) {
|
|
if (id == cmd->device->id && lun == cmd->device->lun)
|
|
break;
|
|
patch = cmd;
|
|
cmd = (struct scsi_cmnd *) cmd->host_scribble;
|
|
}
|
|
|
|
/* Hmm. Couldn't find a valid command.... What to do? */
|
|
|
|
if (!cmd) {
|
|
printk
|
|
("---TROUBLE: target %d.%d not in disconnect queue---",
|
|
id, lun);
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Ok, found the command - now start it up again. */
|
|
|
|
if (patch)
|
|
patch->host_scribble = cmd->host_scribble;
|
|
else
|
|
hostdata->disconnected_Q =
|
|
(struct scsi_cmnd *) cmd->host_scribble;
|
|
hostdata->connected = cmd;
|
|
|
|
/* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
|
|
* because these things are preserved over a disconnect.
|
|
* But we DO need to fix the DPD bit so it's correct for this command.
|
|
*/
|
|
|
|
if (cmd->sc_data_direction == DMA_TO_DEVICE)
|
|
write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
|
|
else
|
|
write_wd33c93(regs, WD_DESTINATION_ID,
|
|
cmd->device->id | DSTID_DPD);
|
|
if (hostdata->level2 >= L2_RESELECT) {
|
|
write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */
|
|
write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
|
|
write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
|
} else
|
|
hostdata->state = S_CONNECTED;
|
|
|
|
DB(DB_INTR, printk("-%ld", cmd->serial_number))
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
break;
|
|
|
|
default:
|
|
printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
|
|
spin_unlock_irqrestore(&hostdata->lock, flags);
|
|
}
|
|
|
|
DB(DB_INTR, printk("} "))
|
|
|
|
}
|
|
|
|
static void
|
|
reset_wd33c93(struct Scsi_Host *instance)
|
|
{
|
|
struct WD33C93_hostdata *hostdata =
|
|
(struct WD33C93_hostdata *) instance->hostdata;
|
|
const wd33c93_regs regs = hostdata->regs;
|
|
uchar sr;
|
|
|
|
#ifdef CONFIG_SGI_IP22
|
|
{
|
|
int busycount = 0;
|
|
extern void sgiwd93_reset(unsigned long);
|
|
/* wait 'til the chip gets some time for us */
|
|
while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
|
|
udelay (10);
|
|
/*
|
|
* there are scsi devices out there, which manage to lock up
|
|
* the wd33c93 in a busy condition. In this state it won't
|
|
* accept the reset command. The only way to solve this is to
|
|
* give the chip a hardware reset (if possible). The code below
|
|
* does this for the SGI Indy, where this is possible
|
|
*/
|
|
/* still busy ? */
|
|
if (read_aux_stat(regs) & ASR_BSY)
|
|
sgiwd93_reset(instance->base); /* yeah, give it the hard one */
|
|
}
|
|
#endif
|
|
|
|
write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
|
|
instance->this_id | hostdata->clock_freq);
|
|
write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
|
write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
|
|
calc_sync_xfer(hostdata->default_sx_per / 4,
|
|
DEFAULT_SX_OFF, 0, hostdata->sx_table));
|
|
write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);
|
|
|
|
|
|
#ifdef CONFIG_MVME147_SCSI
|
|
udelay(25); /* The old wd33c93 on MVME147 needs this, at least */
|
|
#endif
|
|
|
|
while (!(read_aux_stat(regs) & ASR_INT))
|
|
;
|
|
sr = read_wd33c93(regs, WD_SCSI_STATUS);
|
|
|
|
hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
|
|
if (sr == 0x00)
|
|
hostdata->chip = C_WD33C93;
|
|
else if (sr == 0x01) {
|
|
write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */
|
|
sr = read_wd33c93(regs, WD_QUEUE_TAG);
|
|
if (sr == 0xa5) {
|
|
hostdata->chip = C_WD33C93B;
|
|
write_wd33c93(regs, WD_QUEUE_TAG, 0);
|
|
} else
|
|
hostdata->chip = C_WD33C93A;
|
|
} else
|
|
hostdata->chip = C_UNKNOWN_CHIP;
|
|
|
|
if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */
|
|
hostdata->fast = 0;
|
|
|
|
write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
|
|
write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
|
}
|
|
|
|
int
|
|
wd33c93_host_reset(struct scsi_cmnd * SCpnt)
|
|
{
|
|
struct Scsi_Host *instance;
|
|
struct WD33C93_hostdata *hostdata;
|
|
int i;
|
|
|
|
instance = SCpnt->device->host;
|
|
hostdata = (struct WD33C93_hostdata *) instance->hostdata;
|
|
|
|
printk("scsi%d: reset. ", instance->host_no);
|
|
disable_irq(instance->irq);
|
|
|
|
hostdata->dma_stop(instance, NULL, 0);
|
|
for (i = 0; i < 8; i++) {
|
|
hostdata->busy[i] = 0;
|
|
hostdata->sync_xfer[i] =
|
|
calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
|
|
0, hostdata->sx_table);
|
|
hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
|
|
}
|
|
hostdata->input_Q = NULL;
|
|
hostdata->selecting = NULL;
|
|
hostdata->connected = NULL;
|
|
hostdata->disconnected_Q = NULL;
|
|
hostdata->state = S_UNCONNECTED;
|
|
hostdata->dma = D_DMA_OFF;
|
|
hostdata->incoming_ptr = 0;
|
|
hostdata->outgoing_len = 0;
|
|
|
|
reset_wd33c93(instance);
|
|
SCpnt->result = DID_RESET << 16;
|
|
enable_irq(instance->irq);
|
|
return SUCCESS;
|
|
}
|
|
|
|
int
|
|
wd33c93_abort(struct scsi_cmnd * cmd)
|
|
{
|
|
struct Scsi_Host *instance;
|
|
struct WD33C93_hostdata *hostdata;
|
|
wd33c93_regs regs;
|
|
struct scsi_cmnd *tmp, *prev;
|
|
|
|
disable_irq(cmd->device->host->irq);
|
|
|
|
instance = cmd->device->host;
|
|
hostdata = (struct WD33C93_hostdata *) instance->hostdata;
|
|
regs = hostdata->regs;
|
|
|
|
/*
|
|
* Case 1 : If the command hasn't been issued yet, we simply remove it
|
|
* from the input_Q.
|
|
*/
|
|
|
|
tmp = (struct scsi_cmnd *) hostdata->input_Q;
|
|
prev = NULL;
|
|
while (tmp) {
|
|
if (tmp == cmd) {
|
|
if (prev)
|
|
prev->host_scribble = cmd->host_scribble;
|
|
else
|
|
hostdata->input_Q =
|
|
(struct scsi_cmnd *) cmd->host_scribble;
|
|
cmd->host_scribble = NULL;
|
|
cmd->result = DID_ABORT << 16;
|
|
printk
|
|
("scsi%d: Abort - removing command %ld from input_Q. ",
|
|
instance->host_no, cmd->serial_number);
|
|
enable_irq(cmd->device->host->irq);
|
|
cmd->scsi_done(cmd);
|
|
return SUCCESS;
|
|
}
|
|
prev = tmp;
|
|
tmp = (struct scsi_cmnd *) tmp->host_scribble;
|
|
}
|
|
|
|
/*
|
|
* Case 2 : If the command is connected, we're going to fail the abort
|
|
* and let the high level SCSI driver retry at a later time or
|
|
* issue a reset.
|
|
*
|
|
* Timeouts, and therefore aborted commands, will be highly unlikely
|
|
* and handling them cleanly in this situation would make the common
|
|
* case of noresets less efficient, and would pollute our code. So,
|
|
* we fail.
|
|
*/
|
|
|
|
if (hostdata->connected == cmd) {
|
|
uchar sr, asr;
|
|
unsigned long timeout;
|
|
|
|
printk("scsi%d: Aborting connected command %ld - ",
|
|
instance->host_no, cmd->serial_number);
|
|
|
|
printk("stopping DMA - ");
|
|
if (hostdata->dma == D_DMA_RUNNING) {
|
|
hostdata->dma_stop(instance, cmd, 0);
|
|
hostdata->dma = D_DMA_OFF;
|
|
}
|
|
|
|
printk("sending wd33c93 ABORT command - ");
|
|
write_wd33c93(regs, WD_CONTROL,
|
|
CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
|
write_wd33c93_cmd(regs, WD_CMD_ABORT);
|
|
|
|
/* Now we have to attempt to flush out the FIFO... */
|
|
|
|
printk("flushing fifo - ");
|
|
timeout = 1000000;
|
|
do {
|
|
asr = read_aux_stat(regs);
|
|
if (asr & ASR_DBR)
|
|
read_wd33c93(regs, WD_DATA);
|
|
} while (!(asr & ASR_INT) && timeout-- > 0);
|
|
sr = read_wd33c93(regs, WD_SCSI_STATUS);
|
|
printk
|
|
("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
|
|
asr, sr, read_wd33c93_count(regs), timeout);
|
|
|
|
/*
|
|
* Abort command processed.
|
|
* Still connected.
|
|
* We must disconnect.
|
|
*/
|
|
|
|
printk("sending wd33c93 DISCONNECT command - ");
|
|
write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);
|
|
|
|
timeout = 1000000;
|
|
asr = read_aux_stat(regs);
|
|
while ((asr & ASR_CIP) && timeout-- > 0)
|
|
asr = read_aux_stat(regs);
|
|
sr = read_wd33c93(regs, WD_SCSI_STATUS);
|
|
printk("asr=%02x, sr=%02x.", asr, sr);
|
|
|
|
hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
|
|
hostdata->connected = NULL;
|
|
hostdata->state = S_UNCONNECTED;
|
|
cmd->result = DID_ABORT << 16;
|
|
|
|
/* sti();*/
|
|
wd33c93_execute(instance);
|
|
|
|
enable_irq(cmd->device->host->irq);
|
|
cmd->scsi_done(cmd);
|
|
return SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Case 3: If the command is currently disconnected from the bus,
|
|
* we're not going to expend much effort here: Let's just return
|
|
* an ABORT_SNOOZE and hope for the best...
|
|
*/
|
|
|
|
tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
|
|
while (tmp) {
|
|
if (tmp == cmd) {
|
|
printk
|
|
("scsi%d: Abort - command %ld found on disconnected_Q - ",
|
|
instance->host_no, cmd->serial_number);
|
|
printk("Abort SNOOZE. ");
|
|
enable_irq(cmd->device->host->irq);
|
|
return FAILED;
|
|
}
|
|
tmp = (struct scsi_cmnd *) tmp->host_scribble;
|
|
}
|
|
|
|
/*
|
|
* Case 4 : If we reached this point, the command was not found in any of
|
|
* the queues.
|
|
*
|
|
* We probably reached this point because of an unlikely race condition
|
|
* between the command completing successfully and the abortion code,
|
|
* so we won't panic, but we will notify the user in case something really
|
|
* broke.
|
|
*/
|
|
|
|
/* sti();*/
|
|
wd33c93_execute(instance);
|
|
|
|
enable_irq(cmd->device->host->irq);
|
|
printk("scsi%d: warning : SCSI command probably completed successfully"
|
|
" before abortion. ", instance->host_no);
|
|
return FAILED;
|
|
}
|
|
|
|
#define MAX_WD33C93_HOSTS 4
|
|
#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
|
|
#define SETUP_BUFFER_SIZE 200
|
|
static char setup_buffer[SETUP_BUFFER_SIZE];
|
|
static char setup_used[MAX_SETUP_ARGS];
|
|
static int done_setup = 0;
|
|
|
|
static int
|
|
wd33c93_setup(char *str)
|
|
{
|
|
int i;
|
|
char *p1, *p2;
|
|
|
|
/* The kernel does some processing of the command-line before calling
|
|
* this function: If it begins with any decimal or hex number arguments,
|
|
* ints[0] = how many numbers found and ints[1] through [n] are the values
|
|
* themselves. str points to where the non-numeric arguments (if any)
|
|
* start: We do our own parsing of those. We construct synthetic 'nosync'
|
|
* keywords out of numeric args (to maintain compatibility with older
|
|
* versions) and then add the rest of the arguments.
|
|
*/
|
|
|
|
p1 = setup_buffer;
|
|
*p1 = '\0';
|
|
if (str)
|
|
strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
|
|
setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
|
|
p1 = setup_buffer;
|
|
i = 0;
|
|
while (*p1 && (i < MAX_SETUP_ARGS)) {
|
|
p2 = strchr(p1, ',');
|
|
if (p2) {
|
|
*p2 = '\0';
|
|
if (p1 != p2)
|
|
setup_args[i] = p1;
|
|
p1 = p2 + 1;
|
|
i++;
|
|
} else {
|
|
setup_args[i] = p1;
|
|
break;
|
|
}
|
|
}
|
|
for (i = 0; i < MAX_SETUP_ARGS; i++)
|
|
setup_used[i] = 0;
|
|
done_setup = 1;
|
|
|
|
return 1;
|
|
}
|
|
__setup("wd33c93=", wd33c93_setup);
|
|
|
|
/* check_setup_args() returns index if key found, 0 if not
|
|
*/
|
|
static int
|
|
check_setup_args(char *key, int *flags, int *val, char *buf)
|
|
{
|
|
int x;
|
|
char *cp;
|
|
|
|
for (x = 0; x < MAX_SETUP_ARGS; x++) {
|
|
if (setup_used[x])
|
|
continue;
|
|
if (!strncmp(setup_args[x], key, strlen(key)))
|
|
break;
|
|
if (!strncmp(setup_args[x], "next", strlen("next")))
|
|
return 0;
|
|
}
|
|
if (x == MAX_SETUP_ARGS)
|
|
return 0;
|
|
setup_used[x] = 1;
|
|
cp = setup_args[x] + strlen(key);
|
|
*val = -1;
|
|
if (*cp != ':')
|
|
return ++x;
|
|
cp++;
|
|
if ((*cp >= '0') && (*cp <= '9')) {
|
|
*val = simple_strtoul(cp, NULL, 0);
|
|
}
|
|
return ++x;
|
|
}
|
|
|
|
/*
|
|
* Calculate internal data-transfer-clock cycle from input-clock
|
|
* frequency (/MHz) and fill 'sx_table'.
|
|
*
|
|
* The original driver used to rely on a fixed sx_table, containing periods
|
|
* for (only) the lower limits of the respective input-clock-frequency ranges
|
|
* (8-10/12-15/16-20 MHz). Although it seems, that no problems ocurred with
|
|
* this setting so far, it might be desirable to adjust the transfer periods
|
|
* closer to the really attached, possibly 25% higher, input-clock, since
|
|
* - the wd33c93 may really use a significant shorter period, than it has
|
|
* negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
|
|
* instead).
|
|
* - the wd33c93 may ask the target for a lower transfer rate, than the target
|
|
* is capable of (eg. negotiating for an assumed minimum of 252ns instead of
|
|
* possible 200ns, which indeed shows up in tests as an approx. 10% lower
|
|
* transfer rate).
|
|
*/
|
|
static inline unsigned int
|
|
round_4(unsigned int x)
|
|
{
|
|
switch (x & 3) {
|
|
case 1: --x;
|
|
break;
|
|
case 2: ++x;
|
|
case 3: ++x;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static void
|
|
calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
|
|
{
|
|
unsigned int d, i;
|
|
if (mhz < 11)
|
|
d = 2; /* divisor for 8-10 MHz input-clock */
|
|
else if (mhz < 16)
|
|
d = 3; /* divisor for 12-15 MHz input-clock */
|
|
else
|
|
d = 4; /* divisor for 16-20 MHz input-clock */
|
|
|
|
d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */
|
|
|
|
sx_table[0].period_ns = 1;
|
|
sx_table[0].reg_value = 0x20;
|
|
for (i = 1; i < 8; i++) {
|
|
sx_table[i].period_ns = round_4((i+1)*d / 100);
|
|
sx_table[i].reg_value = (i+1)*0x10;
|
|
}
|
|
sx_table[7].reg_value = 0;
|
|
sx_table[8].period_ns = 0;
|
|
sx_table[8].reg_value = 0;
|
|
}
|
|
|
|
/*
|
|
* check and, maybe, map an init- or "clock:"- argument.
|
|
*/
|
|
static uchar
|
|
set_clk_freq(int freq, int *mhz)
|
|
{
|
|
int x = freq;
|
|
if (WD33C93_FS_8_10 == freq)
|
|
freq = 8;
|
|
else if (WD33C93_FS_12_15 == freq)
|
|
freq = 12;
|
|
else if (WD33C93_FS_16_20 == freq)
|
|
freq = 16;
|
|
else if (freq > 7 && freq < 11)
|
|
x = WD33C93_FS_8_10;
|
|
else if (freq > 11 && freq < 16)
|
|
x = WD33C93_FS_12_15;
|
|
else if (freq > 15 && freq < 21)
|
|
x = WD33C93_FS_16_20;
|
|
else {
|
|
/* Hmm, wouldn't it be safer to assume highest freq here? */
|
|
x = WD33C93_FS_8_10;
|
|
freq = 8;
|
|
}
|
|
*mhz = freq;
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* to be used with the resync: fast: ... options
|
|
*/
|
|
static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
|
|
{
|
|
int i;
|
|
for (i = 0; i < 8; i++)
|
|
if (mask & (1 << i))
|
|
hd->sync_stat[i] = SS_UNSET;
|
|
}
|
|
|
|
void
|
|
wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
|
|
dma_setup_t setup, dma_stop_t stop, int clock_freq)
|
|
{
|
|
struct WD33C93_hostdata *hostdata;
|
|
int i;
|
|
int flags;
|
|
int val;
|
|
char buf[32];
|
|
|
|
if (!done_setup && setup_strings)
|
|
wd33c93_setup(setup_strings);
|
|
|
|
hostdata = (struct WD33C93_hostdata *) instance->hostdata;
|
|
|
|
hostdata->regs = regs;
|
|
hostdata->clock_freq = set_clk_freq(clock_freq, &i);
|
|
calc_sx_table(i, hostdata->sx_table);
|
|
hostdata->dma_setup = setup;
|
|
hostdata->dma_stop = stop;
|
|
hostdata->dma_bounce_buffer = NULL;
|
|
hostdata->dma_bounce_len = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
hostdata->busy[i] = 0;
|
|
hostdata->sync_xfer[i] =
|
|
calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
|
|
0, hostdata->sx_table);
|
|
hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
|
|
#ifdef PROC_STATISTICS
|
|
hostdata->cmd_cnt[i] = 0;
|
|
hostdata->disc_allowed_cnt[i] = 0;
|
|
hostdata->disc_done_cnt[i] = 0;
|
|
#endif
|
|
}
|
|
hostdata->input_Q = NULL;
|
|
hostdata->selecting = NULL;
|
|
hostdata->connected = NULL;
|
|
hostdata->disconnected_Q = NULL;
|
|
hostdata->state = S_UNCONNECTED;
|
|
hostdata->dma = D_DMA_OFF;
|
|
hostdata->level2 = L2_BASIC;
|
|
hostdata->disconnect = DIS_ADAPTIVE;
|
|
hostdata->args = DEBUG_DEFAULTS;
|
|
hostdata->incoming_ptr = 0;
|
|
hostdata->outgoing_len = 0;
|
|
hostdata->default_sx_per = DEFAULT_SX_PER;
|
|
hostdata->no_dma = 0; /* default is DMA enabled */
|
|
|
|
#ifdef PROC_INTERFACE
|
|
hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
|
|
PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
|
|
#ifdef PROC_STATISTICS
|
|
hostdata->dma_cnt = 0;
|
|
hostdata->pio_cnt = 0;
|
|
hostdata->int_cnt = 0;
|
|
#endif
|
|
#endif
|
|
|
|
if (check_setup_args("clock", &flags, &val, buf)) {
|
|
hostdata->clock_freq = set_clk_freq(val, &val);
|
|
calc_sx_table(val, hostdata->sx_table);
|
|
}
|
|
|
|
if (check_setup_args("nosync", &flags, &val, buf))
|
|
hostdata->no_sync = val;
|
|
|
|
if (check_setup_args("nodma", &flags, &val, buf))
|
|
hostdata->no_dma = (val == -1) ? 1 : val;
|
|
|
|
if (check_setup_args("period", &flags, &val, buf))
|
|
hostdata->default_sx_per =
|
|
hostdata->sx_table[round_period((unsigned int) val,
|
|
hostdata->sx_table)].period_ns;
|
|
|
|
if (check_setup_args("disconnect", &flags, &val, buf)) {
|
|
if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
|
|
hostdata->disconnect = val;
|
|
else
|
|
hostdata->disconnect = DIS_ADAPTIVE;
|
|
}
|
|
|
|
if (check_setup_args("level2", &flags, &val, buf))
|
|
hostdata->level2 = val;
|
|
|
|
if (check_setup_args("debug", &flags, &val, buf))
|
|
hostdata->args = val & DB_MASK;
|
|
|
|
if (check_setup_args("burst", &flags, &val, buf))
|
|
hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;
|
|
|
|
if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
|
|
&& check_setup_args("fast", &flags, &val, buf))
|
|
hostdata->fast = !!val;
|
|
|
|
if ((i = check_setup_args("next", &flags, &val, buf))) {
|
|
while (i)
|
|
setup_used[--i] = 1;
|
|
}
|
|
#ifdef PROC_INTERFACE
|
|
if (check_setup_args("proc", &flags, &val, buf))
|
|
hostdata->proc = val;
|
|
#endif
|
|
|
|
spin_lock_irq(&hostdata->lock);
|
|
reset_wd33c93(instance);
|
|
spin_unlock_irq(&hostdata->lock);
|
|
|
|
printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
|
|
instance->host_no,
|
|
(hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
|
|
C_WD33C93A) ?
|
|
"WD33c93A" : (hostdata->chip ==
|
|
C_WD33C93B) ? "WD33c93B" : "unknown",
|
|
hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
|
|
#ifdef DEBUGGING_ON
|
|
printk(" debug_flags=0x%02x\n", hostdata->args);
|
|
#else
|
|
printk(" debugging=OFF\n");
|
|
#endif
|
|
printk(" setup_args=");
|
|
for (i = 0; i < MAX_SETUP_ARGS; i++)
|
|
printk("%s,", setup_args[i]);
|
|
printk("\n");
|
|
printk(" Version %s - %s, Compiled %s at %s\n",
|
|
WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);
|
|
}
|
|
|
|
int
|
|
wd33c93_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in)
|
|
{
|
|
|
|
#ifdef PROC_INTERFACE
|
|
|
|
char *bp;
|
|
char tbuf[128];
|
|
struct WD33C93_hostdata *hd;
|
|
struct scsi_cmnd *cmd;
|
|
int x;
|
|
static int stop = 0;
|
|
|
|
hd = (struct WD33C93_hostdata *) instance->hostdata;
|
|
|
|
/* If 'in' is TRUE we need to _read_ the proc file. We accept the following
|
|
* keywords (same format as command-line, but arguments are not optional):
|
|
* debug
|
|
* disconnect
|
|
* period
|
|
* resync
|
|
* proc
|
|
* nodma
|
|
* level2
|
|
* burst
|
|
* fast
|
|
* nosync
|
|
*/
|
|
|
|
if (in) {
|
|
buf[len] = '\0';
|
|
for (bp = buf; *bp; ) {
|
|
while (',' == *bp || ' ' == *bp)
|
|
++bp;
|
|
if (!strncmp(bp, "debug:", 6)) {
|
|
hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
|
|
} else if (!strncmp(bp, "disconnect:", 11)) {
|
|
x = simple_strtoul(bp+11, &bp, 0);
|
|
if (x < DIS_NEVER || x > DIS_ALWAYS)
|
|
x = DIS_ADAPTIVE;
|
|
hd->disconnect = x;
|
|
} else if (!strncmp(bp, "period:", 7)) {
|
|
x = simple_strtoul(bp+7, &bp, 0);
|
|
hd->default_sx_per =
|
|
hd->sx_table[round_period((unsigned int) x,
|
|
hd->sx_table)].period_ns;
|
|
} else if (!strncmp(bp, "resync:", 7)) {
|
|
set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
|
|
} else if (!strncmp(bp, "proc:", 5)) {
|
|
hd->proc = simple_strtoul(bp+5, &bp, 0);
|
|
} else if (!strncmp(bp, "nodma:", 6)) {
|
|
hd->no_dma = simple_strtoul(bp+6, &bp, 0);
|
|
} else if (!strncmp(bp, "level2:", 7)) {
|
|
hd->level2 = simple_strtoul(bp+7, &bp, 0);
|
|
} else if (!strncmp(bp, "burst:", 6)) {
|
|
hd->dma_mode =
|
|
simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
|
|
} else if (!strncmp(bp, "fast:", 5)) {
|
|
x = !!simple_strtol(bp+5, &bp, 0);
|
|
if (x != hd->fast)
|
|
set_resync(hd, 0xff);
|
|
hd->fast = x;
|
|
} else if (!strncmp(bp, "nosync:", 7)) {
|
|
x = simple_strtoul(bp+7, &bp, 0);
|
|
set_resync(hd, x ^ hd->no_sync);
|
|
hd->no_sync = x;
|
|
} else {
|
|
break; /* unknown keyword,syntax-error,... */
|
|
}
|
|
}
|
|
return len;
|
|
}
|
|
|
|
spin_lock_irq(&hd->lock);
|
|
bp = buf;
|
|
*bp = '\0';
|
|
if (hd->proc & PR_VERSION) {
|
|
sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s",
|
|
WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);
|
|
strcat(bp, tbuf);
|
|
}
|
|
if (hd->proc & PR_INFO) {
|
|
sprintf(tbuf, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
|
|
" dma_mode=%02x fast=%d",
|
|
hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
|
|
strcat(bp, tbuf);
|
|
strcat(bp, "\nsync_xfer[] = ");
|
|
for (x = 0; x < 7; x++) {
|
|
sprintf(tbuf, "\t%02x", hd->sync_xfer[x]);
|
|
strcat(bp, tbuf);
|
|
}
|
|
strcat(bp, "\nsync_stat[] = ");
|
|
for (x = 0; x < 7; x++) {
|
|
sprintf(tbuf, "\t%02x", hd->sync_stat[x]);
|
|
strcat(bp, tbuf);
|
|
}
|
|
}
|
|
#ifdef PROC_STATISTICS
|
|
if (hd->proc & PR_STATISTICS) {
|
|
strcat(bp, "\ncommands issued: ");
|
|
for (x = 0; x < 7; x++) {
|
|
sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]);
|
|
strcat(bp, tbuf);
|
|
}
|
|
strcat(bp, "\ndisconnects allowed:");
|
|
for (x = 0; x < 7; x++) {
|
|
sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]);
|
|
strcat(bp, tbuf);
|
|
}
|
|
strcat(bp, "\ndisconnects done: ");
|
|
for (x = 0; x < 7; x++) {
|
|
sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]);
|
|
strcat(bp, tbuf);
|
|
}
|
|
sprintf(tbuf,
|
|
"\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
|
|
hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
|
|
strcat(bp, tbuf);
|
|
}
|
|
#endif
|
|
if (hd->proc & PR_CONNECTED) {
|
|
strcat(bp, "\nconnected: ");
|
|
if (hd->connected) {
|
|
cmd = (struct scsi_cmnd *) hd->connected;
|
|
sprintf(tbuf, " %ld-%d:%d(%02x)",
|
|
cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
|
|
strcat(bp, tbuf);
|
|
}
|
|
}
|
|
if (hd->proc & PR_INPUTQ) {
|
|
strcat(bp, "\ninput_Q: ");
|
|
cmd = (struct scsi_cmnd *) hd->input_Q;
|
|
while (cmd) {
|
|
sprintf(tbuf, " %ld-%d:%d(%02x)",
|
|
cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
|
|
strcat(bp, tbuf);
|
|
cmd = (struct scsi_cmnd *) cmd->host_scribble;
|
|
}
|
|
}
|
|
if (hd->proc & PR_DISCQ) {
|
|
strcat(bp, "\ndisconnected_Q:");
|
|
cmd = (struct scsi_cmnd *) hd->disconnected_Q;
|
|
while (cmd) {
|
|
sprintf(tbuf, " %ld-%d:%d(%02x)",
|
|
cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
|
|
strcat(bp, tbuf);
|
|
cmd = (struct scsi_cmnd *) cmd->host_scribble;
|
|
}
|
|
}
|
|
strcat(bp, "\n");
|
|
spin_unlock_irq(&hd->lock);
|
|
*start = buf;
|
|
if (stop) {
|
|
stop = 0;
|
|
return 0;
|
|
}
|
|
if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */
|
|
stop = 1;
|
|
if (hd->proc & PR_STOP) /* stop every other time */
|
|
stop = 1;
|
|
return strlen(bp);
|
|
|
|
#else /* PROC_INTERFACE */
|
|
|
|
return 0;
|
|
|
|
#endif /* PROC_INTERFACE */
|
|
|
|
}
|
|
|
|
void
|
|
wd33c93_release(void)
|
|
{
|
|
}
|
|
|
|
EXPORT_SYMBOL(wd33c93_host_reset);
|
|
EXPORT_SYMBOL(wd33c93_init);
|
|
EXPORT_SYMBOL(wd33c93_release);
|
|
EXPORT_SYMBOL(wd33c93_abort);
|
|
EXPORT_SYMBOL(wd33c93_queuecommand);
|
|
EXPORT_SYMBOL(wd33c93_intr);
|
|
EXPORT_SYMBOL(wd33c93_proc_info);
|