mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-14 23:36:30 +07:00
fded5fc841
This patch contains the minimal changes required to support imx6sx OPP of 198 Mhz. Without this patch cpufreq still reports success but the frequency is not changed, the "arm" clock will still be at 396000000 in clk_summary. In order to do this PLL1 needs to be still kept enabled while changing the ARM clock. This is a hardware requirement: when ARM_PODF is changed in CCM we need to check the busy bit of CCM_CDHIPR bit 16 arm_podf_busy, and this bit is sync with PLL1 clock, so if PLL1 NOT enabled, this bit will never get clear. Keep pll1_sys explicitly enabled until after the rate is change to deal with this. Otherwise from the clk framework perspective pll1_sys is unused and gets turned off. Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com> Reviewed-by: Lucas Stach <l.stach@pengutronix.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
433 lines
12 KiB
C
433 lines
12 KiB
C
/*
|
|
* Copyright (C) 2013 Freescale Semiconductor, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/err.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
#define PU_SOC_VOLTAGE_NORMAL 1250000
|
|
#define PU_SOC_VOLTAGE_HIGH 1275000
|
|
#define FREQ_1P2_GHZ 1200000000
|
|
|
|
static struct regulator *arm_reg;
|
|
static struct regulator *pu_reg;
|
|
static struct regulator *soc_reg;
|
|
|
|
static struct clk *arm_clk;
|
|
static struct clk *pll1_sys_clk;
|
|
static struct clk *pll1_sw_clk;
|
|
static struct clk *step_clk;
|
|
static struct clk *pll2_pfd2_396m_clk;
|
|
|
|
/* clk used by i.MX6UL */
|
|
static struct clk *pll2_bus_clk;
|
|
static struct clk *secondary_sel_clk;
|
|
|
|
static struct device *cpu_dev;
|
|
static bool free_opp;
|
|
static struct cpufreq_frequency_table *freq_table;
|
|
static unsigned int transition_latency;
|
|
|
|
static u32 *imx6_soc_volt;
|
|
static u32 soc_opp_count;
|
|
|
|
static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
|
|
{
|
|
struct dev_pm_opp *opp;
|
|
unsigned long freq_hz, volt, volt_old;
|
|
unsigned int old_freq, new_freq;
|
|
bool pll1_sys_temp_enabled = false;
|
|
int ret;
|
|
|
|
new_freq = freq_table[index].frequency;
|
|
freq_hz = new_freq * 1000;
|
|
old_freq = clk_get_rate(arm_clk) / 1000;
|
|
|
|
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
|
|
if (IS_ERR(opp)) {
|
|
dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
|
|
return PTR_ERR(opp);
|
|
}
|
|
|
|
volt = dev_pm_opp_get_voltage(opp);
|
|
dev_pm_opp_put(opp);
|
|
|
|
volt_old = regulator_get_voltage(arm_reg);
|
|
|
|
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
|
|
old_freq / 1000, volt_old / 1000,
|
|
new_freq / 1000, volt / 1000);
|
|
|
|
/* scaling up? scale voltage before frequency */
|
|
if (new_freq > old_freq) {
|
|
if (!IS_ERR(pu_reg)) {
|
|
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
|
|
return ret;
|
|
}
|
|
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
|
|
if (ret) {
|
|
dev_err(cpu_dev,
|
|
"failed to scale vddarm up: %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The setpoints are selected per PLL/PDF frequencies, so we need to
|
|
* reprogram PLL for frequency scaling. The procedure of reprogramming
|
|
* PLL1 is as below.
|
|
* For i.MX6UL, it has a secondary clk mux, the cpu frequency change
|
|
* flow is slightly different from other i.MX6 OSC.
|
|
* The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
|
|
* - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
|
|
* - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
|
|
* - Disable pll2_pfd2_396m_clk
|
|
*/
|
|
if (of_machine_is_compatible("fsl,imx6ul") ||
|
|
of_machine_is_compatible("fsl,imx6ull")) {
|
|
/*
|
|
* When changing pll1_sw_clk's parent to pll1_sys_clk,
|
|
* CPU may run at higher than 528MHz, this will lead to
|
|
* the system unstable if the voltage is lower than the
|
|
* voltage of 528MHz, so lower the CPU frequency to one
|
|
* half before changing CPU frequency.
|
|
*/
|
|
clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
|
|
clk_set_parent(pll1_sw_clk, pll1_sys_clk);
|
|
if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
|
|
clk_set_parent(secondary_sel_clk, pll2_bus_clk);
|
|
else
|
|
clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
|
|
clk_set_parent(step_clk, secondary_sel_clk);
|
|
clk_set_parent(pll1_sw_clk, step_clk);
|
|
} else {
|
|
clk_set_parent(step_clk, pll2_pfd2_396m_clk);
|
|
clk_set_parent(pll1_sw_clk, step_clk);
|
|
if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
|
|
clk_set_rate(pll1_sys_clk, new_freq * 1000);
|
|
clk_set_parent(pll1_sw_clk, pll1_sys_clk);
|
|
} else {
|
|
/* pll1_sys needs to be enabled for divider rate change to work. */
|
|
pll1_sys_temp_enabled = true;
|
|
clk_prepare_enable(pll1_sys_clk);
|
|
}
|
|
}
|
|
|
|
/* Ensure the arm clock divider is what we expect */
|
|
ret = clk_set_rate(arm_clk, new_freq * 1000);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
|
|
regulator_set_voltage_tol(arm_reg, volt_old, 0);
|
|
return ret;
|
|
}
|
|
|
|
/* PLL1 is only needed until after ARM-PODF is set. */
|
|
if (pll1_sys_temp_enabled)
|
|
clk_disable_unprepare(pll1_sys_clk);
|
|
|
|
/* scaling down? scale voltage after frequency */
|
|
if (new_freq < old_freq) {
|
|
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
|
|
if (ret) {
|
|
dev_warn(cpu_dev,
|
|
"failed to scale vddarm down: %d\n", ret);
|
|
ret = 0;
|
|
}
|
|
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
|
if (ret) {
|
|
dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
|
|
ret = 0;
|
|
}
|
|
if (!IS_ERR(pu_reg)) {
|
|
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
|
if (ret) {
|
|
dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
|
|
ret = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
|
|
{
|
|
int ret;
|
|
|
|
policy->clk = arm_clk;
|
|
ret = cpufreq_generic_init(policy, freq_table, transition_latency);
|
|
policy->suspend_freq = policy->max;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct cpufreq_driver imx6q_cpufreq_driver = {
|
|
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
|
.verify = cpufreq_generic_frequency_table_verify,
|
|
.target_index = imx6q_set_target,
|
|
.get = cpufreq_generic_get,
|
|
.init = imx6q_cpufreq_init,
|
|
.name = "imx6q-cpufreq",
|
|
.attr = cpufreq_generic_attr,
|
|
.suspend = cpufreq_generic_suspend,
|
|
};
|
|
|
|
static int imx6q_cpufreq_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np;
|
|
struct dev_pm_opp *opp;
|
|
unsigned long min_volt, max_volt;
|
|
int num, ret;
|
|
const struct property *prop;
|
|
const __be32 *val;
|
|
u32 nr, i, j;
|
|
|
|
cpu_dev = get_cpu_device(0);
|
|
if (!cpu_dev) {
|
|
pr_err("failed to get cpu0 device\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
np = of_node_get(cpu_dev->of_node);
|
|
if (!np) {
|
|
dev_err(cpu_dev, "failed to find cpu0 node\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
arm_clk = clk_get(cpu_dev, "arm");
|
|
pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
|
|
pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
|
|
step_clk = clk_get(cpu_dev, "step");
|
|
pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
|
|
if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
|
|
IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
|
|
dev_err(cpu_dev, "failed to get clocks\n");
|
|
ret = -ENOENT;
|
|
goto put_clk;
|
|
}
|
|
|
|
if (of_machine_is_compatible("fsl,imx6ul") ||
|
|
of_machine_is_compatible("fsl,imx6ull")) {
|
|
pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
|
|
secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
|
|
if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
|
|
dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
|
|
ret = -ENOENT;
|
|
goto put_clk;
|
|
}
|
|
}
|
|
|
|
arm_reg = regulator_get(cpu_dev, "arm");
|
|
pu_reg = regulator_get_optional(cpu_dev, "pu");
|
|
soc_reg = regulator_get(cpu_dev, "soc");
|
|
if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
|
|
PTR_ERR(soc_reg) == -EPROBE_DEFER ||
|
|
PTR_ERR(pu_reg) == -EPROBE_DEFER) {
|
|
ret = -EPROBE_DEFER;
|
|
dev_dbg(cpu_dev, "regulators not ready, defer\n");
|
|
goto put_reg;
|
|
}
|
|
if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
|
|
dev_err(cpu_dev, "failed to get regulators\n");
|
|
ret = -ENOENT;
|
|
goto put_reg;
|
|
}
|
|
|
|
/*
|
|
* We expect an OPP table supplied by platform.
|
|
* Just, incase the platform did not supply the OPP
|
|
* table, it will try to get it.
|
|
*/
|
|
num = dev_pm_opp_get_opp_count(cpu_dev);
|
|
if (num < 0) {
|
|
ret = dev_pm_opp_of_add_table(cpu_dev);
|
|
if (ret < 0) {
|
|
dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
|
|
goto put_reg;
|
|
}
|
|
|
|
/* Because we have added the OPPs here, we must free them */
|
|
free_opp = true;
|
|
|
|
num = dev_pm_opp_get_opp_count(cpu_dev);
|
|
if (num < 0) {
|
|
ret = num;
|
|
dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
|
|
goto out_free_opp;
|
|
}
|
|
}
|
|
|
|
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
|
|
goto out_free_opp;
|
|
}
|
|
|
|
/* Make imx6_soc_volt array's size same as arm opp number */
|
|
imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
|
|
if (imx6_soc_volt == NULL) {
|
|
ret = -ENOMEM;
|
|
goto free_freq_table;
|
|
}
|
|
|
|
prop = of_find_property(np, "fsl,soc-operating-points", NULL);
|
|
if (!prop || !prop->value)
|
|
goto soc_opp_out;
|
|
|
|
/*
|
|
* Each OPP is a set of tuples consisting of frequency and
|
|
* voltage like <freq-kHz vol-uV>.
|
|
*/
|
|
nr = prop->length / sizeof(u32);
|
|
if (nr % 2 || (nr / 2) < num)
|
|
goto soc_opp_out;
|
|
|
|
for (j = 0; j < num; j++) {
|
|
val = prop->value;
|
|
for (i = 0; i < nr / 2; i++) {
|
|
unsigned long freq = be32_to_cpup(val++);
|
|
unsigned long volt = be32_to_cpup(val++);
|
|
if (freq_table[j].frequency == freq) {
|
|
imx6_soc_volt[soc_opp_count++] = volt;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
soc_opp_out:
|
|
/* use fixed soc opp volt if no valid soc opp info found in dtb */
|
|
if (soc_opp_count != num) {
|
|
dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
|
|
for (j = 0; j < num; j++)
|
|
imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
|
|
if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
|
|
imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "clock-latency", &transition_latency))
|
|
transition_latency = CPUFREQ_ETERNAL;
|
|
|
|
/*
|
|
* Calculate the ramp time for max voltage change in the
|
|
* VDDSOC and VDDPU regulators.
|
|
*/
|
|
ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
|
if (ret > 0)
|
|
transition_latency += ret * 1000;
|
|
if (!IS_ERR(pu_reg)) {
|
|
ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
|
if (ret > 0)
|
|
transition_latency += ret * 1000;
|
|
}
|
|
|
|
/*
|
|
* OPP is maintained in order of increasing frequency, and
|
|
* freq_table initialised from OPP is therefore sorted in the
|
|
* same order.
|
|
*/
|
|
opp = dev_pm_opp_find_freq_exact(cpu_dev,
|
|
freq_table[0].frequency * 1000, true);
|
|
min_volt = dev_pm_opp_get_voltage(opp);
|
|
dev_pm_opp_put(opp);
|
|
opp = dev_pm_opp_find_freq_exact(cpu_dev,
|
|
freq_table[--num].frequency * 1000, true);
|
|
max_volt = dev_pm_opp_get_voltage(opp);
|
|
dev_pm_opp_put(opp);
|
|
|
|
ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
|
|
if (ret > 0)
|
|
transition_latency += ret * 1000;
|
|
|
|
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
|
|
if (ret) {
|
|
dev_err(cpu_dev, "failed register driver: %d\n", ret);
|
|
goto free_freq_table;
|
|
}
|
|
|
|
of_node_put(np);
|
|
return 0;
|
|
|
|
free_freq_table:
|
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
|
|
out_free_opp:
|
|
if (free_opp)
|
|
dev_pm_opp_of_remove_table(cpu_dev);
|
|
put_reg:
|
|
if (!IS_ERR(arm_reg))
|
|
regulator_put(arm_reg);
|
|
if (!IS_ERR(pu_reg))
|
|
regulator_put(pu_reg);
|
|
if (!IS_ERR(soc_reg))
|
|
regulator_put(soc_reg);
|
|
put_clk:
|
|
if (!IS_ERR(arm_clk))
|
|
clk_put(arm_clk);
|
|
if (!IS_ERR(pll1_sys_clk))
|
|
clk_put(pll1_sys_clk);
|
|
if (!IS_ERR(pll1_sw_clk))
|
|
clk_put(pll1_sw_clk);
|
|
if (!IS_ERR(step_clk))
|
|
clk_put(step_clk);
|
|
if (!IS_ERR(pll2_pfd2_396m_clk))
|
|
clk_put(pll2_pfd2_396m_clk);
|
|
if (!IS_ERR(pll2_bus_clk))
|
|
clk_put(pll2_bus_clk);
|
|
if (!IS_ERR(secondary_sel_clk))
|
|
clk_put(secondary_sel_clk);
|
|
of_node_put(np);
|
|
return ret;
|
|
}
|
|
|
|
static int imx6q_cpufreq_remove(struct platform_device *pdev)
|
|
{
|
|
cpufreq_unregister_driver(&imx6q_cpufreq_driver);
|
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
|
|
if (free_opp)
|
|
dev_pm_opp_of_remove_table(cpu_dev);
|
|
regulator_put(arm_reg);
|
|
if (!IS_ERR(pu_reg))
|
|
regulator_put(pu_reg);
|
|
regulator_put(soc_reg);
|
|
clk_put(arm_clk);
|
|
clk_put(pll1_sys_clk);
|
|
clk_put(pll1_sw_clk);
|
|
clk_put(step_clk);
|
|
clk_put(pll2_pfd2_396m_clk);
|
|
clk_put(pll2_bus_clk);
|
|
clk_put(secondary_sel_clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver imx6q_cpufreq_platdrv = {
|
|
.driver = {
|
|
.name = "imx6q-cpufreq",
|
|
},
|
|
.probe = imx6q_cpufreq_probe,
|
|
.remove = imx6q_cpufreq_remove,
|
|
};
|
|
module_platform_driver(imx6q_cpufreq_platdrv);
|
|
|
|
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
|
|
MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
|
|
MODULE_LICENSE("GPL");
|