mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 14:17:17 +07:00
1ccea77e2a
Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details [based] [from] [clk] [highbank] [c] you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 355 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com> Reviewed-by: Steve Winslow <swinslow@gmail.com> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
319 lines
8.5 KiB
C
319 lines
8.5 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* User-space Probes (UProbes) for sparc
|
|
*
|
|
* Copyright (C) 2013 Oracle Inc.
|
|
*
|
|
* Authors:
|
|
* Jose E. Marchesi <jose.marchesi@oracle.com>
|
|
* Eric Saint Etienne <eric.saint.etienne@oracle.com>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/uprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched.h> /* For struct task_struct */
|
|
#include <linux/kdebug.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
/* Compute the address of the breakpoint instruction and return it.
|
|
*
|
|
* Note that uprobe_get_swbp_addr is defined as a weak symbol in
|
|
* kernel/events/uprobe.c.
|
|
*/
|
|
unsigned long uprobe_get_swbp_addr(struct pt_regs *regs)
|
|
{
|
|
return instruction_pointer(regs);
|
|
}
|
|
|
|
static void copy_to_page(struct page *page, unsigned long vaddr,
|
|
const void *src, int len)
|
|
{
|
|
void *kaddr = kmap_atomic(page);
|
|
|
|
memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
|
|
kunmap_atomic(kaddr);
|
|
}
|
|
|
|
/* Fill in the xol area with the probed instruction followed by the
|
|
* single-step trap. Some fixups in the copied instruction are
|
|
* performed at this point.
|
|
*
|
|
* Note that uprobe_xol_copy is defined as a weak symbol in
|
|
* kernel/events/uprobe.c.
|
|
*/
|
|
void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
|
|
void *src, unsigned long len)
|
|
{
|
|
const u32 stp_insn = UPROBE_STP_INSN;
|
|
u32 insn = *(u32 *) src;
|
|
|
|
/* Branches annulling their delay slot must be fixed to not do
|
|
* so. Clearing the annul bit on these instructions we can be
|
|
* sure the single-step breakpoint in the XOL slot will be
|
|
* executed.
|
|
*/
|
|
|
|
u32 op = (insn >> 30) & 0x3;
|
|
u32 op2 = (insn >> 22) & 0x7;
|
|
|
|
if (op == 0 &&
|
|
(op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) &&
|
|
(insn & ANNUL_BIT) == ANNUL_BIT)
|
|
insn &= ~ANNUL_BIT;
|
|
|
|
copy_to_page(page, vaddr, &insn, len);
|
|
copy_to_page(page, vaddr+len, &stp_insn, 4);
|
|
}
|
|
|
|
|
|
/* Instruction analysis/validity.
|
|
*
|
|
* This function returns 0 on success or a -ve number on error.
|
|
*/
|
|
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe,
|
|
struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
/* Any unsupported instruction? Then return -EINVAL */
|
|
return 0;
|
|
}
|
|
|
|
/* If INSN is a relative control transfer instruction, return the
|
|
* corrected branch destination value.
|
|
*
|
|
* Note that regs->tpc and regs->tnpc still hold the values of the
|
|
* program counters at the time of the single-step trap due to the
|
|
* execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4.
|
|
*
|
|
*/
|
|
static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask,
|
|
struct pt_regs *regs)
|
|
{
|
|
/* Branch not taken, no mods necessary. */
|
|
if (regs->tnpc == regs->tpc + 0x4UL)
|
|
return utask->autask.saved_tnpc + 0x4UL;
|
|
|
|
/* The three cases are call, branch w/prediction,
|
|
* and traditional branch.
|
|
*/
|
|
if ((insn & 0xc0000000) == 0x40000000 ||
|
|
(insn & 0xc1c00000) == 0x00400000 ||
|
|
(insn & 0xc1c00000) == 0x00800000) {
|
|
unsigned long real_pc = (unsigned long) utask->vaddr;
|
|
unsigned long ixol_addr = utask->xol_vaddr;
|
|
|
|
/* The instruction did all the work for us
|
|
* already, just apply the offset to the correct
|
|
* instruction location.
|
|
*/
|
|
return (real_pc + (regs->tnpc - ixol_addr));
|
|
}
|
|
|
|
/* It is jmpl or some other absolute PC modification instruction,
|
|
* leave NPC as-is.
|
|
*/
|
|
return regs->tnpc;
|
|
}
|
|
|
|
/* If INSN is an instruction which writes its PC location
|
|
* into a destination register, fix that up.
|
|
*/
|
|
static int retpc_fixup(struct pt_regs *regs, u32 insn,
|
|
unsigned long real_pc)
|
|
{
|
|
unsigned long *slot = NULL;
|
|
int rc = 0;
|
|
|
|
/* Simplest case is 'call', which always uses %o7 */
|
|
if ((insn & 0xc0000000) == 0x40000000)
|
|
slot = ®s->u_regs[UREG_I7];
|
|
|
|
/* 'jmpl' encodes the register inside of the opcode */
|
|
if ((insn & 0xc1f80000) == 0x81c00000) {
|
|
unsigned long rd = ((insn >> 25) & 0x1f);
|
|
|
|
if (rd <= 15) {
|
|
slot = ®s->u_regs[rd];
|
|
} else {
|
|
unsigned long fp = regs->u_regs[UREG_FP];
|
|
/* Hard case, it goes onto the stack. */
|
|
flushw_all();
|
|
|
|
rd -= 16;
|
|
if (test_thread_64bit_stack(fp)) {
|
|
unsigned long __user *uslot =
|
|
(unsigned long __user *) (fp + STACK_BIAS) + rd;
|
|
rc = __put_user(real_pc, uslot);
|
|
} else {
|
|
unsigned int __user *uslot = (unsigned int
|
|
__user *) fp + rd;
|
|
rc = __put_user((u32) real_pc, uslot);
|
|
}
|
|
}
|
|
}
|
|
if (slot != NULL)
|
|
*slot = real_pc;
|
|
return rc;
|
|
}
|
|
|
|
/* Single-stepping can be avoided for certain instructions: NOPs and
|
|
* instructions that can be emulated. This function determines
|
|
* whether the instruction where the uprobe is installed falls in one
|
|
* of these cases and emulates it.
|
|
*
|
|
* This function returns true if the single-stepping can be skipped,
|
|
* false otherwise.
|
|
*/
|
|
bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
|
{
|
|
/* We currently only emulate NOP instructions.
|
|
*/
|
|
|
|
if (auprobe->ixol == (1 << 24)) {
|
|
regs->tnpc += 4;
|
|
regs->tpc += 4;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Prepare to execute out of line. At this point
|
|
* current->utask->xol_vaddr points to an allocated XOL slot properly
|
|
* initialized with the original instruction and the single-stepping
|
|
* trap instruction.
|
|
*
|
|
* This function returns 0 on success, any other number on error.
|
|
*/
|
|
int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask = current->utask;
|
|
struct arch_uprobe_task *autask = ¤t->utask->autask;
|
|
|
|
/* Save the current program counters so they can be restored
|
|
* later.
|
|
*/
|
|
autask->saved_tpc = regs->tpc;
|
|
autask->saved_tnpc = regs->tnpc;
|
|
|
|
/* Adjust PC and NPC so the first instruction in the XOL slot
|
|
* will be executed by the user task.
|
|
*/
|
|
instruction_pointer_set(regs, utask->xol_vaddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Prepare to resume execution after the single-step. Called after
|
|
* single-stepping. To avoid the SMP problems that can occur when we
|
|
* temporarily put back the original opcode to single-step, we
|
|
* single-stepped a copy of the instruction.
|
|
*
|
|
* This function returns 0 on success, any other number on error.
|
|
*/
|
|
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask = current->utask;
|
|
struct arch_uprobe_task *autask = &utask->autask;
|
|
u32 insn = auprobe->ixol;
|
|
int rc = 0;
|
|
|
|
if (utask->state == UTASK_SSTEP_ACK) {
|
|
regs->tnpc = relbranch_fixup(insn, utask, regs);
|
|
regs->tpc = autask->saved_tnpc;
|
|
rc = retpc_fixup(regs, insn, (unsigned long) utask->vaddr);
|
|
} else {
|
|
regs->tnpc = utask->vaddr+4;
|
|
regs->tpc = autask->saved_tnpc+4;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Handler for uprobe traps. This is called from the traps table and
|
|
* triggers the proper die notification.
|
|
*/
|
|
asmlinkage void uprobe_trap(struct pt_regs *regs,
|
|
unsigned long trap_level)
|
|
{
|
|
BUG_ON(trap_level != 0x173 && trap_level != 0x174);
|
|
|
|
/* We are only interested in user-mode code. Uprobe traps
|
|
* shall not be present in kernel code.
|
|
*/
|
|
if (!user_mode(regs)) {
|
|
local_irq_enable();
|
|
bad_trap(regs, trap_level);
|
|
return;
|
|
}
|
|
|
|
/* trap_level == 0x173 --> ta 0x73
|
|
* trap_level == 0x174 --> ta 0x74
|
|
*/
|
|
if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP,
|
|
(trap_level == 0x173) ? "bpt" : "sstep",
|
|
regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
|
|
bad_trap(regs, trap_level);
|
|
}
|
|
|
|
/* Callback routine for handling die notifications.
|
|
*/
|
|
int arch_uprobe_exception_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
int ret = NOTIFY_DONE;
|
|
struct die_args *args = (struct die_args *)data;
|
|
|
|
/* We are only interested in userspace traps */
|
|
if (args->regs && !user_mode(args->regs))
|
|
return NOTIFY_DONE;
|
|
|
|
switch (val) {
|
|
case DIE_BPT:
|
|
if (uprobe_pre_sstep_notifier(args->regs))
|
|
ret = NOTIFY_STOP;
|
|
break;
|
|
|
|
case DIE_SSTEP:
|
|
if (uprobe_post_sstep_notifier(args->regs))
|
|
ret = NOTIFY_STOP;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This function gets called when a XOL instruction either gets
|
|
* trapped or the thread has a fatal signal, so reset the instruction
|
|
* pointer to its probed address.
|
|
*/
|
|
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
|
{
|
|
struct uprobe_task *utask = current->utask;
|
|
|
|
instruction_pointer_set(regs, utask->vaddr);
|
|
}
|
|
|
|
/* If xol insn itself traps and generates a signal(Say,
|
|
* SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
|
|
* instruction jumps back to its own address.
|
|
*/
|
|
bool arch_uprobe_xol_was_trapped(struct task_struct *t)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
unsigned long
|
|
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7];
|
|
|
|
regs->u_regs[UREG_I7] = trampoline_vaddr-8;
|
|
|
|
return orig_ret_vaddr + 8;
|
|
}
|