mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 23:59:24 +07:00
4d8c6a7946
Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Christoph Hellwig <hch@lst.de>
2036 lines
51 KiB
C
2036 lines
51 KiB
C
/*
|
|
* NVMe over Fabrics RDMA host code.
|
|
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/string.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/types.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/nvme.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <rdma/ib_verbs.h>
|
|
#include <rdma/rdma_cm.h>
|
|
#include <rdma/ib_cm.h>
|
|
#include <linux/nvme-rdma.h>
|
|
|
|
#include "nvme.h"
|
|
#include "fabrics.h"
|
|
|
|
|
|
#define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
|
|
|
|
#define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
|
|
|
|
#define NVME_RDMA_MAX_SEGMENTS 256
|
|
|
|
#define NVME_RDMA_MAX_INLINE_SEGMENTS 1
|
|
|
|
/*
|
|
* We handle AEN commands ourselves and don't even let the
|
|
* block layer know about them.
|
|
*/
|
|
#define NVME_RDMA_NR_AEN_COMMANDS 1
|
|
#define NVME_RDMA_AQ_BLKMQ_DEPTH \
|
|
(NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
|
|
|
|
struct nvme_rdma_device {
|
|
struct ib_device *dev;
|
|
struct ib_pd *pd;
|
|
struct ib_mr *mr;
|
|
struct kref ref;
|
|
struct list_head entry;
|
|
};
|
|
|
|
struct nvme_rdma_qe {
|
|
struct ib_cqe cqe;
|
|
void *data;
|
|
u64 dma;
|
|
};
|
|
|
|
struct nvme_rdma_queue;
|
|
struct nvme_rdma_request {
|
|
struct ib_mr *mr;
|
|
struct nvme_rdma_qe sqe;
|
|
struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
|
|
u32 num_sge;
|
|
int nents;
|
|
bool inline_data;
|
|
struct ib_reg_wr reg_wr;
|
|
struct ib_cqe reg_cqe;
|
|
struct nvme_rdma_queue *queue;
|
|
struct sg_table sg_table;
|
|
struct scatterlist first_sgl[];
|
|
};
|
|
|
|
enum nvme_rdma_queue_flags {
|
|
NVME_RDMA_Q_CONNECTED = (1 << 0),
|
|
};
|
|
|
|
struct nvme_rdma_queue {
|
|
struct nvme_rdma_qe *rsp_ring;
|
|
u8 sig_count;
|
|
int queue_size;
|
|
size_t cmnd_capsule_len;
|
|
struct nvme_rdma_ctrl *ctrl;
|
|
struct nvme_rdma_device *device;
|
|
struct ib_cq *ib_cq;
|
|
struct ib_qp *qp;
|
|
|
|
unsigned long flags;
|
|
struct rdma_cm_id *cm_id;
|
|
int cm_error;
|
|
struct completion cm_done;
|
|
};
|
|
|
|
struct nvme_rdma_ctrl {
|
|
/* read and written in the hot path */
|
|
spinlock_t lock;
|
|
|
|
/* read only in the hot path */
|
|
struct nvme_rdma_queue *queues;
|
|
u32 queue_count;
|
|
|
|
/* other member variables */
|
|
struct blk_mq_tag_set tag_set;
|
|
struct work_struct delete_work;
|
|
struct work_struct reset_work;
|
|
struct work_struct err_work;
|
|
|
|
struct nvme_rdma_qe async_event_sqe;
|
|
|
|
int reconnect_delay;
|
|
struct delayed_work reconnect_work;
|
|
|
|
struct list_head list;
|
|
|
|
struct blk_mq_tag_set admin_tag_set;
|
|
struct nvme_rdma_device *device;
|
|
|
|
u64 cap;
|
|
u32 max_fr_pages;
|
|
|
|
union {
|
|
struct sockaddr addr;
|
|
struct sockaddr_in addr_in;
|
|
};
|
|
|
|
struct nvme_ctrl ctrl;
|
|
};
|
|
|
|
static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
|
|
}
|
|
|
|
static LIST_HEAD(device_list);
|
|
static DEFINE_MUTEX(device_list_mutex);
|
|
|
|
static LIST_HEAD(nvme_rdma_ctrl_list);
|
|
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
|
|
|
|
static struct workqueue_struct *nvme_rdma_wq;
|
|
|
|
/*
|
|
* Disabling this option makes small I/O goes faster, but is fundamentally
|
|
* unsafe. With it turned off we will have to register a global rkey that
|
|
* allows read and write access to all physical memory.
|
|
*/
|
|
static bool register_always = true;
|
|
module_param(register_always, bool, 0444);
|
|
MODULE_PARM_DESC(register_always,
|
|
"Use memory registration even for contiguous memory regions");
|
|
|
|
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
|
|
struct rdma_cm_event *event);
|
|
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
|
|
|
|
/* XXX: really should move to a generic header sooner or later.. */
|
|
static inline void put_unaligned_le24(u32 val, u8 *p)
|
|
{
|
|
*p++ = val;
|
|
*p++ = val >> 8;
|
|
*p++ = val >> 16;
|
|
}
|
|
|
|
static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
|
|
{
|
|
return queue - queue->ctrl->queues;
|
|
}
|
|
|
|
static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
|
|
{
|
|
return queue->cmnd_capsule_len - sizeof(struct nvme_command);
|
|
}
|
|
|
|
static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
|
|
size_t capsule_size, enum dma_data_direction dir)
|
|
{
|
|
ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
|
|
kfree(qe->data);
|
|
}
|
|
|
|
static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
|
|
size_t capsule_size, enum dma_data_direction dir)
|
|
{
|
|
qe->data = kzalloc(capsule_size, GFP_KERNEL);
|
|
if (!qe->data)
|
|
return -ENOMEM;
|
|
|
|
qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
|
|
if (ib_dma_mapping_error(ibdev, qe->dma)) {
|
|
kfree(qe->data);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_rdma_free_ring(struct ib_device *ibdev,
|
|
struct nvme_rdma_qe *ring, size_t ib_queue_size,
|
|
size_t capsule_size, enum dma_data_direction dir)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ib_queue_size; i++)
|
|
nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
|
|
kfree(ring);
|
|
}
|
|
|
|
static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
|
|
size_t ib_queue_size, size_t capsule_size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct nvme_rdma_qe *ring;
|
|
int i;
|
|
|
|
ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
|
|
if (!ring)
|
|
return NULL;
|
|
|
|
for (i = 0; i < ib_queue_size; i++) {
|
|
if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
|
|
goto out_free_ring;
|
|
}
|
|
|
|
return ring;
|
|
|
|
out_free_ring:
|
|
nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
|
|
return NULL;
|
|
}
|
|
|
|
static void nvme_rdma_qp_event(struct ib_event *event, void *context)
|
|
{
|
|
pr_debug("QP event %d\n", event->event);
|
|
}
|
|
|
|
static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
|
|
{
|
|
wait_for_completion_interruptible_timeout(&queue->cm_done,
|
|
msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
|
|
return queue->cm_error;
|
|
}
|
|
|
|
static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
|
|
{
|
|
struct nvme_rdma_device *dev = queue->device;
|
|
struct ib_qp_init_attr init_attr;
|
|
int ret;
|
|
|
|
memset(&init_attr, 0, sizeof(init_attr));
|
|
init_attr.event_handler = nvme_rdma_qp_event;
|
|
/* +1 for drain */
|
|
init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
|
|
/* +1 for drain */
|
|
init_attr.cap.max_recv_wr = queue->queue_size + 1;
|
|
init_attr.cap.max_recv_sge = 1;
|
|
init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
|
|
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
|
|
init_attr.qp_type = IB_QPT_RC;
|
|
init_attr.send_cq = queue->ib_cq;
|
|
init_attr.recv_cq = queue->ib_cq;
|
|
|
|
ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
|
|
|
|
queue->qp = queue->cm_id->qp;
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_reinit_request(void *data, struct request *rq)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = data;
|
|
struct nvme_rdma_device *dev = ctrl->device;
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
int ret = 0;
|
|
|
|
if (!req->mr->need_inval)
|
|
goto out;
|
|
|
|
ib_dereg_mr(req->mr);
|
|
|
|
req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
|
|
ctrl->max_fr_pages);
|
|
if (IS_ERR(req->mr)) {
|
|
ret = PTR_ERR(req->mr);
|
|
req->mr = NULL;
|
|
}
|
|
|
|
req->mr->need_inval = false;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
|
|
struct request *rq, unsigned int queue_idx)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
|
|
struct nvme_rdma_device *dev = queue->device;
|
|
|
|
if (req->mr)
|
|
ib_dereg_mr(req->mr);
|
|
|
|
nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
static void nvme_rdma_exit_request(void *data, struct request *rq,
|
|
unsigned int hctx_idx, unsigned int rq_idx)
|
|
{
|
|
return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
|
|
}
|
|
|
|
static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
|
|
unsigned int hctx_idx, unsigned int rq_idx)
|
|
{
|
|
return __nvme_rdma_exit_request(data, rq, 0);
|
|
}
|
|
|
|
static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
|
|
struct request *rq, unsigned int queue_idx)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
|
|
struct nvme_rdma_device *dev = queue->device;
|
|
struct ib_device *ibdev = dev->dev;
|
|
int ret;
|
|
|
|
BUG_ON(queue_idx >= ctrl->queue_count);
|
|
|
|
ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
|
|
ctrl->max_fr_pages);
|
|
if (IS_ERR(req->mr)) {
|
|
ret = PTR_ERR(req->mr);
|
|
goto out_free_qe;
|
|
}
|
|
|
|
req->queue = queue;
|
|
|
|
return 0;
|
|
|
|
out_free_qe:
|
|
nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
|
|
DMA_TO_DEVICE);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int nvme_rdma_init_request(void *data, struct request *rq,
|
|
unsigned int hctx_idx, unsigned int rq_idx,
|
|
unsigned int numa_node)
|
|
{
|
|
return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
|
|
}
|
|
|
|
static int nvme_rdma_init_admin_request(void *data, struct request *rq,
|
|
unsigned int hctx_idx, unsigned int rq_idx,
|
|
unsigned int numa_node)
|
|
{
|
|
return __nvme_rdma_init_request(data, rq, 0);
|
|
}
|
|
|
|
static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = data;
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
|
|
|
|
BUG_ON(hctx_idx >= ctrl->queue_count);
|
|
|
|
hctx->driver_data = queue;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = data;
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[0];
|
|
|
|
BUG_ON(hctx_idx != 0);
|
|
|
|
hctx->driver_data = queue;
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_rdma_free_dev(struct kref *ref)
|
|
{
|
|
struct nvme_rdma_device *ndev =
|
|
container_of(ref, struct nvme_rdma_device, ref);
|
|
|
|
mutex_lock(&device_list_mutex);
|
|
list_del(&ndev->entry);
|
|
mutex_unlock(&device_list_mutex);
|
|
|
|
if (!register_always)
|
|
ib_dereg_mr(ndev->mr);
|
|
ib_dealloc_pd(ndev->pd);
|
|
|
|
kfree(ndev);
|
|
}
|
|
|
|
static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
|
|
{
|
|
kref_put(&dev->ref, nvme_rdma_free_dev);
|
|
}
|
|
|
|
static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
|
|
{
|
|
return kref_get_unless_zero(&dev->ref);
|
|
}
|
|
|
|
static struct nvme_rdma_device *
|
|
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
|
|
{
|
|
struct nvme_rdma_device *ndev;
|
|
|
|
mutex_lock(&device_list_mutex);
|
|
list_for_each_entry(ndev, &device_list, entry) {
|
|
if (ndev->dev->node_guid == cm_id->device->node_guid &&
|
|
nvme_rdma_dev_get(ndev))
|
|
goto out_unlock;
|
|
}
|
|
|
|
ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
|
|
if (!ndev)
|
|
goto out_err;
|
|
|
|
ndev->dev = cm_id->device;
|
|
kref_init(&ndev->ref);
|
|
|
|
ndev->pd = ib_alloc_pd(ndev->dev);
|
|
if (IS_ERR(ndev->pd))
|
|
goto out_free_dev;
|
|
|
|
if (!register_always) {
|
|
ndev->mr = ib_get_dma_mr(ndev->pd,
|
|
IB_ACCESS_LOCAL_WRITE |
|
|
IB_ACCESS_REMOTE_READ |
|
|
IB_ACCESS_REMOTE_WRITE);
|
|
if (IS_ERR(ndev->mr))
|
|
goto out_free_pd;
|
|
}
|
|
|
|
if (!(ndev->dev->attrs.device_cap_flags &
|
|
IB_DEVICE_MEM_MGT_EXTENSIONS)) {
|
|
dev_err(&ndev->dev->dev,
|
|
"Memory registrations not supported.\n");
|
|
goto out_free_mr;
|
|
}
|
|
|
|
list_add(&ndev->entry, &device_list);
|
|
out_unlock:
|
|
mutex_unlock(&device_list_mutex);
|
|
return ndev;
|
|
|
|
out_free_mr:
|
|
if (!register_always)
|
|
ib_dereg_mr(ndev->mr);
|
|
out_free_pd:
|
|
ib_dealloc_pd(ndev->pd);
|
|
out_free_dev:
|
|
kfree(ndev);
|
|
out_err:
|
|
mutex_unlock(&device_list_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
|
|
{
|
|
struct nvme_rdma_device *dev = queue->device;
|
|
struct ib_device *ibdev = dev->dev;
|
|
|
|
rdma_destroy_qp(queue->cm_id);
|
|
ib_free_cq(queue->ib_cq);
|
|
|
|
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
|
|
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
|
|
|
|
nvme_rdma_dev_put(dev);
|
|
}
|
|
|
|
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_device *dev)
|
|
{
|
|
struct ib_device *ibdev = dev->dev;
|
|
const int send_wr_factor = 3; /* MR, SEND, INV */
|
|
const int cq_factor = send_wr_factor + 1; /* + RECV */
|
|
int comp_vector, idx = nvme_rdma_queue_idx(queue);
|
|
|
|
int ret;
|
|
|
|
queue->device = dev;
|
|
|
|
/*
|
|
* The admin queue is barely used once the controller is live, so don't
|
|
* bother to spread it out.
|
|
*/
|
|
if (idx == 0)
|
|
comp_vector = 0;
|
|
else
|
|
comp_vector = idx % ibdev->num_comp_vectors;
|
|
|
|
|
|
/* +1 for ib_stop_cq */
|
|
queue->ib_cq = ib_alloc_cq(dev->dev, queue,
|
|
cq_factor * queue->queue_size + 1, comp_vector,
|
|
IB_POLL_SOFTIRQ);
|
|
if (IS_ERR(queue->ib_cq)) {
|
|
ret = PTR_ERR(queue->ib_cq);
|
|
goto out;
|
|
}
|
|
|
|
ret = nvme_rdma_create_qp(queue, send_wr_factor);
|
|
if (ret)
|
|
goto out_destroy_ib_cq;
|
|
|
|
queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
|
|
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
|
|
if (!queue->rsp_ring) {
|
|
ret = -ENOMEM;
|
|
goto out_destroy_qp;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_destroy_qp:
|
|
ib_destroy_qp(queue->qp);
|
|
out_destroy_ib_cq:
|
|
ib_free_cq(queue->ib_cq);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
|
|
int idx, size_t queue_size)
|
|
{
|
|
struct nvme_rdma_queue *queue;
|
|
int ret;
|
|
|
|
queue = &ctrl->queues[idx];
|
|
queue->ctrl = ctrl;
|
|
init_completion(&queue->cm_done);
|
|
|
|
if (idx > 0)
|
|
queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
|
|
else
|
|
queue->cmnd_capsule_len = sizeof(struct nvme_command);
|
|
|
|
queue->queue_size = queue_size;
|
|
|
|
queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
|
|
RDMA_PS_TCP, IB_QPT_RC);
|
|
if (IS_ERR(queue->cm_id)) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
|
|
return PTR_ERR(queue->cm_id);
|
|
}
|
|
|
|
queue->cm_error = -ETIMEDOUT;
|
|
ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
|
|
NVME_RDMA_CONNECT_TIMEOUT_MS);
|
|
if (ret) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"rdma_resolve_addr failed (%d).\n", ret);
|
|
goto out_destroy_cm_id;
|
|
}
|
|
|
|
ret = nvme_rdma_wait_for_cm(queue);
|
|
if (ret) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"rdma_resolve_addr wait failed (%d).\n", ret);
|
|
goto out_destroy_cm_id;
|
|
}
|
|
|
|
set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
|
|
|
|
return 0;
|
|
|
|
out_destroy_cm_id:
|
|
rdma_destroy_id(queue->cm_id);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
|
|
{
|
|
rdma_disconnect(queue->cm_id);
|
|
ib_drain_qp(queue->qp);
|
|
}
|
|
|
|
static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
|
|
{
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
rdma_destroy_id(queue->cm_id);
|
|
}
|
|
|
|
static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
|
|
{
|
|
if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
|
|
return;
|
|
nvme_rdma_stop_queue(queue);
|
|
nvme_rdma_free_queue(queue);
|
|
}
|
|
|
|
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < ctrl->queue_count; i++)
|
|
nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
|
|
}
|
|
|
|
static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
for (i = 1; i < ctrl->queue_count; i++) {
|
|
ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 1; i < ctrl->queue_count; i++) {
|
|
ret = nvme_rdma_init_queue(ctrl, i,
|
|
ctrl->ctrl.opts->queue_size);
|
|
if (ret) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"failed to initialize i/o queue: %d\n", ret);
|
|
goto out_free_queues;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_queues:
|
|
for (; i >= 1; i--)
|
|
nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
|
|
sizeof(struct nvme_command), DMA_TO_DEVICE);
|
|
nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
|
|
blk_cleanup_queue(ctrl->ctrl.admin_q);
|
|
blk_mq_free_tag_set(&ctrl->admin_tag_set);
|
|
nvme_rdma_dev_put(ctrl->device);
|
|
}
|
|
|
|
static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
|
|
|
|
if (list_empty(&ctrl->list))
|
|
goto free_ctrl;
|
|
|
|
mutex_lock(&nvme_rdma_ctrl_mutex);
|
|
list_del(&ctrl->list);
|
|
mutex_unlock(&nvme_rdma_ctrl_mutex);
|
|
|
|
kfree(ctrl->queues);
|
|
nvmf_free_options(nctrl->opts);
|
|
free_ctrl:
|
|
kfree(ctrl);
|
|
}
|
|
|
|
static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
|
|
struct nvme_rdma_ctrl, reconnect_work);
|
|
bool changed;
|
|
int ret;
|
|
|
|
if (ctrl->queue_count > 1) {
|
|
nvme_rdma_free_io_queues(ctrl);
|
|
|
|
ret = blk_mq_reinit_tagset(&ctrl->tag_set);
|
|
if (ret)
|
|
goto requeue;
|
|
}
|
|
|
|
nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
|
|
|
|
ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
|
|
if (ret)
|
|
goto requeue;
|
|
|
|
ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
|
|
if (ret)
|
|
goto requeue;
|
|
|
|
blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
|
|
|
|
ret = nvmf_connect_admin_queue(&ctrl->ctrl);
|
|
if (ret)
|
|
goto stop_admin_q;
|
|
|
|
ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
|
|
if (ret)
|
|
goto stop_admin_q;
|
|
|
|
nvme_start_keep_alive(&ctrl->ctrl);
|
|
|
|
if (ctrl->queue_count > 1) {
|
|
ret = nvme_rdma_init_io_queues(ctrl);
|
|
if (ret)
|
|
goto stop_admin_q;
|
|
|
|
ret = nvme_rdma_connect_io_queues(ctrl);
|
|
if (ret)
|
|
goto stop_admin_q;
|
|
}
|
|
|
|
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
|
|
WARN_ON_ONCE(!changed);
|
|
|
|
if (ctrl->queue_count > 1) {
|
|
nvme_start_queues(&ctrl->ctrl);
|
|
nvme_queue_scan(&ctrl->ctrl);
|
|
nvme_queue_async_events(&ctrl->ctrl);
|
|
}
|
|
|
|
dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
|
|
|
|
return;
|
|
|
|
stop_admin_q:
|
|
blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
|
|
requeue:
|
|
/* Make sure we are not resetting/deleting */
|
|
if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
|
|
dev_info(ctrl->ctrl.device,
|
|
"Failed reconnect attempt, requeueing...\n");
|
|
queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
|
|
ctrl->reconnect_delay * HZ);
|
|
}
|
|
}
|
|
|
|
static void nvme_rdma_error_recovery_work(struct work_struct *work)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = container_of(work,
|
|
struct nvme_rdma_ctrl, err_work);
|
|
|
|
nvme_stop_keep_alive(&ctrl->ctrl);
|
|
if (ctrl->queue_count > 1)
|
|
nvme_stop_queues(&ctrl->ctrl);
|
|
blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
|
|
|
|
/* We must take care of fastfail/requeue all our inflight requests */
|
|
if (ctrl->queue_count > 1)
|
|
blk_mq_tagset_busy_iter(&ctrl->tag_set,
|
|
nvme_cancel_request, &ctrl->ctrl);
|
|
blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
|
|
nvme_cancel_request, &ctrl->ctrl);
|
|
|
|
dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
|
|
ctrl->reconnect_delay);
|
|
|
|
queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
|
|
ctrl->reconnect_delay * HZ);
|
|
}
|
|
|
|
static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
|
|
return;
|
|
|
|
queue_work(nvme_rdma_wq, &ctrl->err_work);
|
|
}
|
|
|
|
static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
|
|
const char *op)
|
|
{
|
|
struct nvme_rdma_queue *queue = cq->cq_context;
|
|
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
|
|
|
|
if (ctrl->ctrl.state == NVME_CTRL_LIVE)
|
|
dev_info(ctrl->ctrl.device,
|
|
"%s for CQE 0x%p failed with status %s (%d)\n",
|
|
op, wc->wr_cqe,
|
|
ib_wc_status_msg(wc->status), wc->status);
|
|
nvme_rdma_error_recovery(ctrl);
|
|
}
|
|
|
|
static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
if (unlikely(wc->status != IB_WC_SUCCESS))
|
|
nvme_rdma_wr_error(cq, wc, "MEMREG");
|
|
}
|
|
|
|
static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
if (unlikely(wc->status != IB_WC_SUCCESS))
|
|
nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
|
|
}
|
|
|
|
static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_request *req)
|
|
{
|
|
struct ib_send_wr *bad_wr;
|
|
struct ib_send_wr wr = {
|
|
.opcode = IB_WR_LOCAL_INV,
|
|
.next = NULL,
|
|
.num_sge = 0,
|
|
.send_flags = 0,
|
|
.ex.invalidate_rkey = req->mr->rkey,
|
|
};
|
|
|
|
req->reg_cqe.done = nvme_rdma_inv_rkey_done;
|
|
wr.wr_cqe = &req->reg_cqe;
|
|
|
|
return ib_post_send(queue->qp, &wr, &bad_wr);
|
|
}
|
|
|
|
static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
|
|
struct request *rq)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
|
|
struct nvme_rdma_device *dev = queue->device;
|
|
struct ib_device *ibdev = dev->dev;
|
|
int res;
|
|
|
|
if (!blk_rq_bytes(rq))
|
|
return;
|
|
|
|
if (req->mr->need_inval) {
|
|
res = nvme_rdma_inv_rkey(queue, req);
|
|
if (res < 0) {
|
|
dev_err(ctrl->ctrl.device,
|
|
"Queueing INV WR for rkey %#x failed (%d)\n",
|
|
req->mr->rkey, res);
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
}
|
|
}
|
|
|
|
ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
|
|
req->nents, rq_data_dir(rq) ==
|
|
WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
|
|
|
|
nvme_cleanup_cmd(rq);
|
|
sg_free_table_chained(&req->sg_table, true);
|
|
}
|
|
|
|
static int nvme_rdma_set_sg_null(struct nvme_command *c)
|
|
{
|
|
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
|
|
|
|
sg->addr = 0;
|
|
put_unaligned_le24(0, sg->length);
|
|
put_unaligned_le32(0, sg->key);
|
|
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_request *req, struct nvme_command *c)
|
|
{
|
|
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
|
|
|
|
req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
|
|
req->sge[1].length = sg_dma_len(req->sg_table.sgl);
|
|
req->sge[1].lkey = queue->device->pd->local_dma_lkey;
|
|
|
|
sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
|
|
sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
|
|
sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
|
|
|
|
req->inline_data = true;
|
|
req->num_sge++;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_request *req, struct nvme_command *c)
|
|
{
|
|
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
|
|
|
|
sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
|
|
put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
|
|
put_unaligned_le32(queue->device->mr->rkey, sg->key);
|
|
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_request *req, struct nvme_command *c,
|
|
int count)
|
|
{
|
|
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
|
|
int nr;
|
|
|
|
nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
|
|
if (nr < count) {
|
|
if (nr < 0)
|
|
return nr;
|
|
return -EINVAL;
|
|
}
|
|
|
|
ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
|
|
|
|
req->reg_cqe.done = nvme_rdma_memreg_done;
|
|
memset(&req->reg_wr, 0, sizeof(req->reg_wr));
|
|
req->reg_wr.wr.opcode = IB_WR_REG_MR;
|
|
req->reg_wr.wr.wr_cqe = &req->reg_cqe;
|
|
req->reg_wr.wr.num_sge = 0;
|
|
req->reg_wr.mr = req->mr;
|
|
req->reg_wr.key = req->mr->rkey;
|
|
req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
|
|
IB_ACCESS_REMOTE_READ |
|
|
IB_ACCESS_REMOTE_WRITE;
|
|
|
|
req->mr->need_inval = true;
|
|
|
|
sg->addr = cpu_to_le64(req->mr->iova);
|
|
put_unaligned_le24(req->mr->length, sg->length);
|
|
put_unaligned_le32(req->mr->rkey, sg->key);
|
|
sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
|
|
NVME_SGL_FMT_INVALIDATE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
|
|
struct request *rq, unsigned int map_len,
|
|
struct nvme_command *c)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_device *dev = queue->device;
|
|
struct ib_device *ibdev = dev->dev;
|
|
int nents, count;
|
|
int ret;
|
|
|
|
req->num_sge = 1;
|
|
req->inline_data = false;
|
|
req->mr->need_inval = false;
|
|
|
|
c->common.flags |= NVME_CMD_SGL_METABUF;
|
|
|
|
if (!blk_rq_bytes(rq))
|
|
return nvme_rdma_set_sg_null(c);
|
|
|
|
req->sg_table.sgl = req->first_sgl;
|
|
ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
|
|
req->sg_table.sgl);
|
|
if (ret)
|
|
return -ENOMEM;
|
|
|
|
nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
|
|
BUG_ON(nents > rq->nr_phys_segments);
|
|
req->nents = nents;
|
|
|
|
count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
|
|
rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
|
|
if (unlikely(count <= 0)) {
|
|
sg_free_table_chained(&req->sg_table, true);
|
|
return -EIO;
|
|
}
|
|
|
|
if (count == 1) {
|
|
if (rq_data_dir(rq) == WRITE &&
|
|
map_len <= nvme_rdma_inline_data_size(queue) &&
|
|
nvme_rdma_queue_idx(queue))
|
|
return nvme_rdma_map_sg_inline(queue, req, c);
|
|
|
|
if (!register_always)
|
|
return nvme_rdma_map_sg_single(queue, req, c);
|
|
}
|
|
|
|
return nvme_rdma_map_sg_fr(queue, req, c, count);
|
|
}
|
|
|
|
static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
if (unlikely(wc->status != IB_WC_SUCCESS))
|
|
nvme_rdma_wr_error(cq, wc, "SEND");
|
|
}
|
|
|
|
static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
|
|
struct ib_send_wr *first, bool flush)
|
|
{
|
|
struct ib_send_wr wr, *bad_wr;
|
|
int ret;
|
|
|
|
sge->addr = qe->dma;
|
|
sge->length = sizeof(struct nvme_command),
|
|
sge->lkey = queue->device->pd->local_dma_lkey;
|
|
|
|
qe->cqe.done = nvme_rdma_send_done;
|
|
|
|
wr.next = NULL;
|
|
wr.wr_cqe = &qe->cqe;
|
|
wr.sg_list = sge;
|
|
wr.num_sge = num_sge;
|
|
wr.opcode = IB_WR_SEND;
|
|
wr.send_flags = 0;
|
|
|
|
/*
|
|
* Unsignalled send completions are another giant desaster in the
|
|
* IB Verbs spec: If we don't regularly post signalled sends
|
|
* the send queue will fill up and only a QP reset will rescue us.
|
|
* Would have been way to obvious to handle this in hardware or
|
|
* at least the RDMA stack..
|
|
*
|
|
* This messy and racy code sniplet is copy and pasted from the iSER
|
|
* initiator, and the magic '32' comes from there as well.
|
|
*
|
|
* Always signal the flushes. The magic request used for the flush
|
|
* sequencer is not allocated in our driver's tagset and it's
|
|
* triggered to be freed by blk_cleanup_queue(). So we need to
|
|
* always mark it as signaled to ensure that the "wr_cqe", which is
|
|
* embeded in request's payload, is not freed when __ib_process_cq()
|
|
* calls wr_cqe->done().
|
|
*/
|
|
if ((++queue->sig_count % 32) == 0 || flush)
|
|
wr.send_flags |= IB_SEND_SIGNALED;
|
|
|
|
if (first)
|
|
first->next = ≀
|
|
else
|
|
first = ≀
|
|
|
|
ret = ib_post_send(queue->qp, first, &bad_wr);
|
|
if (ret) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"%s failed with error code %d\n", __func__, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
|
|
struct nvme_rdma_qe *qe)
|
|
{
|
|
struct ib_recv_wr wr, *bad_wr;
|
|
struct ib_sge list;
|
|
int ret;
|
|
|
|
list.addr = qe->dma;
|
|
list.length = sizeof(struct nvme_completion);
|
|
list.lkey = queue->device->pd->local_dma_lkey;
|
|
|
|
qe->cqe.done = nvme_rdma_recv_done;
|
|
|
|
wr.next = NULL;
|
|
wr.wr_cqe = &qe->cqe;
|
|
wr.sg_list = &list;
|
|
wr.num_sge = 1;
|
|
|
|
ret = ib_post_recv(queue->qp, &wr, &bad_wr);
|
|
if (ret) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"%s failed with error code %d\n", __func__, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
|
|
{
|
|
u32 queue_idx = nvme_rdma_queue_idx(queue);
|
|
|
|
if (queue_idx == 0)
|
|
return queue->ctrl->admin_tag_set.tags[queue_idx];
|
|
return queue->ctrl->tag_set.tags[queue_idx - 1];
|
|
}
|
|
|
|
static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
|
|
struct nvme_rdma_queue *queue = &ctrl->queues[0];
|
|
struct ib_device *dev = queue->device->dev;
|
|
struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
|
|
struct nvme_command *cmd = sqe->data;
|
|
struct ib_sge sge;
|
|
int ret;
|
|
|
|
if (WARN_ON_ONCE(aer_idx != 0))
|
|
return;
|
|
|
|
ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->common.opcode = nvme_admin_async_event;
|
|
cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
|
|
cmd->common.flags |= NVME_CMD_SGL_METABUF;
|
|
nvme_rdma_set_sg_null(cmd);
|
|
|
|
ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
|
|
DMA_TO_DEVICE);
|
|
|
|
ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
|
|
WARN_ON_ONCE(ret);
|
|
}
|
|
|
|
static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
|
|
struct nvme_completion *cqe, struct ib_wc *wc, int tag)
|
|
{
|
|
u16 status = le16_to_cpu(cqe->status);
|
|
struct request *rq;
|
|
struct nvme_rdma_request *req;
|
|
int ret = 0;
|
|
|
|
status >>= 1;
|
|
|
|
rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
|
|
if (!rq) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"tag 0x%x on QP %#x not found\n",
|
|
cqe->command_id, queue->qp->qp_num);
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
return ret;
|
|
}
|
|
req = blk_mq_rq_to_pdu(rq);
|
|
|
|
if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
|
|
memcpy(rq->special, cqe, sizeof(*cqe));
|
|
|
|
if (rq->tag == tag)
|
|
ret = 1;
|
|
|
|
if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
|
|
wc->ex.invalidate_rkey == req->mr->rkey)
|
|
req->mr->need_inval = false;
|
|
|
|
blk_mq_complete_request(rq, status);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
|
|
{
|
|
struct nvme_rdma_qe *qe =
|
|
container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
|
|
struct nvme_rdma_queue *queue = cq->cq_context;
|
|
struct ib_device *ibdev = queue->device->dev;
|
|
struct nvme_completion *cqe = qe->data;
|
|
const size_t len = sizeof(struct nvme_completion);
|
|
int ret = 0;
|
|
|
|
if (unlikely(wc->status != IB_WC_SUCCESS)) {
|
|
nvme_rdma_wr_error(cq, wc, "RECV");
|
|
return 0;
|
|
}
|
|
|
|
ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
|
|
/*
|
|
* AEN requests are special as they don't time out and can
|
|
* survive any kind of queue freeze and often don't respond to
|
|
* aborts. We don't even bother to allocate a struct request
|
|
* for them but rather special case them here.
|
|
*/
|
|
if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
|
|
cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
|
|
nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
|
|
else
|
|
ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
|
|
ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
|
|
|
|
nvme_rdma_post_recv(queue, qe);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
__nvme_rdma_recv_done(cq, wc, -1);
|
|
}
|
|
|
|
static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
|
|
{
|
|
int ret, i;
|
|
|
|
for (i = 0; i < queue->queue_size; i++) {
|
|
ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
|
|
if (ret)
|
|
goto out_destroy_queue_ib;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_destroy_queue_ib:
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
|
|
struct rdma_cm_event *ev)
|
|
{
|
|
if (ev->param.conn.private_data_len) {
|
|
struct nvme_rdma_cm_rej *rej =
|
|
(struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
|
|
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Connect rejected, status %d.", le16_to_cpu(rej->sts));
|
|
/* XXX: Think of something clever to do here... */
|
|
} else {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Connect rejected, no private data.\n");
|
|
}
|
|
|
|
return -ECONNRESET;
|
|
}
|
|
|
|
static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
|
|
{
|
|
struct nvme_rdma_device *dev;
|
|
int ret;
|
|
|
|
dev = nvme_rdma_find_get_device(queue->cm_id);
|
|
if (!dev) {
|
|
dev_err(queue->cm_id->device->dma_device,
|
|
"no client data found!\n");
|
|
return -ECONNREFUSED;
|
|
}
|
|
|
|
ret = nvme_rdma_create_queue_ib(queue, dev);
|
|
if (ret) {
|
|
nvme_rdma_dev_put(dev);
|
|
goto out;
|
|
}
|
|
|
|
ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
|
|
if (ret) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"rdma_resolve_route failed (%d).\n",
|
|
queue->cm_error);
|
|
goto out_destroy_queue;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_destroy_queue:
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
|
|
struct rdma_conn_param param = { };
|
|
struct nvme_rdma_cm_req priv = { };
|
|
int ret;
|
|
|
|
param.qp_num = queue->qp->qp_num;
|
|
param.flow_control = 1;
|
|
|
|
param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
|
|
/* maximum retry count */
|
|
param.retry_count = 7;
|
|
param.rnr_retry_count = 7;
|
|
param.private_data = &priv;
|
|
param.private_data_len = sizeof(priv);
|
|
|
|
priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
|
|
priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
|
|
/*
|
|
* set the admin queue depth to the minimum size
|
|
* specified by the Fabrics standard.
|
|
*/
|
|
if (priv.qid == 0) {
|
|
priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
|
|
priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
|
|
} else {
|
|
/*
|
|
* current interpretation of the fabrics spec
|
|
* is at minimum you make hrqsize sqsize+1, or a
|
|
* 1's based representation of sqsize.
|
|
*/
|
|
priv.hrqsize = cpu_to_le16(queue->queue_size);
|
|
priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
|
|
}
|
|
|
|
ret = rdma_connect(queue->cm_id, ¶m);
|
|
if (ret) {
|
|
dev_err(ctrl->ctrl.device,
|
|
"rdma_connect failed (%d).\n", ret);
|
|
goto out_destroy_queue_ib;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_destroy_queue_ib:
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nvme_rdma_device_unplug() - Handle RDMA device unplug
|
|
* @queue: Queue that owns the cm_id that caught the event
|
|
*
|
|
* DEVICE_REMOVAL event notifies us that the RDMA device is about
|
|
* to unplug so we should take care of destroying our RDMA resources.
|
|
* This event will be generated for each allocated cm_id.
|
|
*
|
|
* In our case, the RDMA resources are managed per controller and not
|
|
* only per queue. So the way we handle this is we trigger an implicit
|
|
* controller deletion upon the first DEVICE_REMOVAL event we see, and
|
|
* hold the event inflight until the controller deletion is completed.
|
|
*
|
|
* One exception that we need to handle is the destruction of the cm_id
|
|
* that caught the event. Since we hold the callout until the controller
|
|
* deletion is completed, we'll deadlock if the controller deletion will
|
|
* call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
|
|
* of destroying this queue before-hand, destroy the queue resources,
|
|
* then queue the controller deletion which won't destroy this queue and
|
|
* we destroy the cm_id implicitely by returning a non-zero rc to the callout.
|
|
*/
|
|
static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
|
|
int ret = 0;
|
|
|
|
/* Own the controller deletion */
|
|
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
|
|
return 0;
|
|
|
|
dev_warn(ctrl->ctrl.device,
|
|
"Got rdma device removal event, deleting ctrl\n");
|
|
|
|
/* Get rid of reconnect work if its running */
|
|
cancel_delayed_work_sync(&ctrl->reconnect_work);
|
|
|
|
/* Disable the queue so ctrl delete won't free it */
|
|
if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) {
|
|
/* Free this queue ourselves */
|
|
nvme_rdma_stop_queue(queue);
|
|
nvme_rdma_destroy_queue_ib(queue);
|
|
|
|
/* Return non-zero so the cm_id will destroy implicitly */
|
|
ret = 1;
|
|
}
|
|
|
|
/* Queue controller deletion */
|
|
queue_work(nvme_rdma_wq, &ctrl->delete_work);
|
|
flush_work(&ctrl->delete_work);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
|
|
struct rdma_cm_event *ev)
|
|
{
|
|
struct nvme_rdma_queue *queue = cm_id->context;
|
|
int cm_error = 0;
|
|
|
|
dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
|
|
rdma_event_msg(ev->event), ev->event,
|
|
ev->status, cm_id);
|
|
|
|
switch (ev->event) {
|
|
case RDMA_CM_EVENT_ADDR_RESOLVED:
|
|
cm_error = nvme_rdma_addr_resolved(queue);
|
|
break;
|
|
case RDMA_CM_EVENT_ROUTE_RESOLVED:
|
|
cm_error = nvme_rdma_route_resolved(queue);
|
|
break;
|
|
case RDMA_CM_EVENT_ESTABLISHED:
|
|
queue->cm_error = nvme_rdma_conn_established(queue);
|
|
/* complete cm_done regardless of success/failure */
|
|
complete(&queue->cm_done);
|
|
return 0;
|
|
case RDMA_CM_EVENT_REJECTED:
|
|
cm_error = nvme_rdma_conn_rejected(queue, ev);
|
|
break;
|
|
case RDMA_CM_EVENT_ADDR_ERROR:
|
|
case RDMA_CM_EVENT_ROUTE_ERROR:
|
|
case RDMA_CM_EVENT_CONNECT_ERROR:
|
|
case RDMA_CM_EVENT_UNREACHABLE:
|
|
dev_dbg(queue->ctrl->ctrl.device,
|
|
"CM error event %d\n", ev->event);
|
|
cm_error = -ECONNRESET;
|
|
break;
|
|
case RDMA_CM_EVENT_DISCONNECTED:
|
|
case RDMA_CM_EVENT_ADDR_CHANGE:
|
|
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
|
|
dev_dbg(queue->ctrl->ctrl.device,
|
|
"disconnect received - connection closed\n");
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
break;
|
|
case RDMA_CM_EVENT_DEVICE_REMOVAL:
|
|
/* return 1 means impliciy CM ID destroy */
|
|
return nvme_rdma_device_unplug(queue);
|
|
default:
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Unexpected RDMA CM event (%d)\n", ev->event);
|
|
nvme_rdma_error_recovery(queue->ctrl);
|
|
break;
|
|
}
|
|
|
|
if (cm_error) {
|
|
queue->cm_error = cm_error;
|
|
complete(&queue->cm_done);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum blk_eh_timer_return
|
|
nvme_rdma_timeout(struct request *rq, bool reserved)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
|
|
/* queue error recovery */
|
|
nvme_rdma_error_recovery(req->queue->ctrl);
|
|
|
|
/* fail with DNR on cmd timeout */
|
|
rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
|
|
|
|
return BLK_EH_HANDLED;
|
|
}
|
|
|
|
static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
|
|
const struct blk_mq_queue_data *bd)
|
|
{
|
|
struct nvme_ns *ns = hctx->queue->queuedata;
|
|
struct nvme_rdma_queue *queue = hctx->driver_data;
|
|
struct request *rq = bd->rq;
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_qe *sqe = &req->sqe;
|
|
struct nvme_command *c = sqe->data;
|
|
bool flush = false;
|
|
struct ib_device *dev;
|
|
unsigned int map_len;
|
|
int ret;
|
|
|
|
WARN_ON_ONCE(rq->tag < 0);
|
|
|
|
dev = queue->device->dev;
|
|
ib_dma_sync_single_for_cpu(dev, sqe->dma,
|
|
sizeof(struct nvme_command), DMA_TO_DEVICE);
|
|
|
|
ret = nvme_setup_cmd(ns, rq, c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
c->common.command_id = rq->tag;
|
|
blk_mq_start_request(rq);
|
|
|
|
map_len = nvme_map_len(rq);
|
|
ret = nvme_rdma_map_data(queue, rq, map_len, c);
|
|
if (ret < 0) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Failed to map data (%d)\n", ret);
|
|
nvme_cleanup_cmd(rq);
|
|
goto err;
|
|
}
|
|
|
|
ib_dma_sync_single_for_device(dev, sqe->dma,
|
|
sizeof(struct nvme_command), DMA_TO_DEVICE);
|
|
|
|
if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
|
|
flush = true;
|
|
ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
|
|
req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
|
|
if (ret) {
|
|
nvme_rdma_unmap_data(queue, rq);
|
|
goto err;
|
|
}
|
|
|
|
return BLK_MQ_RQ_QUEUE_OK;
|
|
err:
|
|
return (ret == -ENOMEM || ret == -EAGAIN) ?
|
|
BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
|
|
}
|
|
|
|
static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
|
|
{
|
|
struct nvme_rdma_queue *queue = hctx->driver_data;
|
|
struct ib_cq *cq = queue->ib_cq;
|
|
struct ib_wc wc;
|
|
int found = 0;
|
|
|
|
ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
|
|
while (ib_poll_cq(cq, 1, &wc) > 0) {
|
|
struct ib_cqe *cqe = wc.wr_cqe;
|
|
|
|
if (cqe) {
|
|
if (cqe->done == nvme_rdma_recv_done)
|
|
found |= __nvme_rdma_recv_done(cq, &wc, tag);
|
|
else
|
|
cqe->done(cq, &wc);
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
static void nvme_rdma_complete_rq(struct request *rq)
|
|
{
|
|
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_rdma_queue *queue = req->queue;
|
|
int error = 0;
|
|
|
|
nvme_rdma_unmap_data(queue, rq);
|
|
|
|
if (unlikely(rq->errors)) {
|
|
if (nvme_req_needs_retry(rq, rq->errors)) {
|
|
nvme_requeue_req(rq);
|
|
return;
|
|
}
|
|
|
|
if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
|
|
error = rq->errors;
|
|
else
|
|
error = nvme_error_status(rq->errors);
|
|
}
|
|
|
|
blk_mq_end_request(rq, error);
|
|
}
|
|
|
|
static struct blk_mq_ops nvme_rdma_mq_ops = {
|
|
.queue_rq = nvme_rdma_queue_rq,
|
|
.complete = nvme_rdma_complete_rq,
|
|
.map_queue = blk_mq_map_queue,
|
|
.init_request = nvme_rdma_init_request,
|
|
.exit_request = nvme_rdma_exit_request,
|
|
.reinit_request = nvme_rdma_reinit_request,
|
|
.init_hctx = nvme_rdma_init_hctx,
|
|
.poll = nvme_rdma_poll,
|
|
.timeout = nvme_rdma_timeout,
|
|
};
|
|
|
|
static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
|
|
.queue_rq = nvme_rdma_queue_rq,
|
|
.complete = nvme_rdma_complete_rq,
|
|
.map_queue = blk_mq_map_queue,
|
|
.init_request = nvme_rdma_init_admin_request,
|
|
.exit_request = nvme_rdma_exit_admin_request,
|
|
.reinit_request = nvme_rdma_reinit_request,
|
|
.init_hctx = nvme_rdma_init_admin_hctx,
|
|
.timeout = nvme_rdma_timeout,
|
|
};
|
|
|
|
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
int error;
|
|
|
|
error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
|
|
if (error)
|
|
return error;
|
|
|
|
ctrl->device = ctrl->queues[0].device;
|
|
|
|
/*
|
|
* We need a reference on the device as long as the tag_set is alive,
|
|
* as the MRs in the request structures need a valid ib_device.
|
|
*/
|
|
error = -EINVAL;
|
|
if (!nvme_rdma_dev_get(ctrl->device))
|
|
goto out_free_queue;
|
|
|
|
ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
|
|
ctrl->device->dev->attrs.max_fast_reg_page_list_len);
|
|
|
|
memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
|
|
ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
|
|
ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
|
|
ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
|
|
ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
|
|
ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
|
|
SG_CHUNK_SIZE * sizeof(struct scatterlist);
|
|
ctrl->admin_tag_set.driver_data = ctrl;
|
|
ctrl->admin_tag_set.nr_hw_queues = 1;
|
|
ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
|
|
|
|
error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
|
|
if (error)
|
|
goto out_put_dev;
|
|
|
|
ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
|
|
if (IS_ERR(ctrl->ctrl.admin_q)) {
|
|
error = PTR_ERR(ctrl->ctrl.admin_q);
|
|
goto out_free_tagset;
|
|
}
|
|
|
|
error = nvmf_connect_admin_queue(&ctrl->ctrl);
|
|
if (error)
|
|
goto out_cleanup_queue;
|
|
|
|
error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
|
|
if (error) {
|
|
dev_err(ctrl->ctrl.device,
|
|
"prop_get NVME_REG_CAP failed\n");
|
|
goto out_cleanup_queue;
|
|
}
|
|
|
|
ctrl->ctrl.sqsize =
|
|
min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
|
|
|
|
error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
|
|
if (error)
|
|
goto out_cleanup_queue;
|
|
|
|
ctrl->ctrl.max_hw_sectors =
|
|
(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
|
|
|
|
error = nvme_init_identify(&ctrl->ctrl);
|
|
if (error)
|
|
goto out_cleanup_queue;
|
|
|
|
error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
|
|
&ctrl->async_event_sqe, sizeof(struct nvme_command),
|
|
DMA_TO_DEVICE);
|
|
if (error)
|
|
goto out_cleanup_queue;
|
|
|
|
nvme_start_keep_alive(&ctrl->ctrl);
|
|
|
|
return 0;
|
|
|
|
out_cleanup_queue:
|
|
blk_cleanup_queue(ctrl->ctrl.admin_q);
|
|
out_free_tagset:
|
|
/* disconnect and drain the queue before freeing the tagset */
|
|
nvme_rdma_stop_queue(&ctrl->queues[0]);
|
|
blk_mq_free_tag_set(&ctrl->admin_tag_set);
|
|
out_put_dev:
|
|
nvme_rdma_dev_put(ctrl->device);
|
|
out_free_queue:
|
|
nvme_rdma_free_queue(&ctrl->queues[0]);
|
|
return error;
|
|
}
|
|
|
|
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
nvme_stop_keep_alive(&ctrl->ctrl);
|
|
cancel_work_sync(&ctrl->err_work);
|
|
cancel_delayed_work_sync(&ctrl->reconnect_work);
|
|
|
|
if (ctrl->queue_count > 1) {
|
|
nvme_stop_queues(&ctrl->ctrl);
|
|
blk_mq_tagset_busy_iter(&ctrl->tag_set,
|
|
nvme_cancel_request, &ctrl->ctrl);
|
|
nvme_rdma_free_io_queues(ctrl);
|
|
}
|
|
|
|
if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
|
|
nvme_shutdown_ctrl(&ctrl->ctrl);
|
|
|
|
blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
|
|
blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
|
|
nvme_cancel_request, &ctrl->ctrl);
|
|
nvme_rdma_destroy_admin_queue(ctrl);
|
|
}
|
|
|
|
static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
|
|
{
|
|
nvme_uninit_ctrl(&ctrl->ctrl);
|
|
if (shutdown)
|
|
nvme_rdma_shutdown_ctrl(ctrl);
|
|
|
|
if (ctrl->ctrl.tagset) {
|
|
blk_cleanup_queue(ctrl->ctrl.connect_q);
|
|
blk_mq_free_tag_set(&ctrl->tag_set);
|
|
nvme_rdma_dev_put(ctrl->device);
|
|
}
|
|
|
|
nvme_put_ctrl(&ctrl->ctrl);
|
|
}
|
|
|
|
static void nvme_rdma_del_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = container_of(work,
|
|
struct nvme_rdma_ctrl, delete_work);
|
|
|
|
__nvme_rdma_remove_ctrl(ctrl, true);
|
|
}
|
|
|
|
static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
|
|
return -EBUSY;
|
|
|
|
if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
|
|
int ret;
|
|
|
|
ret = __nvme_rdma_del_ctrl(ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
flush_work(&ctrl->delete_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = container_of(work,
|
|
struct nvme_rdma_ctrl, delete_work);
|
|
|
|
__nvme_rdma_remove_ctrl(ctrl, false);
|
|
}
|
|
|
|
static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = container_of(work,
|
|
struct nvme_rdma_ctrl, reset_work);
|
|
int ret;
|
|
bool changed;
|
|
|
|
nvme_rdma_shutdown_ctrl(ctrl);
|
|
|
|
ret = nvme_rdma_configure_admin_queue(ctrl);
|
|
if (ret) {
|
|
/* ctrl is already shutdown, just remove the ctrl */
|
|
INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
|
|
goto del_dead_ctrl;
|
|
}
|
|
|
|
if (ctrl->queue_count > 1) {
|
|
ret = blk_mq_reinit_tagset(&ctrl->tag_set);
|
|
if (ret)
|
|
goto del_dead_ctrl;
|
|
|
|
ret = nvme_rdma_init_io_queues(ctrl);
|
|
if (ret)
|
|
goto del_dead_ctrl;
|
|
|
|
ret = nvme_rdma_connect_io_queues(ctrl);
|
|
if (ret)
|
|
goto del_dead_ctrl;
|
|
}
|
|
|
|
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
|
|
WARN_ON_ONCE(!changed);
|
|
|
|
if (ctrl->queue_count > 1) {
|
|
nvme_start_queues(&ctrl->ctrl);
|
|
nvme_queue_scan(&ctrl->ctrl);
|
|
nvme_queue_async_events(&ctrl->ctrl);
|
|
}
|
|
|
|
return;
|
|
|
|
del_dead_ctrl:
|
|
/* Deleting this dead controller... */
|
|
dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
|
|
WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
|
|
}
|
|
|
|
static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
|
|
|
|
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
|
|
return -EBUSY;
|
|
|
|
if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
|
|
return -EBUSY;
|
|
|
|
flush_work(&ctrl->reset_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
|
|
.name = "rdma",
|
|
.module = THIS_MODULE,
|
|
.is_fabrics = true,
|
|
.reg_read32 = nvmf_reg_read32,
|
|
.reg_read64 = nvmf_reg_read64,
|
|
.reg_write32 = nvmf_reg_write32,
|
|
.reset_ctrl = nvme_rdma_reset_ctrl,
|
|
.free_ctrl = nvme_rdma_free_ctrl,
|
|
.submit_async_event = nvme_rdma_submit_async_event,
|
|
.delete_ctrl = nvme_rdma_del_ctrl,
|
|
.get_subsysnqn = nvmf_get_subsysnqn,
|
|
.get_address = nvmf_get_address,
|
|
};
|
|
|
|
static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
|
|
{
|
|
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
|
|
int ret;
|
|
|
|
ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctrl->queue_count = opts->nr_io_queues + 1;
|
|
if (ctrl->queue_count < 2)
|
|
return 0;
|
|
|
|
dev_info(ctrl->ctrl.device,
|
|
"creating %d I/O queues.\n", opts->nr_io_queues);
|
|
|
|
ret = nvme_rdma_init_io_queues(ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We need a reference on the device as long as the tag_set is alive,
|
|
* as the MRs in the request structures need a valid ib_device.
|
|
*/
|
|
ret = -EINVAL;
|
|
if (!nvme_rdma_dev_get(ctrl->device))
|
|
goto out_free_io_queues;
|
|
|
|
memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
|
|
ctrl->tag_set.ops = &nvme_rdma_mq_ops;
|
|
ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
|
|
ctrl->tag_set.reserved_tags = 1; /* fabric connect */
|
|
ctrl->tag_set.numa_node = NUMA_NO_NODE;
|
|
ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
|
|
ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
|
|
SG_CHUNK_SIZE * sizeof(struct scatterlist);
|
|
ctrl->tag_set.driver_data = ctrl;
|
|
ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
|
|
ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
|
|
|
|
ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
|
|
if (ret)
|
|
goto out_put_dev;
|
|
ctrl->ctrl.tagset = &ctrl->tag_set;
|
|
|
|
ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
|
|
if (IS_ERR(ctrl->ctrl.connect_q)) {
|
|
ret = PTR_ERR(ctrl->ctrl.connect_q);
|
|
goto out_free_tag_set;
|
|
}
|
|
|
|
ret = nvme_rdma_connect_io_queues(ctrl);
|
|
if (ret)
|
|
goto out_cleanup_connect_q;
|
|
|
|
return 0;
|
|
|
|
out_cleanup_connect_q:
|
|
blk_cleanup_queue(ctrl->ctrl.connect_q);
|
|
out_free_tag_set:
|
|
blk_mq_free_tag_set(&ctrl->tag_set);
|
|
out_put_dev:
|
|
nvme_rdma_dev_put(ctrl->device);
|
|
out_free_io_queues:
|
|
nvme_rdma_free_io_queues(ctrl);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
|
|
{
|
|
u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
|
|
size_t buflen = strlen(p);
|
|
|
|
/* XXX: handle IPv6 addresses */
|
|
|
|
if (buflen > INET_ADDRSTRLEN)
|
|
return -EINVAL;
|
|
if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
|
|
return -EINVAL;
|
|
in_addr->sin_family = AF_INET;
|
|
return 0;
|
|
}
|
|
|
|
static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
|
|
struct nvmf_ctrl_options *opts)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl;
|
|
int ret;
|
|
bool changed;
|
|
|
|
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
|
|
if (!ctrl)
|
|
return ERR_PTR(-ENOMEM);
|
|
ctrl->ctrl.opts = opts;
|
|
INIT_LIST_HEAD(&ctrl->list);
|
|
|
|
ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
|
|
if (ret) {
|
|
pr_err("malformed IP address passed: %s\n", opts->traddr);
|
|
goto out_free_ctrl;
|
|
}
|
|
|
|
if (opts->mask & NVMF_OPT_TRSVCID) {
|
|
u16 port;
|
|
|
|
ret = kstrtou16(opts->trsvcid, 0, &port);
|
|
if (ret)
|
|
goto out_free_ctrl;
|
|
|
|
ctrl->addr_in.sin_port = cpu_to_be16(port);
|
|
} else {
|
|
ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
|
|
}
|
|
|
|
ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
|
|
0 /* no quirks, we're perfect! */);
|
|
if (ret)
|
|
goto out_free_ctrl;
|
|
|
|
ctrl->reconnect_delay = opts->reconnect_delay;
|
|
INIT_DELAYED_WORK(&ctrl->reconnect_work,
|
|
nvme_rdma_reconnect_ctrl_work);
|
|
INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
|
|
INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
|
|
INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
|
|
spin_lock_init(&ctrl->lock);
|
|
|
|
ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
|
|
ctrl->ctrl.sqsize = opts->queue_size - 1;
|
|
ctrl->ctrl.kato = opts->kato;
|
|
|
|
ret = -ENOMEM;
|
|
ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
|
|
GFP_KERNEL);
|
|
if (!ctrl->queues)
|
|
goto out_uninit_ctrl;
|
|
|
|
ret = nvme_rdma_configure_admin_queue(ctrl);
|
|
if (ret)
|
|
goto out_kfree_queues;
|
|
|
|
/* sanity check icdoff */
|
|
if (ctrl->ctrl.icdoff) {
|
|
dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
|
|
goto out_remove_admin_queue;
|
|
}
|
|
|
|
/* sanity check keyed sgls */
|
|
if (!(ctrl->ctrl.sgls & (1 << 20))) {
|
|
dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
|
|
goto out_remove_admin_queue;
|
|
}
|
|
|
|
if (opts->queue_size > ctrl->ctrl.maxcmd) {
|
|
/* warn if maxcmd is lower than queue_size */
|
|
dev_warn(ctrl->ctrl.device,
|
|
"queue_size %zu > ctrl maxcmd %u, clamping down\n",
|
|
opts->queue_size, ctrl->ctrl.maxcmd);
|
|
opts->queue_size = ctrl->ctrl.maxcmd;
|
|
}
|
|
|
|
if (opts->nr_io_queues) {
|
|
ret = nvme_rdma_create_io_queues(ctrl);
|
|
if (ret)
|
|
goto out_remove_admin_queue;
|
|
}
|
|
|
|
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
|
|
WARN_ON_ONCE(!changed);
|
|
|
|
dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
|
|
ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
|
|
|
|
kref_get(&ctrl->ctrl.kref);
|
|
|
|
mutex_lock(&nvme_rdma_ctrl_mutex);
|
|
list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
|
|
mutex_unlock(&nvme_rdma_ctrl_mutex);
|
|
|
|
if (opts->nr_io_queues) {
|
|
nvme_queue_scan(&ctrl->ctrl);
|
|
nvme_queue_async_events(&ctrl->ctrl);
|
|
}
|
|
|
|
return &ctrl->ctrl;
|
|
|
|
out_remove_admin_queue:
|
|
nvme_stop_keep_alive(&ctrl->ctrl);
|
|
nvme_rdma_destroy_admin_queue(ctrl);
|
|
out_kfree_queues:
|
|
kfree(ctrl->queues);
|
|
out_uninit_ctrl:
|
|
nvme_uninit_ctrl(&ctrl->ctrl);
|
|
nvme_put_ctrl(&ctrl->ctrl);
|
|
if (ret > 0)
|
|
ret = -EIO;
|
|
return ERR_PTR(ret);
|
|
out_free_ctrl:
|
|
kfree(ctrl);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct nvmf_transport_ops nvme_rdma_transport = {
|
|
.name = "rdma",
|
|
.required_opts = NVMF_OPT_TRADDR,
|
|
.allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
|
|
.create_ctrl = nvme_rdma_create_ctrl,
|
|
};
|
|
|
|
static int __init nvme_rdma_init_module(void)
|
|
{
|
|
nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
|
|
if (!nvme_rdma_wq)
|
|
return -ENOMEM;
|
|
|
|
nvmf_register_transport(&nvme_rdma_transport);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit nvme_rdma_cleanup_module(void)
|
|
{
|
|
struct nvme_rdma_ctrl *ctrl;
|
|
|
|
nvmf_unregister_transport(&nvme_rdma_transport);
|
|
|
|
mutex_lock(&nvme_rdma_ctrl_mutex);
|
|
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
|
|
__nvme_rdma_del_ctrl(ctrl);
|
|
mutex_unlock(&nvme_rdma_ctrl_mutex);
|
|
|
|
destroy_workqueue(nvme_rdma_wq);
|
|
}
|
|
|
|
module_init(nvme_rdma_init_module);
|
|
module_exit(nvme_rdma_cleanup_module);
|
|
|
|
MODULE_LICENSE("GPL v2");
|