mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 14:20:55 +07:00
ad6e16059d
Currently, this driver doesn't support address translation for non-volatile DIMMs. The ACPI ADXL DSM method provides address translation for both volatile and non-volatile DIMMs. Enable it to use the ACPI DSM methods if they are supported and there are non-volatile DIMMs populated on the system. Co-developed-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> CC: Mauro Carvalho Chehab <mchehab@kernel.org> CC: arozansk@redhat.com CC: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/1540106336-5212-1-git-send-email-qiuxu.zhuo@intel.com
1358 lines
33 KiB
C
1358 lines
33 KiB
C
/*
|
|
* EDAC driver for Intel(R) Xeon(R) Skylake processors
|
|
* Copyright (c) 2016, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/adxl.h>
|
|
#include <acpi/nfit.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mce.h>
|
|
|
|
#include "edac_module.h"
|
|
|
|
#define EDAC_MOD_STR "skx_edac"
|
|
#define MSG_SIZE 1024
|
|
|
|
/*
|
|
* Debug macros
|
|
*/
|
|
#define skx_printk(level, fmt, arg...) \
|
|
edac_printk(level, "skx", fmt, ##arg)
|
|
|
|
#define skx_mc_printk(mci, level, fmt, arg...) \
|
|
edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
|
|
|
|
/*
|
|
* Get a bit field at register value <v>, from bit <lo> to bit <hi>
|
|
*/
|
|
#define GET_BITFIELD(v, lo, hi) \
|
|
(((v) & GENMASK_ULL((hi), (lo))) >> (lo))
|
|
|
|
static LIST_HEAD(skx_edac_list);
|
|
|
|
static u64 skx_tolm, skx_tohm;
|
|
static char *skx_msg;
|
|
static unsigned int nvdimm_count;
|
|
|
|
enum {
|
|
INDEX_SOCKET,
|
|
INDEX_MEMCTRL,
|
|
INDEX_CHANNEL,
|
|
INDEX_DIMM,
|
|
INDEX_MAX
|
|
};
|
|
|
|
static const char * const component_names[] = {
|
|
[INDEX_SOCKET] = "ProcessorSocketId",
|
|
[INDEX_MEMCTRL] = "MemoryControllerId",
|
|
[INDEX_CHANNEL] = "ChannelId",
|
|
[INDEX_DIMM] = "DimmSlotId",
|
|
};
|
|
|
|
static int component_indices[ARRAY_SIZE(component_names)];
|
|
static int adxl_component_count;
|
|
static const char * const *adxl_component_names;
|
|
static u64 *adxl_values;
|
|
static char *adxl_msg;
|
|
|
|
#define NUM_IMC 2 /* memory controllers per socket */
|
|
#define NUM_CHANNELS 3 /* channels per memory controller */
|
|
#define NUM_DIMMS 2 /* Max DIMMS per channel */
|
|
|
|
#define MASK26 0x3FFFFFF /* Mask for 2^26 */
|
|
#define MASK29 0x1FFFFFFF /* Mask for 2^29 */
|
|
|
|
/*
|
|
* Each cpu socket contains some pci devices that provide global
|
|
* information, and also some that are local to each of the two
|
|
* memory controllers on the die.
|
|
*/
|
|
struct skx_dev {
|
|
struct list_head list;
|
|
u8 bus[4];
|
|
int seg;
|
|
struct pci_dev *sad_all;
|
|
struct pci_dev *util_all;
|
|
u32 mcroute;
|
|
struct skx_imc {
|
|
struct mem_ctl_info *mci;
|
|
u8 mc; /* system wide mc# */
|
|
u8 lmc; /* socket relative mc# */
|
|
u8 src_id, node_id;
|
|
struct skx_channel {
|
|
struct pci_dev *cdev;
|
|
struct skx_dimm {
|
|
u8 close_pg;
|
|
u8 bank_xor_enable;
|
|
u8 fine_grain_bank;
|
|
u8 rowbits;
|
|
u8 colbits;
|
|
} dimms[NUM_DIMMS];
|
|
} chan[NUM_CHANNELS];
|
|
} imc[NUM_IMC];
|
|
};
|
|
static int skx_num_sockets;
|
|
|
|
struct skx_pvt {
|
|
struct skx_imc *imc;
|
|
};
|
|
|
|
struct decoded_addr {
|
|
struct skx_dev *dev;
|
|
u64 addr;
|
|
int socket;
|
|
int imc;
|
|
int channel;
|
|
u64 chan_addr;
|
|
int sktways;
|
|
int chanways;
|
|
int dimm;
|
|
int rank;
|
|
int channel_rank;
|
|
u64 rank_address;
|
|
int row;
|
|
int column;
|
|
int bank_address;
|
|
int bank_group;
|
|
};
|
|
|
|
static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
|
|
{
|
|
struct skx_dev *d;
|
|
|
|
list_for_each_entry(d, &skx_edac_list, list) {
|
|
if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
|
|
return d;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
enum munittype {
|
|
CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
|
|
};
|
|
|
|
struct munit {
|
|
u16 did;
|
|
u16 devfn[NUM_IMC];
|
|
u8 busidx;
|
|
u8 per_socket;
|
|
enum munittype mtype;
|
|
};
|
|
|
|
/*
|
|
* List of PCI device ids that we need together with some device
|
|
* number and function numbers to tell which memory controller the
|
|
* device belongs to.
|
|
*/
|
|
static const struct munit skx_all_munits[] = {
|
|
{ 0x2054, { }, 1, 1, SAD_ALL },
|
|
{ 0x2055, { }, 1, 1, UTIL_ALL },
|
|
{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
|
|
{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
|
|
{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
|
|
{ 0x208e, { }, 1, 0, SAD },
|
|
{ }
|
|
};
|
|
|
|
/*
|
|
* We use the per-socket device 0x2016 to count how many sockets are present,
|
|
* and to detemine which PCI buses are associated with each socket. Allocate
|
|
* and build the full list of all the skx_dev structures that we need here.
|
|
*/
|
|
static int get_all_bus_mappings(void)
|
|
{
|
|
struct pci_dev *pdev, *prev;
|
|
struct skx_dev *d;
|
|
u32 reg;
|
|
int ndev = 0;
|
|
|
|
prev = NULL;
|
|
for (;;) {
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
|
|
if (!pdev)
|
|
break;
|
|
ndev++;
|
|
d = kzalloc(sizeof(*d), GFP_KERNEL);
|
|
if (!d) {
|
|
pci_dev_put(pdev);
|
|
return -ENOMEM;
|
|
}
|
|
d->seg = pci_domain_nr(pdev->bus);
|
|
pci_read_config_dword(pdev, 0xCC, ®);
|
|
d->bus[0] = GET_BITFIELD(reg, 0, 7);
|
|
d->bus[1] = GET_BITFIELD(reg, 8, 15);
|
|
d->bus[2] = GET_BITFIELD(reg, 16, 23);
|
|
d->bus[3] = GET_BITFIELD(reg, 24, 31);
|
|
edac_dbg(2, "busses: %x, %x, %x, %x\n",
|
|
d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
|
|
list_add_tail(&d->list, &skx_edac_list);
|
|
skx_num_sockets++;
|
|
prev = pdev;
|
|
}
|
|
|
|
return ndev;
|
|
}
|
|
|
|
static int get_all_munits(const struct munit *m)
|
|
{
|
|
struct pci_dev *pdev, *prev;
|
|
struct skx_dev *d;
|
|
u32 reg;
|
|
int i = 0, ndev = 0;
|
|
|
|
prev = NULL;
|
|
for (;;) {
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
|
|
if (!pdev)
|
|
break;
|
|
ndev++;
|
|
if (m->per_socket == NUM_IMC) {
|
|
for (i = 0; i < NUM_IMC; i++)
|
|
if (m->devfn[i] == pdev->devfn)
|
|
break;
|
|
if (i == NUM_IMC)
|
|
goto fail;
|
|
}
|
|
d = get_skx_dev(pdev->bus, m->busidx);
|
|
if (!d)
|
|
goto fail;
|
|
|
|
/* Be sure that the device is enabled */
|
|
if (unlikely(pci_enable_device(pdev) < 0)) {
|
|
skx_printk(KERN_ERR,
|
|
"Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
|
|
goto fail;
|
|
}
|
|
|
|
switch (m->mtype) {
|
|
case CHAN0: case CHAN1: case CHAN2:
|
|
pci_dev_get(pdev);
|
|
d->imc[i].chan[m->mtype].cdev = pdev;
|
|
break;
|
|
case SAD_ALL:
|
|
pci_dev_get(pdev);
|
|
d->sad_all = pdev;
|
|
break;
|
|
case UTIL_ALL:
|
|
pci_dev_get(pdev);
|
|
d->util_all = pdev;
|
|
break;
|
|
case SAD:
|
|
/*
|
|
* one of these devices per core, including cores
|
|
* that don't exist on this SKU. Ignore any that
|
|
* read a route table of zero, make sure all the
|
|
* non-zero values match.
|
|
*/
|
|
pci_read_config_dword(pdev, 0xB4, ®);
|
|
if (reg != 0) {
|
|
if (d->mcroute == 0)
|
|
d->mcroute = reg;
|
|
else if (d->mcroute != reg) {
|
|
skx_printk(KERN_ERR,
|
|
"mcroute mismatch\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
ndev--;
|
|
break;
|
|
}
|
|
|
|
prev = pdev;
|
|
}
|
|
|
|
return ndev;
|
|
fail:
|
|
pci_dev_put(pdev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
static const struct x86_cpu_id skx_cpuids[] = {
|
|
{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
|
|
|
|
static u8 get_src_id(struct skx_dev *d)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(d->util_all, 0xF0, ®);
|
|
|
|
return GET_BITFIELD(reg, 12, 14);
|
|
}
|
|
|
|
static u8 skx_get_node_id(struct skx_dev *d)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(d->util_all, 0xF4, ®);
|
|
|
|
return GET_BITFIELD(reg, 0, 2);
|
|
}
|
|
|
|
static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
|
|
int maxval, char *name)
|
|
{
|
|
u32 val = GET_BITFIELD(reg, lobit, hibit);
|
|
|
|
if (val < minval || val > maxval) {
|
|
edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
|
|
return -EINVAL;
|
|
}
|
|
return val + add;
|
|
}
|
|
|
|
#define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15)
|
|
#define IS_NVDIMM_PRESENT(mcddrtcfg, i) GET_BITFIELD((mcddrtcfg), (i), (i))
|
|
|
|
#define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks")
|
|
#define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
|
|
#define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
|
|
|
|
static int get_width(u32 mtr)
|
|
{
|
|
switch (GET_BITFIELD(mtr, 8, 9)) {
|
|
case 0:
|
|
return DEV_X4;
|
|
case 1:
|
|
return DEV_X8;
|
|
case 2:
|
|
return DEV_X16;
|
|
}
|
|
return DEV_UNKNOWN;
|
|
}
|
|
|
|
static int skx_get_hi_lo(void)
|
|
{
|
|
struct pci_dev *pdev;
|
|
u32 reg;
|
|
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
|
|
if (!pdev) {
|
|
edac_dbg(0, "Can't get tolm/tohm\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
pci_read_config_dword(pdev, 0xD0, ®);
|
|
skx_tolm = reg;
|
|
pci_read_config_dword(pdev, 0xD4, ®);
|
|
skx_tohm = reg;
|
|
pci_read_config_dword(pdev, 0xD8, ®);
|
|
skx_tohm |= (u64)reg << 32;
|
|
|
|
pci_dev_put(pdev);
|
|
edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
|
|
struct skx_imc *imc, int chan, int dimmno)
|
|
{
|
|
int banks = 16, ranks, rows, cols, npages;
|
|
u64 size;
|
|
|
|
ranks = numrank(mtr);
|
|
rows = numrow(mtr);
|
|
cols = numcol(mtr);
|
|
|
|
/*
|
|
* Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
|
|
*/
|
|
size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
|
|
npages = MiB_TO_PAGES(size);
|
|
|
|
edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
|
|
imc->mc, chan, dimmno, size, npages,
|
|
banks, 1 << ranks, rows, cols);
|
|
|
|
imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
|
|
imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
|
|
imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
|
|
imc->chan[chan].dimms[dimmno].rowbits = rows;
|
|
imc->chan[chan].dimms[dimmno].colbits = cols;
|
|
|
|
dimm->nr_pages = npages;
|
|
dimm->grain = 32;
|
|
dimm->dtype = get_width(mtr);
|
|
dimm->mtype = MEM_DDR4;
|
|
dimm->edac_mode = EDAC_SECDED; /* likely better than this */
|
|
snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
|
|
imc->src_id, imc->lmc, chan, dimmno);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
|
|
int chan, int dimmno)
|
|
{
|
|
int smbios_handle;
|
|
u32 dev_handle;
|
|
u16 flags;
|
|
u64 size = 0;
|
|
|
|
nvdimm_count++;
|
|
|
|
dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
|
|
imc->src_id, 0);
|
|
|
|
smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
|
|
if (smbios_handle == -EOPNOTSUPP) {
|
|
pr_warn_once(EDAC_MOD_STR ": Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n");
|
|
goto unknown_size;
|
|
}
|
|
|
|
if (smbios_handle < 0) {
|
|
skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=%x\n", dev_handle);
|
|
goto unknown_size;
|
|
}
|
|
|
|
if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
|
|
skx_printk(KERN_ERR, "NVDIMM ADR=%x is not mapped\n", dev_handle);
|
|
goto unknown_size;
|
|
}
|
|
|
|
size = dmi_memdev_size(smbios_handle);
|
|
if (size == ~0ull)
|
|
skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=%x/SMBIOS=%x\n",
|
|
dev_handle, smbios_handle);
|
|
|
|
unknown_size:
|
|
dimm->nr_pages = size >> PAGE_SHIFT;
|
|
dimm->grain = 32;
|
|
dimm->dtype = DEV_UNKNOWN;
|
|
dimm->mtype = MEM_NVDIMM;
|
|
dimm->edac_mode = EDAC_SECDED; /* likely better than this */
|
|
|
|
edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
|
|
imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
|
|
|
|
snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
|
|
imc->src_id, imc->lmc, chan, dimmno);
|
|
|
|
return (size == 0 || size == ~0ull) ? 0 : 1;
|
|
}
|
|
|
|
#define SKX_GET_MTMTR(dev, reg) \
|
|
pci_read_config_dword((dev), 0x87c, ®)
|
|
|
|
static bool skx_check_ecc(struct pci_dev *pdev)
|
|
{
|
|
u32 mtmtr;
|
|
|
|
SKX_GET_MTMTR(pdev, mtmtr);
|
|
|
|
return !!GET_BITFIELD(mtmtr, 2, 2);
|
|
}
|
|
|
|
static int skx_get_dimm_config(struct mem_ctl_info *mci)
|
|
{
|
|
struct skx_pvt *pvt = mci->pvt_info;
|
|
struct skx_imc *imc = pvt->imc;
|
|
u32 mtr, amap, mcddrtcfg;
|
|
struct dimm_info *dimm;
|
|
int i, j;
|
|
int ndimms;
|
|
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
ndimms = 0;
|
|
pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
|
|
pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
|
|
for (j = 0; j < NUM_DIMMS; j++) {
|
|
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
|
|
mci->n_layers, i, j, 0);
|
|
pci_read_config_dword(imc->chan[i].cdev,
|
|
0x80 + 4*j, &mtr);
|
|
if (IS_DIMM_PRESENT(mtr))
|
|
ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
|
|
else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
|
|
ndimms += get_nvdimm_info(dimm, imc, i, j);
|
|
}
|
|
if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
|
|
skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void skx_unregister_mci(struct skx_imc *imc)
|
|
{
|
|
struct mem_ctl_info *mci = imc->mci;
|
|
|
|
if (!mci)
|
|
return;
|
|
|
|
edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
|
|
|
|
/* Remove MC sysfs nodes */
|
|
edac_mc_del_mc(mci->pdev);
|
|
|
|
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
|
|
kfree(mci->ctl_name);
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
static int skx_register_mci(struct skx_imc *imc)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct edac_mc_layer layers[2];
|
|
struct pci_dev *pdev = imc->chan[0].cdev;
|
|
struct skx_pvt *pvt;
|
|
int rc;
|
|
|
|
/* allocate a new MC control structure */
|
|
layers[0].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[0].size = NUM_CHANNELS;
|
|
layers[0].is_virt_csrow = false;
|
|
layers[1].type = EDAC_MC_LAYER_SLOT;
|
|
layers[1].size = NUM_DIMMS;
|
|
layers[1].is_virt_csrow = true;
|
|
mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
|
|
sizeof(struct skx_pvt));
|
|
|
|
if (unlikely(!mci))
|
|
return -ENOMEM;
|
|
|
|
edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
|
|
|
|
/* Associate skx_dev and mci for future usage */
|
|
imc->mci = mci;
|
|
pvt = mci->pvt_info;
|
|
pvt->imc = imc;
|
|
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
|
|
imc->node_id, imc->lmc);
|
|
if (!mci->ctl_name) {
|
|
rc = -ENOMEM;
|
|
goto fail0;
|
|
}
|
|
|
|
mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = EDAC_MOD_STR;
|
|
mci->dev_name = pci_name(imc->chan[0].cdev);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
rc = skx_get_dimm_config(mci);
|
|
if (rc < 0)
|
|
goto fail;
|
|
|
|
/* record ptr to the generic device */
|
|
mci->pdev = &pdev->dev;
|
|
|
|
/* add this new MC control structure to EDAC's list of MCs */
|
|
if (unlikely(edac_mc_add_mc(mci))) {
|
|
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
|
|
rc = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
kfree(mci->ctl_name);
|
|
fail0:
|
|
edac_mc_free(mci);
|
|
imc->mci = NULL;
|
|
return rc;
|
|
}
|
|
|
|
#define SKX_MAX_SAD 24
|
|
|
|
#define SKX_GET_SAD(d, i, reg) \
|
|
pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®)
|
|
#define SKX_GET_ILV(d, i, reg) \
|
|
pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®)
|
|
|
|
#define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
|
|
#define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
|
|
#define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
|
|
#define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
|
|
#define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
|
|
#define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
|
|
#define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
|
|
|
|
#define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
|
|
#define SKX_ILV_TARGET(tgt) ((tgt) & 7)
|
|
|
|
static bool skx_sad_decode(struct decoded_addr *res)
|
|
{
|
|
struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
|
|
u64 addr = res->addr;
|
|
int i, idx, tgt, lchan, shift;
|
|
u32 sad, ilv;
|
|
u64 limit, prev_limit;
|
|
int remote = 0;
|
|
|
|
/* Simple sanity check for I/O space or out of range */
|
|
if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
|
|
edac_dbg(0, "Address %llx out of range\n", addr);
|
|
return false;
|
|
}
|
|
|
|
restart:
|
|
prev_limit = 0;
|
|
for (i = 0; i < SKX_MAX_SAD; i++) {
|
|
SKX_GET_SAD(d, i, sad);
|
|
limit = SKX_SAD_LIMIT(sad);
|
|
if (SKX_SAD_ENABLE(sad)) {
|
|
if (addr >= prev_limit && addr <= limit)
|
|
goto sad_found;
|
|
}
|
|
prev_limit = limit + 1;
|
|
}
|
|
edac_dbg(0, "No SAD entry for %llx\n", addr);
|
|
return false;
|
|
|
|
sad_found:
|
|
SKX_GET_ILV(d, i, ilv);
|
|
|
|
switch (SKX_SAD_INTERLEAVE(sad)) {
|
|
case 0:
|
|
idx = GET_BITFIELD(addr, 6, 8);
|
|
break;
|
|
case 1:
|
|
idx = GET_BITFIELD(addr, 8, 10);
|
|
break;
|
|
case 2:
|
|
idx = GET_BITFIELD(addr, 12, 14);
|
|
break;
|
|
case 3:
|
|
idx = GET_BITFIELD(addr, 30, 32);
|
|
break;
|
|
}
|
|
|
|
tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
|
|
|
|
/* If point to another node, find it and start over */
|
|
if (SKX_ILV_REMOTE(tgt)) {
|
|
if (remote) {
|
|
edac_dbg(0, "Double remote!\n");
|
|
return false;
|
|
}
|
|
remote = 1;
|
|
list_for_each_entry(d, &skx_edac_list, list) {
|
|
if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
|
|
goto restart;
|
|
}
|
|
edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
|
|
return false;
|
|
}
|
|
|
|
if (SKX_SAD_MOD3(sad) == 0)
|
|
lchan = SKX_ILV_TARGET(tgt);
|
|
else {
|
|
switch (SKX_SAD_MOD3MODE(sad)) {
|
|
case 0:
|
|
shift = 6;
|
|
break;
|
|
case 1:
|
|
shift = 8;
|
|
break;
|
|
case 2:
|
|
shift = 12;
|
|
break;
|
|
default:
|
|
edac_dbg(0, "illegal mod3mode\n");
|
|
return false;
|
|
}
|
|
switch (SKX_SAD_MOD3ASMOD2(sad)) {
|
|
case 0:
|
|
lchan = (addr >> shift) % 3;
|
|
break;
|
|
case 1:
|
|
lchan = (addr >> shift) % 2;
|
|
break;
|
|
case 2:
|
|
lchan = (addr >> shift) % 2;
|
|
lchan = (lchan << 1) | !lchan;
|
|
break;
|
|
case 3:
|
|
lchan = ((addr >> shift) % 2) << 1;
|
|
break;
|
|
}
|
|
lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
|
|
}
|
|
|
|
res->dev = d;
|
|
res->socket = d->imc[0].src_id;
|
|
res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
|
|
res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
|
|
|
|
edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
|
|
res->addr, res->socket, res->imc, res->channel);
|
|
return true;
|
|
}
|
|
|
|
#define SKX_MAX_TAD 8
|
|
|
|
#define SKX_GET_TADBASE(d, mc, i, reg) \
|
|
pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®)
|
|
#define SKX_GET_TADWAYNESS(d, mc, i, reg) \
|
|
pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®)
|
|
#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
|
|
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®)
|
|
|
|
#define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
|
|
#define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
|
|
#define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
|
|
#define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
|
|
#define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
|
|
#define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
|
|
#define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
|
|
|
|
/* which bit used for both socket and channel interleave */
|
|
static int skx_granularity[] = { 6, 8, 12, 30 };
|
|
|
|
static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
|
|
{
|
|
addr >>= shift;
|
|
addr /= ways;
|
|
addr <<= shift;
|
|
|
|
return addr | (lowbits & ((1ull << shift) - 1));
|
|
}
|
|
|
|
static bool skx_tad_decode(struct decoded_addr *res)
|
|
{
|
|
int i;
|
|
u32 base, wayness, chnilvoffset;
|
|
int skt_interleave_bit, chn_interleave_bit;
|
|
u64 channel_addr;
|
|
|
|
for (i = 0; i < SKX_MAX_TAD; i++) {
|
|
SKX_GET_TADBASE(res->dev, res->imc, i, base);
|
|
SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
|
|
if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
|
|
goto tad_found;
|
|
}
|
|
edac_dbg(0, "No TAD entry for %llx\n", res->addr);
|
|
return false;
|
|
|
|
tad_found:
|
|
res->sktways = SKX_TAD_SKTWAYS(wayness);
|
|
res->chanways = SKX_TAD_CHNWAYS(wayness);
|
|
skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
|
|
chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
|
|
|
|
SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
|
|
channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
|
|
|
|
if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
|
|
/* Must handle channel first, then socket */
|
|
channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
|
|
res->chanways, channel_addr);
|
|
channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
|
|
res->sktways, channel_addr);
|
|
} else {
|
|
/* Handle socket then channel. Preserve low bits from original address */
|
|
channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
|
|
res->sktways, res->addr);
|
|
channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
|
|
res->chanways, res->addr);
|
|
}
|
|
|
|
res->chan_addr = channel_addr;
|
|
|
|
edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
|
|
res->addr, res->chan_addr, res->sktways, res->chanways);
|
|
return true;
|
|
}
|
|
|
|
#define SKX_MAX_RIR 4
|
|
|
|
#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
|
|
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
|
|
0x108 + 4 * (i), ®)
|
|
#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
|
|
pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
|
|
0x120 + 16 * idx + 4 * (i), ®)
|
|
|
|
#define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
|
|
#define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
|
|
#define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
|
|
#define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
|
|
#define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
|
|
|
|
static bool skx_rir_decode(struct decoded_addr *res)
|
|
{
|
|
int i, idx, chan_rank;
|
|
int shift;
|
|
u32 rirway, rirlv;
|
|
u64 rank_addr, prev_limit = 0, limit;
|
|
|
|
if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
|
|
shift = 6;
|
|
else
|
|
shift = 13;
|
|
|
|
for (i = 0; i < SKX_MAX_RIR; i++) {
|
|
SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
|
|
limit = SKX_RIR_LIMIT(rirway);
|
|
if (SKX_RIR_VALID(rirway)) {
|
|
if (prev_limit <= res->chan_addr &&
|
|
res->chan_addr <= limit)
|
|
goto rir_found;
|
|
}
|
|
prev_limit = limit;
|
|
}
|
|
edac_dbg(0, "No RIR entry for %llx\n", res->addr);
|
|
return false;
|
|
|
|
rir_found:
|
|
rank_addr = res->chan_addr >> shift;
|
|
rank_addr /= SKX_RIR_WAYS(rirway);
|
|
rank_addr <<= shift;
|
|
rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
|
|
|
|
res->rank_address = rank_addr;
|
|
idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
|
|
|
|
SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
|
|
res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
|
|
chan_rank = SKX_RIR_CHAN_RANK(rirlv);
|
|
res->channel_rank = chan_rank;
|
|
res->dimm = chan_rank / 4;
|
|
res->rank = chan_rank % 4;
|
|
|
|
edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
|
|
res->addr, res->dimm, res->rank,
|
|
res->channel_rank, res->rank_address);
|
|
return true;
|
|
}
|
|
|
|
static u8 skx_close_row[] = {
|
|
15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
|
|
};
|
|
static u8 skx_close_column[] = {
|
|
3, 4, 5, 14, 19, 23, 24, 25, 26, 27
|
|
};
|
|
static u8 skx_open_row[] = {
|
|
14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
|
|
};
|
|
static u8 skx_open_column[] = {
|
|
3, 4, 5, 6, 7, 8, 9, 10, 11, 12
|
|
};
|
|
static u8 skx_open_fine_column[] = {
|
|
3, 4, 5, 7, 8, 9, 10, 11, 12, 13
|
|
};
|
|
|
|
static int skx_bits(u64 addr, int nbits, u8 *bits)
|
|
{
|
|
int i, res = 0;
|
|
|
|
for (i = 0; i < nbits; i++)
|
|
res |= ((addr >> bits[i]) & 1) << i;
|
|
return res;
|
|
}
|
|
|
|
static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
|
|
{
|
|
int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
|
|
|
|
if (do_xor)
|
|
ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool skx_mad_decode(struct decoded_addr *r)
|
|
{
|
|
struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
|
|
int bg0 = dimm->fine_grain_bank ? 6 : 13;
|
|
|
|
if (dimm->close_pg) {
|
|
r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
|
|
r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
|
|
r->column |= 0x400; /* C10 is autoprecharge, always set */
|
|
r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
|
|
r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
|
|
} else {
|
|
r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
|
|
if (dimm->fine_grain_bank)
|
|
r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
|
|
else
|
|
r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
|
|
r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
|
|
r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
|
|
}
|
|
r->row &= (1u << dimm->rowbits) - 1;
|
|
|
|
edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
|
|
r->addr, r->row, r->column, r->bank_address,
|
|
r->bank_group);
|
|
return true;
|
|
}
|
|
|
|
static bool skx_decode(struct decoded_addr *res)
|
|
{
|
|
|
|
return skx_sad_decode(res) && skx_tad_decode(res) &&
|
|
skx_rir_decode(res) && skx_mad_decode(res);
|
|
}
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
/*
|
|
* Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
|
|
* Write an address to this file to exercise the address decode
|
|
* logic in this driver.
|
|
*/
|
|
static struct dentry *skx_test;
|
|
static u64 skx_fake_addr;
|
|
|
|
static int debugfs_u64_set(void *data, u64 val)
|
|
{
|
|
struct decoded_addr res;
|
|
|
|
res.addr = val;
|
|
skx_decode(&res);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
|
|
|
|
static struct dentry *mydebugfs_create(const char *name, umode_t mode,
|
|
struct dentry *parent, u64 *value)
|
|
{
|
|
return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
|
|
}
|
|
|
|
static void setup_skx_debug(void)
|
|
{
|
|
skx_test = debugfs_create_dir("skx_edac_test", NULL);
|
|
mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
|
|
}
|
|
|
|
static void teardown_skx_debug(void)
|
|
{
|
|
debugfs_remove_recursive(skx_test);
|
|
}
|
|
#else
|
|
static void setup_skx_debug(void)
|
|
{
|
|
}
|
|
|
|
static void teardown_skx_debug(void)
|
|
{
|
|
}
|
|
#endif /*CONFIG_EDAC_DEBUG*/
|
|
|
|
static bool skx_adxl_decode(struct decoded_addr *res)
|
|
|
|
{
|
|
int i, len = 0;
|
|
|
|
if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
|
|
res->addr < BIT_ULL(32))) {
|
|
edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
|
|
return false;
|
|
}
|
|
|
|
if (adxl_decode(res->addr, adxl_values)) {
|
|
edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
|
|
return false;
|
|
}
|
|
|
|
res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]];
|
|
res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
|
|
res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
|
|
res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]];
|
|
|
|
for (i = 0; i < adxl_component_count; i++) {
|
|
if (adxl_values[i] == ~0x0ull)
|
|
continue;
|
|
|
|
len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
|
|
adxl_component_names[i], adxl_values[i]);
|
|
if (MSG_SIZE - len <= 0)
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void skx_mce_output_error(struct mem_ctl_info *mci,
|
|
const struct mce *m,
|
|
struct decoded_addr *res)
|
|
{
|
|
enum hw_event_mc_err_type tp_event;
|
|
char *type, *optype;
|
|
bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
|
|
bool overflow = GET_BITFIELD(m->status, 62, 62);
|
|
bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
|
|
bool recoverable;
|
|
u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
|
|
u32 mscod = GET_BITFIELD(m->status, 16, 31);
|
|
u32 errcode = GET_BITFIELD(m->status, 0, 15);
|
|
u32 optypenum = GET_BITFIELD(m->status, 4, 6);
|
|
|
|
recoverable = GET_BITFIELD(m->status, 56, 56);
|
|
|
|
if (uncorrected_error) {
|
|
core_err_cnt = 1;
|
|
if (ripv) {
|
|
type = "FATAL";
|
|
tp_event = HW_EVENT_ERR_FATAL;
|
|
} else {
|
|
type = "NON_FATAL";
|
|
tp_event = HW_EVENT_ERR_UNCORRECTED;
|
|
}
|
|
} else {
|
|
type = "CORRECTED";
|
|
tp_event = HW_EVENT_ERR_CORRECTED;
|
|
}
|
|
|
|
/*
|
|
* According with Table 15-9 of the Intel Architecture spec vol 3A,
|
|
* memory errors should fit in this mask:
|
|
* 000f 0000 1mmm cccc (binary)
|
|
* where:
|
|
* f = Correction Report Filtering Bit. If 1, subsequent errors
|
|
* won't be shown
|
|
* mmm = error type
|
|
* cccc = channel
|
|
* If the mask doesn't match, report an error to the parsing logic
|
|
*/
|
|
if (!((errcode & 0xef80) == 0x80)) {
|
|
optype = "Can't parse: it is not a mem";
|
|
} else {
|
|
switch (optypenum) {
|
|
case 0:
|
|
optype = "generic undef request error";
|
|
break;
|
|
case 1:
|
|
optype = "memory read error";
|
|
break;
|
|
case 2:
|
|
optype = "memory write error";
|
|
break;
|
|
case 3:
|
|
optype = "addr/cmd error";
|
|
break;
|
|
case 4:
|
|
optype = "memory scrubbing error";
|
|
break;
|
|
default:
|
|
optype = "reserved";
|
|
break;
|
|
}
|
|
}
|
|
if (adxl_component_count) {
|
|
snprintf(skx_msg, MSG_SIZE, "%s%s err_code:%04x:%04x %s",
|
|
overflow ? " OVERFLOW" : "",
|
|
(uncorrected_error && recoverable) ? " recoverable" : "",
|
|
mscod, errcode, adxl_msg);
|
|
} else {
|
|
snprintf(skx_msg, MSG_SIZE,
|
|
"%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
|
|
overflow ? " OVERFLOW" : "",
|
|
(uncorrected_error && recoverable) ? " recoverable" : "",
|
|
mscod, errcode,
|
|
res->socket, res->imc, res->rank,
|
|
res->bank_group, res->bank_address, res->row, res->column);
|
|
}
|
|
|
|
edac_dbg(0, "%s\n", skx_msg);
|
|
|
|
/* Call the helper to output message */
|
|
edac_mc_handle_error(tp_event, mci, core_err_cnt,
|
|
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
|
|
res->channel, res->dimm, -1,
|
|
optype, skx_msg);
|
|
}
|
|
|
|
static struct mem_ctl_info *get_mci(int src_id, int lmc)
|
|
{
|
|
struct skx_dev *d;
|
|
|
|
if (lmc > NUM_IMC - 1) {
|
|
skx_printk(KERN_ERR, "Bad lmc %d\n", lmc);
|
|
return NULL;
|
|
}
|
|
|
|
list_for_each_entry(d, &skx_edac_list, list) {
|
|
if (d->imc[0].src_id == src_id)
|
|
return d->imc[lmc].mci;
|
|
}
|
|
|
|
skx_printk(KERN_ERR, "No mci for src_id %d lmc %d\n", src_id, lmc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct mce *mce = (struct mce *)data;
|
|
struct decoded_addr res;
|
|
struct mem_ctl_info *mci;
|
|
char *type;
|
|
|
|
if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
|
|
return NOTIFY_DONE;
|
|
|
|
/* ignore unless this is memory related with an address */
|
|
if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
|
|
return NOTIFY_DONE;
|
|
|
|
memset(&res, 0, sizeof(res));
|
|
res.addr = mce->addr;
|
|
|
|
if (adxl_component_count) {
|
|
if (!skx_adxl_decode(&res))
|
|
return NOTIFY_DONE;
|
|
|
|
mci = get_mci(res.socket, res.imc);
|
|
} else {
|
|
if (!skx_decode(&res))
|
|
return NOTIFY_DONE;
|
|
|
|
mci = res.dev->imc[res.imc].mci;
|
|
}
|
|
|
|
if (!mci)
|
|
return NOTIFY_DONE;
|
|
|
|
if (mce->mcgstatus & MCG_STATUS_MCIP)
|
|
type = "Exception";
|
|
else
|
|
type = "Event";
|
|
|
|
skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
|
|
|
|
skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
|
|
"Bank %d: %016Lx\n", mce->extcpu, type,
|
|
mce->mcgstatus, mce->bank, mce->status);
|
|
skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
|
|
skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
|
|
skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
|
|
|
|
skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
|
|
"%u APIC %x\n", mce->cpuvendor, mce->cpuid,
|
|
mce->time, mce->socketid, mce->apicid);
|
|
|
|
skx_mce_output_error(mci, mce, &res);
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block skx_mce_dec = {
|
|
.notifier_call = skx_mce_check_error,
|
|
.priority = MCE_PRIO_EDAC,
|
|
};
|
|
|
|
static void skx_remove(void)
|
|
{
|
|
int i, j;
|
|
struct skx_dev *d, *tmp;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
|
|
list_del(&d->list);
|
|
for (i = 0; i < NUM_IMC; i++) {
|
|
skx_unregister_mci(&d->imc[i]);
|
|
for (j = 0; j < NUM_CHANNELS; j++)
|
|
pci_dev_put(d->imc[i].chan[j].cdev);
|
|
}
|
|
pci_dev_put(d->util_all);
|
|
pci_dev_put(d->sad_all);
|
|
|
|
kfree(d);
|
|
}
|
|
}
|
|
|
|
static void __init skx_adxl_get(void)
|
|
{
|
|
const char * const *names;
|
|
int i, j;
|
|
|
|
names = adxl_get_component_names();
|
|
if (!names) {
|
|
skx_printk(KERN_NOTICE, "No firmware support for address translation.");
|
|
skx_printk(KERN_CONT, " Only decoding DDR4 address!\n");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < INDEX_MAX; i++) {
|
|
for (j = 0; names[j]; j++) {
|
|
if (!strcmp(component_names[i], names[j])) {
|
|
component_indices[i] = j;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!names[j])
|
|
goto err;
|
|
}
|
|
|
|
adxl_component_names = names;
|
|
while (*names++)
|
|
adxl_component_count++;
|
|
|
|
adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
|
|
GFP_KERNEL);
|
|
if (!adxl_values) {
|
|
adxl_component_count = 0;
|
|
return;
|
|
}
|
|
|
|
adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
|
|
if (!adxl_msg) {
|
|
adxl_component_count = 0;
|
|
kfree(adxl_values);
|
|
}
|
|
|
|
return;
|
|
err:
|
|
skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
|
|
component_names[i]);
|
|
for (j = 0; names[j]; j++)
|
|
skx_printk(KERN_CONT, "%s ", names[j]);
|
|
skx_printk(KERN_CONT, "\n");
|
|
}
|
|
|
|
static void __exit skx_adxl_put(void)
|
|
{
|
|
kfree(adxl_values);
|
|
kfree(adxl_msg);
|
|
}
|
|
|
|
/*
|
|
* skx_init:
|
|
* make sure we are running on the correct cpu model
|
|
* search for all the devices we need
|
|
* check which DIMMs are present.
|
|
*/
|
|
static int __init skx_init(void)
|
|
{
|
|
const struct x86_cpu_id *id;
|
|
const struct munit *m;
|
|
const char *owner;
|
|
int rc = 0, i;
|
|
u8 mc = 0, src_id, node_id;
|
|
struct skx_dev *d;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
owner = edac_get_owner();
|
|
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
|
|
return -EBUSY;
|
|
|
|
id = x86_match_cpu(skx_cpuids);
|
|
if (!id)
|
|
return -ENODEV;
|
|
|
|
rc = skx_get_hi_lo();
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = get_all_bus_mappings();
|
|
if (rc < 0)
|
|
goto fail;
|
|
if (rc == 0) {
|
|
edac_dbg(2, "No memory controllers found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
for (m = skx_all_munits; m->did; m++) {
|
|
rc = get_all_munits(m);
|
|
if (rc < 0)
|
|
goto fail;
|
|
if (rc != m->per_socket * skx_num_sockets) {
|
|
edac_dbg(2, "Expected %d, got %d of %x\n",
|
|
m->per_socket * skx_num_sockets, rc, m->did);
|
|
rc = -ENODEV;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(d, &skx_edac_list, list) {
|
|
src_id = get_src_id(d);
|
|
node_id = skx_get_node_id(d);
|
|
edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
|
|
for (i = 0; i < NUM_IMC; i++) {
|
|
d->imc[i].mc = mc++;
|
|
d->imc[i].lmc = i;
|
|
d->imc[i].src_id = src_id;
|
|
d->imc[i].node_id = node_id;
|
|
rc = skx_register_mci(&d->imc[i]);
|
|
if (rc < 0)
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
skx_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
|
|
if (!skx_msg) {
|
|
rc = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (nvdimm_count)
|
|
skx_adxl_get();
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
setup_skx_debug();
|
|
|
|
mce_register_decode_chain(&skx_mce_dec);
|
|
|
|
return 0;
|
|
fail:
|
|
skx_remove();
|
|
return rc;
|
|
}
|
|
|
|
static void __exit skx_exit(void)
|
|
{
|
|
edac_dbg(2, "\n");
|
|
mce_unregister_decode_chain(&skx_mce_dec);
|
|
skx_remove();
|
|
if (nvdimm_count)
|
|
skx_adxl_put();
|
|
kfree(skx_msg);
|
|
teardown_skx_debug();
|
|
}
|
|
|
|
module_init(skx_init);
|
|
module_exit(skx_exit);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Tony Luck");
|
|
MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
|