mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
15f5533152
This patch introduces support to Double Transfer Rate (DTR) SPI protocols. DTR is used only for Fast Read operations. According to manufacturer datasheets, whatever the number of I/O lines used during instruction (x) and address/mode/dummy (y) clock cycles, DTR is used only during data (z) clock cycles of SPI x-y-z protocols. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Reviewed-by: Marek Vasut <marek.vasut@gmail.com>
2036 lines
57 KiB
C
2036 lines
57 KiB
C
/*
|
|
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
|
|
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
|
|
*
|
|
* Copyright (C) 2005, Intec Automation Inc.
|
|
* Copyright (C) 2014, Freescale Semiconductor, Inc.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/spi/flash.h>
|
|
#include <linux/mtd/spi-nor.h>
|
|
|
|
/* Define max times to check status register before we give up. */
|
|
|
|
/*
|
|
* For everything but full-chip erase; probably could be much smaller, but kept
|
|
* around for safety for now
|
|
*/
|
|
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
|
|
|
|
/*
|
|
* For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
|
|
* for larger flash
|
|
*/
|
|
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
|
|
|
|
#define SPI_NOR_MAX_ID_LEN 6
|
|
#define SPI_NOR_MAX_ADDR_WIDTH 4
|
|
|
|
struct flash_info {
|
|
char *name;
|
|
|
|
/*
|
|
* This array stores the ID bytes.
|
|
* The first three bytes are the JEDIC ID.
|
|
* JEDEC ID zero means "no ID" (mostly older chips).
|
|
*/
|
|
u8 id[SPI_NOR_MAX_ID_LEN];
|
|
u8 id_len;
|
|
|
|
/* The size listed here is what works with SPINOR_OP_SE, which isn't
|
|
* necessarily called a "sector" by the vendor.
|
|
*/
|
|
unsigned sector_size;
|
|
u16 n_sectors;
|
|
|
|
u16 page_size;
|
|
u16 addr_width;
|
|
|
|
u16 flags;
|
|
#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
|
|
#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
|
|
#define SST_WRITE BIT(2) /* use SST byte programming */
|
|
#define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
|
|
#define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
|
|
#define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
|
|
#define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
|
|
#define USE_FSR BIT(7) /* use flag status register */
|
|
#define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
|
|
#define SPI_NOR_HAS_TB BIT(9) /*
|
|
* Flash SR has Top/Bottom (TB) protect
|
|
* bit. Must be used with
|
|
* SPI_NOR_HAS_LOCK.
|
|
*/
|
|
#define SPI_S3AN BIT(10) /*
|
|
* Xilinx Spartan 3AN In-System Flash
|
|
* (MFR cannot be used for probing
|
|
* because it has the same value as
|
|
* ATMEL flashes)
|
|
*/
|
|
#define SPI_NOR_4B_OPCODES BIT(11) /*
|
|
* Use dedicated 4byte address op codes
|
|
* to support memory size above 128Mib.
|
|
*/
|
|
#define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */
|
|
};
|
|
|
|
#define JEDEC_MFR(info) ((info)->id[0])
|
|
|
|
static const struct flash_info *spi_nor_match_id(const char *name);
|
|
|
|
/*
|
|
* Read the status register, returning its value in the location
|
|
* Return the status register value.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int read_sr(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
|
|
if (ret < 0) {
|
|
pr_err("error %d reading SR\n", (int) ret);
|
|
return ret;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Read the flag status register, returning its value in the location
|
|
* Return the status register value.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int read_fsr(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
|
|
if (ret < 0) {
|
|
pr_err("error %d reading FSR\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Read configuration register, returning its value in the
|
|
* location. Return the configuration register value.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int read_cr(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
|
|
if (ret < 0) {
|
|
dev_err(nor->dev, "error %d reading CR\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Write status register 1 byte
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static inline int write_sr(struct spi_nor *nor, u8 val)
|
|
{
|
|
nor->cmd_buf[0] = val;
|
|
return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
|
|
}
|
|
|
|
/*
|
|
* Set write enable latch with Write Enable command.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static inline int write_enable(struct spi_nor *nor)
|
|
{
|
|
return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Send write disable instruction to the chip.
|
|
*/
|
|
static inline int write_disable(struct spi_nor *nor)
|
|
{
|
|
return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
|
|
}
|
|
|
|
static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
|
|
{
|
|
return mtd->priv;
|
|
}
|
|
|
|
|
|
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (table[i][0] == opcode)
|
|
return table[i][1];
|
|
|
|
/* No conversion found, keep input op code. */
|
|
return opcode;
|
|
}
|
|
|
|
static inline u8 spi_nor_convert_3to4_read(u8 opcode)
|
|
{
|
|
static const u8 spi_nor_3to4_read[][2] = {
|
|
{ SPINOR_OP_READ, SPINOR_OP_READ_4B },
|
|
{ SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
|
|
{ SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
|
|
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
|
|
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
|
|
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
|
|
|
|
{ SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
|
|
{ SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
|
|
{ SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
|
|
};
|
|
|
|
return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
|
|
ARRAY_SIZE(spi_nor_3to4_read));
|
|
}
|
|
|
|
static inline u8 spi_nor_convert_3to4_program(u8 opcode)
|
|
{
|
|
static const u8 spi_nor_3to4_program[][2] = {
|
|
{ SPINOR_OP_PP, SPINOR_OP_PP_4B },
|
|
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
|
|
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
|
|
};
|
|
|
|
return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
|
|
ARRAY_SIZE(spi_nor_3to4_program));
|
|
}
|
|
|
|
static inline u8 spi_nor_convert_3to4_erase(u8 opcode)
|
|
{
|
|
static const u8 spi_nor_3to4_erase[][2] = {
|
|
{ SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
|
|
{ SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
|
|
{ SPINOR_OP_SE, SPINOR_OP_SE_4B },
|
|
};
|
|
|
|
return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
|
|
ARRAY_SIZE(spi_nor_3to4_erase));
|
|
}
|
|
|
|
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
|
|
const struct flash_info *info)
|
|
{
|
|
/* Do some manufacturer fixups first */
|
|
switch (JEDEC_MFR(info)) {
|
|
case SNOR_MFR_SPANSION:
|
|
/* No small sector erase for 4-byte command set */
|
|
nor->erase_opcode = SPINOR_OP_SE;
|
|
nor->mtd.erasesize = info->sector_size;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
|
|
nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
|
|
nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
|
|
}
|
|
|
|
/* Enable/disable 4-byte addressing mode. */
|
|
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
|
|
int enable)
|
|
{
|
|
int status;
|
|
bool need_wren = false;
|
|
u8 cmd;
|
|
|
|
switch (JEDEC_MFR(info)) {
|
|
case SNOR_MFR_MICRON:
|
|
/* Some Micron need WREN command; all will accept it */
|
|
need_wren = true;
|
|
case SNOR_MFR_MACRONIX:
|
|
case SNOR_MFR_WINBOND:
|
|
if (need_wren)
|
|
write_enable(nor);
|
|
|
|
cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
|
|
status = nor->write_reg(nor, cmd, NULL, 0);
|
|
if (need_wren)
|
|
write_disable(nor);
|
|
|
|
return status;
|
|
default:
|
|
/* Spansion style */
|
|
nor->cmd_buf[0] = enable << 7;
|
|
return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
|
|
}
|
|
}
|
|
|
|
static int s3an_sr_ready(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
|
|
if (ret < 0) {
|
|
dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
|
|
return ret;
|
|
}
|
|
|
|
return !!(val & XSR_RDY);
|
|
}
|
|
|
|
static inline int spi_nor_sr_ready(struct spi_nor *nor)
|
|
{
|
|
int sr = read_sr(nor);
|
|
if (sr < 0)
|
|
return sr;
|
|
else
|
|
return !(sr & SR_WIP);
|
|
}
|
|
|
|
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
|
|
{
|
|
int fsr = read_fsr(nor);
|
|
if (fsr < 0)
|
|
return fsr;
|
|
else
|
|
return fsr & FSR_READY;
|
|
}
|
|
|
|
static int spi_nor_ready(struct spi_nor *nor)
|
|
{
|
|
int sr, fsr;
|
|
|
|
if (nor->flags & SNOR_F_READY_XSR_RDY)
|
|
sr = s3an_sr_ready(nor);
|
|
else
|
|
sr = spi_nor_sr_ready(nor);
|
|
if (sr < 0)
|
|
return sr;
|
|
fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
|
|
if (fsr < 0)
|
|
return fsr;
|
|
return sr && fsr;
|
|
}
|
|
|
|
/*
|
|
* Service routine to read status register until ready, or timeout occurs.
|
|
* Returns non-zero if error.
|
|
*/
|
|
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
|
|
unsigned long timeout_jiffies)
|
|
{
|
|
unsigned long deadline;
|
|
int timeout = 0, ret;
|
|
|
|
deadline = jiffies + timeout_jiffies;
|
|
|
|
while (!timeout) {
|
|
if (time_after_eq(jiffies, deadline))
|
|
timeout = 1;
|
|
|
|
ret = spi_nor_ready(nor);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret)
|
|
return 0;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
dev_err(nor->dev, "flash operation timed out\n");
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int spi_nor_wait_till_ready(struct spi_nor *nor)
|
|
{
|
|
return spi_nor_wait_till_ready_with_timeout(nor,
|
|
DEFAULT_READY_WAIT_JIFFIES);
|
|
}
|
|
|
|
/*
|
|
* Erase the whole flash memory
|
|
*
|
|
* Returns 0 if successful, non-zero otherwise.
|
|
*/
|
|
static int erase_chip(struct spi_nor *nor)
|
|
{
|
|
dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
|
|
|
|
return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
|
|
}
|
|
|
|
static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&nor->lock);
|
|
|
|
if (nor->prepare) {
|
|
ret = nor->prepare(nor, ops);
|
|
if (ret) {
|
|
dev_err(nor->dev, "failed in the preparation.\n");
|
|
mutex_unlock(&nor->lock);
|
|
return ret;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
|
|
{
|
|
if (nor->unprepare)
|
|
nor->unprepare(nor, ops);
|
|
mutex_unlock(&nor->lock);
|
|
}
|
|
|
|
/*
|
|
* This code converts an address to the Default Address Mode, that has non
|
|
* power of two page sizes. We must support this mode because it is the default
|
|
* mode supported by Xilinx tools, it can access the whole flash area and
|
|
* changing over to the Power-of-two mode is irreversible and corrupts the
|
|
* original data.
|
|
* Addr can safely be unsigned int, the biggest S3AN device is smaller than
|
|
* 4 MiB.
|
|
*/
|
|
static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
|
|
{
|
|
unsigned int offset;
|
|
unsigned int page;
|
|
|
|
offset = addr % nor->page_size;
|
|
page = addr / nor->page_size;
|
|
page <<= (nor->page_size > 512) ? 10 : 9;
|
|
|
|
return page | offset;
|
|
}
|
|
|
|
/*
|
|
* Initiate the erasure of a single sector
|
|
*/
|
|
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
|
|
{
|
|
u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
|
|
int i;
|
|
|
|
if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
|
|
addr = spi_nor_s3an_addr_convert(nor, addr);
|
|
|
|
if (nor->erase)
|
|
return nor->erase(nor, addr);
|
|
|
|
/*
|
|
* Default implementation, if driver doesn't have a specialized HW
|
|
* control
|
|
*/
|
|
for (i = nor->addr_width - 1; i >= 0; i--) {
|
|
buf[i] = addr & 0xff;
|
|
addr >>= 8;
|
|
}
|
|
|
|
return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
|
|
}
|
|
|
|
/*
|
|
* Erase an address range on the nor chip. The address range may extend
|
|
* one or more erase sectors. Return an error is there is a problem erasing.
|
|
*/
|
|
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
u32 addr, len;
|
|
uint32_t rem;
|
|
int ret;
|
|
|
|
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
|
|
(long long)instr->len);
|
|
|
|
div_u64_rem(instr->len, mtd->erasesize, &rem);
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
addr = instr->addr;
|
|
len = instr->len;
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* whole-chip erase? */
|
|
if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
|
|
unsigned long timeout;
|
|
|
|
write_enable(nor);
|
|
|
|
if (erase_chip(nor)) {
|
|
ret = -EIO;
|
|
goto erase_err;
|
|
}
|
|
|
|
/*
|
|
* Scale the timeout linearly with the size of the flash, with
|
|
* a minimum calibrated to an old 2MB flash. We could try to
|
|
* pull these from CFI/SFDP, but these values should be good
|
|
* enough for now.
|
|
*/
|
|
timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
|
|
CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
|
|
(unsigned long)(mtd->size / SZ_2M));
|
|
ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
|
|
if (ret)
|
|
goto erase_err;
|
|
|
|
/* REVISIT in some cases we could speed up erasing large regions
|
|
* by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
|
|
* to use "small sector erase", but that's not always optimal.
|
|
*/
|
|
|
|
/* "sector"-at-a-time erase */
|
|
} else {
|
|
while (len) {
|
|
write_enable(nor);
|
|
|
|
ret = spi_nor_erase_sector(nor, addr);
|
|
if (ret)
|
|
goto erase_err;
|
|
|
|
addr += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto erase_err;
|
|
}
|
|
}
|
|
|
|
write_disable(nor);
|
|
|
|
erase_err:
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
|
|
|
|
instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
|
|
uint64_t *len)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
|
|
int shift = ffs(mask) - 1;
|
|
int pow;
|
|
|
|
if (!(sr & mask)) {
|
|
/* No protection */
|
|
*ofs = 0;
|
|
*len = 0;
|
|
} else {
|
|
pow = ((sr & mask) ^ mask) >> shift;
|
|
*len = mtd->size >> pow;
|
|
if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
|
|
*ofs = 0;
|
|
else
|
|
*ofs = mtd->size - *len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the entire region is locked (if @locked is true) or unlocked (if
|
|
* @locked is false); 0 otherwise
|
|
*/
|
|
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
|
|
u8 sr, bool locked)
|
|
{
|
|
loff_t lock_offs;
|
|
uint64_t lock_len;
|
|
|
|
if (!len)
|
|
return 1;
|
|
|
|
stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
|
|
|
|
if (locked)
|
|
/* Requested range is a sub-range of locked range */
|
|
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
|
|
else
|
|
/* Requested range does not overlap with locked range */
|
|
return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
|
|
}
|
|
|
|
static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
|
|
u8 sr)
|
|
{
|
|
return stm_check_lock_status_sr(nor, ofs, len, sr, true);
|
|
}
|
|
|
|
static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
|
|
u8 sr)
|
|
{
|
|
return stm_check_lock_status_sr(nor, ofs, len, sr, false);
|
|
}
|
|
|
|
/*
|
|
* Lock a region of the flash. Compatible with ST Micro and similar flash.
|
|
* Supports the block protection bits BP{0,1,2} in the status register
|
|
* (SR). Does not support these features found in newer SR bitfields:
|
|
* - SEC: sector/block protect - only handle SEC=0 (block protect)
|
|
* - CMP: complement protect - only support CMP=0 (range is not complemented)
|
|
*
|
|
* Support for the following is provided conditionally for some flash:
|
|
* - TB: top/bottom protect
|
|
*
|
|
* Sample table portion for 8MB flash (Winbond w25q64fw):
|
|
*
|
|
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
|
|
* --------------------------------------------------------------------------
|
|
* X | X | 0 | 0 | 0 | NONE | NONE
|
|
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
|
|
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
|
|
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
|
|
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
|
|
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
|
|
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
|
|
* X | X | 1 | 1 | 1 | 8 MB | ALL
|
|
* ------|-------|-------|-------|-------|---------------|-------------------
|
|
* 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
|
|
* 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
|
|
* 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
|
|
* 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
|
|
* 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
|
|
* 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
|
|
*
|
|
* Returns negative on errors, 0 on success.
|
|
*/
|
|
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
int status_old, status_new;
|
|
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
|
|
u8 shift = ffs(mask) - 1, pow, val;
|
|
loff_t lock_len;
|
|
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
|
|
bool use_top;
|
|
int ret;
|
|
|
|
status_old = read_sr(nor);
|
|
if (status_old < 0)
|
|
return status_old;
|
|
|
|
/* If nothing in our range is unlocked, we don't need to do anything */
|
|
if (stm_is_locked_sr(nor, ofs, len, status_old))
|
|
return 0;
|
|
|
|
/* If anything below us is unlocked, we can't use 'bottom' protection */
|
|
if (!stm_is_locked_sr(nor, 0, ofs, status_old))
|
|
can_be_bottom = false;
|
|
|
|
/* If anything above us is unlocked, we can't use 'top' protection */
|
|
if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
|
|
status_old))
|
|
can_be_top = false;
|
|
|
|
if (!can_be_bottom && !can_be_top)
|
|
return -EINVAL;
|
|
|
|
/* Prefer top, if both are valid */
|
|
use_top = can_be_top;
|
|
|
|
/* lock_len: length of region that should end up locked */
|
|
if (use_top)
|
|
lock_len = mtd->size - ofs;
|
|
else
|
|
lock_len = ofs + len;
|
|
|
|
/*
|
|
* Need smallest pow such that:
|
|
*
|
|
* 1 / (2^pow) <= (len / size)
|
|
*
|
|
* so (assuming power-of-2 size) we do:
|
|
*
|
|
* pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
|
|
*/
|
|
pow = ilog2(mtd->size) - ilog2(lock_len);
|
|
val = mask - (pow << shift);
|
|
if (val & ~mask)
|
|
return -EINVAL;
|
|
/* Don't "lock" with no region! */
|
|
if (!(val & mask))
|
|
return -EINVAL;
|
|
|
|
status_new = (status_old & ~mask & ~SR_TB) | val;
|
|
|
|
/* Disallow further writes if WP pin is asserted */
|
|
status_new |= SR_SRWD;
|
|
|
|
if (!use_top)
|
|
status_new |= SR_TB;
|
|
|
|
/* Don't bother if they're the same */
|
|
if (status_new == status_old)
|
|
return 0;
|
|
|
|
/* Only modify protection if it will not unlock other areas */
|
|
if ((status_new & mask) < (status_old & mask))
|
|
return -EINVAL;
|
|
|
|
write_enable(nor);
|
|
ret = write_sr(nor, status_new);
|
|
if (ret)
|
|
return ret;
|
|
return spi_nor_wait_till_ready(nor);
|
|
}
|
|
|
|
/*
|
|
* Unlock a region of the flash. See stm_lock() for more info
|
|
*
|
|
* Returns negative on errors, 0 on success.
|
|
*/
|
|
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
int status_old, status_new;
|
|
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
|
|
u8 shift = ffs(mask) - 1, pow, val;
|
|
loff_t lock_len;
|
|
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
|
|
bool use_top;
|
|
int ret;
|
|
|
|
status_old = read_sr(nor);
|
|
if (status_old < 0)
|
|
return status_old;
|
|
|
|
/* If nothing in our range is locked, we don't need to do anything */
|
|
if (stm_is_unlocked_sr(nor, ofs, len, status_old))
|
|
return 0;
|
|
|
|
/* If anything below us is locked, we can't use 'top' protection */
|
|
if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
|
|
can_be_top = false;
|
|
|
|
/* If anything above us is locked, we can't use 'bottom' protection */
|
|
if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
|
|
status_old))
|
|
can_be_bottom = false;
|
|
|
|
if (!can_be_bottom && !can_be_top)
|
|
return -EINVAL;
|
|
|
|
/* Prefer top, if both are valid */
|
|
use_top = can_be_top;
|
|
|
|
/* lock_len: length of region that should remain locked */
|
|
if (use_top)
|
|
lock_len = mtd->size - (ofs + len);
|
|
else
|
|
lock_len = ofs;
|
|
|
|
/*
|
|
* Need largest pow such that:
|
|
*
|
|
* 1 / (2^pow) >= (len / size)
|
|
*
|
|
* so (assuming power-of-2 size) we do:
|
|
*
|
|
* pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
|
|
*/
|
|
pow = ilog2(mtd->size) - order_base_2(lock_len);
|
|
if (lock_len == 0) {
|
|
val = 0; /* fully unlocked */
|
|
} else {
|
|
val = mask - (pow << shift);
|
|
/* Some power-of-two sizes are not supported */
|
|
if (val & ~mask)
|
|
return -EINVAL;
|
|
}
|
|
|
|
status_new = (status_old & ~mask & ~SR_TB) | val;
|
|
|
|
/* Don't protect status register if we're fully unlocked */
|
|
if (lock_len == 0)
|
|
status_new &= ~SR_SRWD;
|
|
|
|
if (!use_top)
|
|
status_new |= SR_TB;
|
|
|
|
/* Don't bother if they're the same */
|
|
if (status_new == status_old)
|
|
return 0;
|
|
|
|
/* Only modify protection if it will not lock other areas */
|
|
if ((status_new & mask) > (status_old & mask))
|
|
return -EINVAL;
|
|
|
|
write_enable(nor);
|
|
ret = write_sr(nor, status_new);
|
|
if (ret)
|
|
return ret;
|
|
return spi_nor_wait_till_ready(nor);
|
|
}
|
|
|
|
/*
|
|
* Check if a region of the flash is (completely) locked. See stm_lock() for
|
|
* more info.
|
|
*
|
|
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
|
|
* negative on errors.
|
|
*/
|
|
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
|
|
{
|
|
int status;
|
|
|
|
status = read_sr(nor);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
return stm_is_locked_sr(nor, ofs, len, status);
|
|
}
|
|
|
|
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->flash_lock(nor, ofs, len);
|
|
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->flash_unlock(nor, ofs, len);
|
|
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->flash_is_locked(nor, ofs, len);
|
|
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
|
|
return ret;
|
|
}
|
|
|
|
/* Used when the "_ext_id" is two bytes at most */
|
|
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
|
|
.id = { \
|
|
((_jedec_id) >> 16) & 0xff, \
|
|
((_jedec_id) >> 8) & 0xff, \
|
|
(_jedec_id) & 0xff, \
|
|
((_ext_id) >> 8) & 0xff, \
|
|
(_ext_id) & 0xff, \
|
|
}, \
|
|
.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = 256, \
|
|
.flags = (_flags),
|
|
|
|
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
|
|
.id = { \
|
|
((_jedec_id) >> 16) & 0xff, \
|
|
((_jedec_id) >> 8) & 0xff, \
|
|
(_jedec_id) & 0xff, \
|
|
((_ext_id) >> 16) & 0xff, \
|
|
((_ext_id) >> 8) & 0xff, \
|
|
(_ext_id) & 0xff, \
|
|
}, \
|
|
.id_len = 6, \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = 256, \
|
|
.flags = (_flags),
|
|
|
|
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = (_page_size), \
|
|
.addr_width = (_addr_width), \
|
|
.flags = (_flags),
|
|
|
|
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
|
|
.id = { \
|
|
((_jedec_id) >> 16) & 0xff, \
|
|
((_jedec_id) >> 8) & 0xff, \
|
|
(_jedec_id) & 0xff \
|
|
}, \
|
|
.id_len = 3, \
|
|
.sector_size = (8*_page_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = _page_size, \
|
|
.addr_width = 3, \
|
|
.flags = SPI_NOR_NO_FR | SPI_S3AN,
|
|
|
|
/* NOTE: double check command sets and memory organization when you add
|
|
* more nor chips. This current list focusses on newer chips, which
|
|
* have been converging on command sets which including JEDEC ID.
|
|
*
|
|
* All newly added entries should describe *hardware* and should use SECT_4K
|
|
* (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
|
|
* scenarios excluding small sectors there is config option that can be
|
|
* disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
|
|
* For historical (and compatibility) reasons (before we got above config) some
|
|
* old entries may be missing 4K flag.
|
|
*/
|
|
static const struct flash_info spi_nor_ids[] = {
|
|
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
|
|
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
|
|
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
|
|
|
|
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
|
|
|
|
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
|
|
|
|
{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
|
|
|
|
/* EON -- en25xxx */
|
|
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
|
|
{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
|
|
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
|
|
{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
|
|
{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
|
|
{ "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
|
|
|
|
/* ESMT */
|
|
{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
|
|
{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
|
|
{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
|
|
|
|
/* Everspin */
|
|
{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
|
|
/* Fujitsu */
|
|
{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
|
|
|
|
/* GigaDevice */
|
|
{
|
|
"gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
|
|
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
|
|
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
|
|
},
|
|
{
|
|
"gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
|
|
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
|
|
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
|
|
},
|
|
{
|
|
"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
|
|
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
|
|
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
|
|
},
|
|
{
|
|
"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
|
|
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
|
|
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
|
|
},
|
|
{
|
|
"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
|
|
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
|
|
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
|
|
},
|
|
|
|
/* Intel/Numonyx -- xxxs33b */
|
|
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
|
|
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
|
|
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
|
|
|
|
/* ISSI */
|
|
{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
|
|
|
|
/* Macronix */
|
|
{ "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
|
|
{ "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
|
|
{ "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
|
|
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
|
|
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
|
|
{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
|
|
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
|
|
{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
|
|
{ "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
|
|
|
|
/* Micron */
|
|
{ "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
|
|
{ "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
|
|
{ "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
|
|
{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
|
|
{ "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
|
|
{ "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
|
|
{ "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
|
|
|
|
/* PMC */
|
|
{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
|
|
{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
|
|
{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
|
|
|
|
/* Spansion -- single (large) sector size only, at least
|
|
* for the chips listed here (without boot sectors).
|
|
*/
|
|
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
|
|
{ "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
|
|
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
|
|
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
|
|
{ "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
|
|
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
|
|
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
|
|
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
|
|
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
|
|
{ "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
{ "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
|
|
{ "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) },
|
|
|
|
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
|
|
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
|
|
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
|
|
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
|
|
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
|
|
{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
|
|
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
|
|
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
|
|
{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
|
|
{ "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
|
|
|
|
/* ST Microelectronics -- newer production may have feature updates */
|
|
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
|
|
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
|
|
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
|
|
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
|
|
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
|
|
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
|
|
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
|
|
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
|
|
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
|
|
|
|
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
|
|
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
|
|
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
|
|
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
|
|
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
|
|
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
|
|
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
|
|
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
|
|
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
|
|
|
|
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
|
|
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
|
|
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
|
|
|
|
{ "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
|
|
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
|
|
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
|
|
|
|
{ "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
|
|
{ "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
|
|
|
|
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
|
|
{ "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
|
|
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
|
|
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{
|
|
"w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
|
|
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
|
|
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
|
|
},
|
|
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
|
|
{
|
|
"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
|
|
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
|
|
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
|
|
},
|
|
{
|
|
"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
|
|
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
|
|
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
|
|
},
|
|
{ "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
|
|
{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
|
|
|
|
/* Catalyst / On Semiconductor -- non-JEDEC */
|
|
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
|
|
/* Xilinx S3AN Internal Flash */
|
|
{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
|
|
{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
|
|
{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
|
|
{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
|
|
{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
|
|
{ },
|
|
};
|
|
|
|
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
|
|
{
|
|
int tmp;
|
|
u8 id[SPI_NOR_MAX_ID_LEN];
|
|
const struct flash_info *info;
|
|
|
|
tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
|
|
if (tmp < 0) {
|
|
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
|
|
return ERR_PTR(tmp);
|
|
}
|
|
|
|
for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
|
|
info = &spi_nor_ids[tmp];
|
|
if (info->id_len) {
|
|
if (!memcmp(info->id, id, info->id_len))
|
|
return &spi_nor_ids[tmp];
|
|
}
|
|
}
|
|
dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
|
|
id[0], id[1], id[2]);
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
|
|
if (ret)
|
|
return ret;
|
|
|
|
while (len) {
|
|
loff_t addr = from;
|
|
|
|
if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
|
|
addr = spi_nor_s3an_addr_convert(nor, addr);
|
|
|
|
ret = nor->read(nor, addr, len, buf);
|
|
if (ret == 0) {
|
|
/* We shouldn't see 0-length reads */
|
|
ret = -EIO;
|
|
goto read_err;
|
|
}
|
|
if (ret < 0)
|
|
goto read_err;
|
|
|
|
WARN_ON(ret > len);
|
|
*retlen += ret;
|
|
buf += ret;
|
|
from += ret;
|
|
len -= ret;
|
|
}
|
|
ret = 0;
|
|
|
|
read_err:
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
|
|
return ret;
|
|
}
|
|
|
|
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
size_t actual;
|
|
int ret;
|
|
|
|
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
write_enable(nor);
|
|
|
|
nor->sst_write_second = false;
|
|
|
|
actual = to % 2;
|
|
/* Start write from odd address. */
|
|
if (actual) {
|
|
nor->program_opcode = SPINOR_OP_BP;
|
|
|
|
/* write one byte. */
|
|
ret = nor->write(nor, to, 1, buf);
|
|
if (ret < 0)
|
|
goto sst_write_err;
|
|
WARN(ret != 1, "While writing 1 byte written %i bytes\n",
|
|
(int)ret);
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto sst_write_err;
|
|
}
|
|
to += actual;
|
|
|
|
/* Write out most of the data here. */
|
|
for (; actual < len - 1; actual += 2) {
|
|
nor->program_opcode = SPINOR_OP_AAI_WP;
|
|
|
|
/* write two bytes. */
|
|
ret = nor->write(nor, to, 2, buf + actual);
|
|
if (ret < 0)
|
|
goto sst_write_err;
|
|
WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
|
|
(int)ret);
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto sst_write_err;
|
|
to += 2;
|
|
nor->sst_write_second = true;
|
|
}
|
|
nor->sst_write_second = false;
|
|
|
|
write_disable(nor);
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto sst_write_err;
|
|
|
|
/* Write out trailing byte if it exists. */
|
|
if (actual != len) {
|
|
write_enable(nor);
|
|
|
|
nor->program_opcode = SPINOR_OP_BP;
|
|
ret = nor->write(nor, to, 1, buf + actual);
|
|
if (ret < 0)
|
|
goto sst_write_err;
|
|
WARN(ret != 1, "While writing 1 byte written %i bytes\n",
|
|
(int)ret);
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto sst_write_err;
|
|
write_disable(nor);
|
|
actual += 1;
|
|
}
|
|
sst_write_err:
|
|
*retlen += actual;
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write an address range to the nor chip. Data must be written in
|
|
* FLASH_PAGESIZE chunks. The address range may be any size provided
|
|
* it is within the physical boundaries.
|
|
*/
|
|
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
size_t page_offset, page_remain, i;
|
|
ssize_t ret;
|
|
|
|
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
|
|
|
|
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < len; ) {
|
|
ssize_t written;
|
|
loff_t addr = to + i;
|
|
|
|
/*
|
|
* If page_size is a power of two, the offset can be quickly
|
|
* calculated with an AND operation. On the other cases we
|
|
* need to do a modulus operation (more expensive).
|
|
* Power of two numbers have only one bit set and we can use
|
|
* the instruction hweight32 to detect if we need to do a
|
|
* modulus (do_div()) or not.
|
|
*/
|
|
if (hweight32(nor->page_size) == 1) {
|
|
page_offset = addr & (nor->page_size - 1);
|
|
} else {
|
|
uint64_t aux = addr;
|
|
|
|
page_offset = do_div(aux, nor->page_size);
|
|
}
|
|
/* the size of data remaining on the first page */
|
|
page_remain = min_t(size_t,
|
|
nor->page_size - page_offset, len - i);
|
|
|
|
if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
|
|
addr = spi_nor_s3an_addr_convert(nor, addr);
|
|
|
|
write_enable(nor);
|
|
ret = nor->write(nor, addr, page_remain, buf + i);
|
|
if (ret < 0)
|
|
goto write_err;
|
|
written = ret;
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto write_err;
|
|
*retlen += written;
|
|
i += written;
|
|
if (written != page_remain) {
|
|
dev_err(nor->dev,
|
|
"While writing %zu bytes written %zd bytes\n",
|
|
page_remain, written);
|
|
ret = -EIO;
|
|
goto write_err;
|
|
}
|
|
}
|
|
|
|
write_err:
|
|
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
|
|
return ret;
|
|
}
|
|
|
|
static int macronix_quad_enable(struct spi_nor *nor)
|
|
{
|
|
int ret, val;
|
|
|
|
val = read_sr(nor);
|
|
if (val < 0)
|
|
return val;
|
|
if (val & SR_QUAD_EN_MX)
|
|
return 0;
|
|
|
|
write_enable(nor);
|
|
|
|
write_sr(nor, val | SR_QUAD_EN_MX);
|
|
|
|
if (spi_nor_wait_till_ready(nor))
|
|
return 1;
|
|
|
|
ret = read_sr(nor);
|
|
if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
|
|
dev_err(nor->dev, "Macronix Quad bit not set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write status Register and configuration register with 2 bytes
|
|
* The first byte will be written to the status register, while the
|
|
* second byte will be written to the configuration register.
|
|
* Return negative if error occurred.
|
|
*/
|
|
static int write_sr_cr(struct spi_nor *nor, u16 val)
|
|
{
|
|
nor->cmd_buf[0] = val & 0xff;
|
|
nor->cmd_buf[1] = (val >> 8);
|
|
|
|
return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
|
|
}
|
|
|
|
static int spansion_quad_enable(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
int quad_en = CR_QUAD_EN_SPAN << 8;
|
|
|
|
write_enable(nor);
|
|
|
|
ret = write_sr_cr(nor, quad_en);
|
|
if (ret < 0) {
|
|
dev_err(nor->dev,
|
|
"error while writing configuration register\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret) {
|
|
dev_err(nor->dev,
|
|
"timeout while writing configuration register\n");
|
|
return ret;
|
|
}
|
|
|
|
/* read back and check it */
|
|
ret = read_cr(nor);
|
|
if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
|
|
dev_err(nor->dev, "Spansion Quad bit not set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_check(struct spi_nor *nor)
|
|
{
|
|
if (!nor->dev || !nor->read || !nor->write ||
|
|
!nor->read_reg || !nor->write_reg) {
|
|
pr_err("spi-nor: please fill all the necessary fields!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
|
|
if (ret < 0) {
|
|
dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
|
|
return ret;
|
|
}
|
|
|
|
nor->erase_opcode = SPINOR_OP_XSE;
|
|
nor->program_opcode = SPINOR_OP_XPP;
|
|
nor->read_opcode = SPINOR_OP_READ;
|
|
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
|
|
|
|
/*
|
|
* This flashes have a page size of 264 or 528 bytes (known as
|
|
* Default addressing mode). It can be changed to a more standard
|
|
* Power of two mode where the page size is 256/512. This comes
|
|
* with a price: there is 3% less of space, the data is corrupted
|
|
* and the page size cannot be changed back to default addressing
|
|
* mode.
|
|
*
|
|
* The current addressing mode can be read from the XRDSR register
|
|
* and should not be changed, because is a destructive operation.
|
|
*/
|
|
if (val & XSR_PAGESIZE) {
|
|
/* Flash in Power of 2 mode */
|
|
nor->page_size = (nor->page_size == 264) ? 256 : 512;
|
|
nor->mtd.writebufsize = nor->page_size;
|
|
nor->mtd.size = 8 * nor->page_size * info->n_sectors;
|
|
nor->mtd.erasesize = 8 * nor->page_size;
|
|
} else {
|
|
/* Flash in Default addressing mode */
|
|
nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct spi_nor_read_command {
|
|
u8 num_mode_clocks;
|
|
u8 num_wait_states;
|
|
u8 opcode;
|
|
enum spi_nor_protocol proto;
|
|
};
|
|
|
|
struct spi_nor_pp_command {
|
|
u8 opcode;
|
|
enum spi_nor_protocol proto;
|
|
};
|
|
|
|
enum spi_nor_read_command_index {
|
|
SNOR_CMD_READ,
|
|
SNOR_CMD_READ_FAST,
|
|
SNOR_CMD_READ_1_1_1_DTR,
|
|
|
|
/* Dual SPI */
|
|
SNOR_CMD_READ_1_1_2,
|
|
SNOR_CMD_READ_1_2_2,
|
|
SNOR_CMD_READ_2_2_2,
|
|
SNOR_CMD_READ_1_2_2_DTR,
|
|
|
|
/* Quad SPI */
|
|
SNOR_CMD_READ_1_1_4,
|
|
SNOR_CMD_READ_1_4_4,
|
|
SNOR_CMD_READ_4_4_4,
|
|
SNOR_CMD_READ_1_4_4_DTR,
|
|
|
|
SNOR_CMD_READ_MAX
|
|
};
|
|
|
|
enum spi_nor_pp_command_index {
|
|
SNOR_CMD_PP,
|
|
|
|
/* Quad SPI */
|
|
SNOR_CMD_PP_1_1_4,
|
|
SNOR_CMD_PP_1_4_4,
|
|
SNOR_CMD_PP_4_4_4,
|
|
|
|
SNOR_CMD_PP_MAX
|
|
};
|
|
|
|
struct spi_nor_flash_parameter {
|
|
u64 size;
|
|
u32 page_size;
|
|
|
|
struct spi_nor_hwcaps hwcaps;
|
|
struct spi_nor_read_command reads[SNOR_CMD_READ_MAX];
|
|
struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX];
|
|
|
|
int (*quad_enable)(struct spi_nor *nor);
|
|
};
|
|
|
|
static void
|
|
spi_nor_set_read_settings(struct spi_nor_read_command *read,
|
|
u8 num_mode_clocks,
|
|
u8 num_wait_states,
|
|
u8 opcode,
|
|
enum spi_nor_protocol proto)
|
|
{
|
|
read->num_mode_clocks = num_mode_clocks;
|
|
read->num_wait_states = num_wait_states;
|
|
read->opcode = opcode;
|
|
read->proto = proto;
|
|
}
|
|
|
|
static void
|
|
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
|
|
u8 opcode,
|
|
enum spi_nor_protocol proto)
|
|
{
|
|
pp->opcode = opcode;
|
|
pp->proto = proto;
|
|
}
|
|
|
|
static int spi_nor_init_params(struct spi_nor *nor,
|
|
const struct flash_info *info,
|
|
struct spi_nor_flash_parameter *params)
|
|
{
|
|
/* Set legacy flash parameters as default. */
|
|
memset(params, 0, sizeof(*params));
|
|
|
|
/* Set SPI NOR sizes. */
|
|
params->size = info->sector_size * info->n_sectors;
|
|
params->page_size = info->page_size;
|
|
|
|
/* (Fast) Read settings. */
|
|
params->hwcaps.mask |= SNOR_HWCAPS_READ;
|
|
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
|
|
0, 0, SPINOR_OP_READ,
|
|
SNOR_PROTO_1_1_1);
|
|
|
|
if (!(info->flags & SPI_NOR_NO_FR)) {
|
|
params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
|
|
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
|
|
0, 8, SPINOR_OP_READ_FAST,
|
|
SNOR_PROTO_1_1_1);
|
|
}
|
|
|
|
if (info->flags & SPI_NOR_DUAL_READ) {
|
|
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
|
|
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
|
|
0, 8, SPINOR_OP_READ_1_1_2,
|
|
SNOR_PROTO_1_1_2);
|
|
}
|
|
|
|
if (info->flags & SPI_NOR_QUAD_READ) {
|
|
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
|
|
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
|
|
0, 8, SPINOR_OP_READ_1_1_4,
|
|
SNOR_PROTO_1_1_4);
|
|
}
|
|
|
|
/* Page Program settings. */
|
|
params->hwcaps.mask |= SNOR_HWCAPS_PP;
|
|
spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
|
|
SPINOR_OP_PP, SNOR_PROTO_1_1_1);
|
|
|
|
/* Select the procedure to set the Quad Enable bit. */
|
|
if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
|
|
SNOR_HWCAPS_PP_QUAD)) {
|
|
switch (JEDEC_MFR(info)) {
|
|
case SNOR_MFR_MACRONIX:
|
|
params->quad_enable = macronix_quad_enable;
|
|
break;
|
|
|
|
case SNOR_MFR_MICRON:
|
|
break;
|
|
|
|
default:
|
|
params->quad_enable = spansion_quad_enable;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (table[i][0] == (int)hwcaps)
|
|
return table[i][1];
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
|
|
{
|
|
static const int hwcaps_read2cmd[][2] = {
|
|
{ SNOR_HWCAPS_READ, SNOR_CMD_READ },
|
|
{ SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
|
|
{ SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
|
|
{ SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
|
|
{ SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
|
|
{ SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
|
|
{ SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
|
|
{ SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
|
|
{ SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
|
|
{ SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
|
|
{ SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
|
|
};
|
|
|
|
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
|
|
ARRAY_SIZE(hwcaps_read2cmd));
|
|
}
|
|
|
|
static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
|
|
{
|
|
static const int hwcaps_pp2cmd[][2] = {
|
|
{ SNOR_HWCAPS_PP, SNOR_CMD_PP },
|
|
{ SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
|
|
{ SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
|
|
{ SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
|
|
};
|
|
|
|
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
|
|
ARRAY_SIZE(hwcaps_pp2cmd));
|
|
}
|
|
|
|
static int spi_nor_select_read(struct spi_nor *nor,
|
|
const struct spi_nor_flash_parameter *params,
|
|
u32 shared_hwcaps)
|
|
{
|
|
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
|
|
const struct spi_nor_read_command *read;
|
|
|
|
if (best_match < 0)
|
|
return -EINVAL;
|
|
|
|
cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
|
|
if (cmd < 0)
|
|
return -EINVAL;
|
|
|
|
read = ¶ms->reads[cmd];
|
|
nor->read_opcode = read->opcode;
|
|
nor->read_proto = read->proto;
|
|
|
|
/*
|
|
* In the spi-nor framework, we don't need to make the difference
|
|
* between mode clock cycles and wait state clock cycles.
|
|
* Indeed, the value of the mode clock cycles is used by a QSPI
|
|
* flash memory to know whether it should enter or leave its 0-4-4
|
|
* (Continuous Read / XIP) mode.
|
|
* eXecution In Place is out of the scope of the mtd sub-system.
|
|
* Hence we choose to merge both mode and wait state clock cycles
|
|
* into the so called dummy clock cycles.
|
|
*/
|
|
nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_select_pp(struct spi_nor *nor,
|
|
const struct spi_nor_flash_parameter *params,
|
|
u32 shared_hwcaps)
|
|
{
|
|
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
|
|
const struct spi_nor_pp_command *pp;
|
|
|
|
if (best_match < 0)
|
|
return -EINVAL;
|
|
|
|
cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
|
|
if (cmd < 0)
|
|
return -EINVAL;
|
|
|
|
pp = ¶ms->page_programs[cmd];
|
|
nor->program_opcode = pp->opcode;
|
|
nor->write_proto = pp->proto;
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_select_erase(struct spi_nor *nor,
|
|
const struct flash_info *info)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
|
|
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
|
|
/* prefer "small sector" erase if possible */
|
|
if (info->flags & SECT_4K) {
|
|
nor->erase_opcode = SPINOR_OP_BE_4K;
|
|
mtd->erasesize = 4096;
|
|
} else if (info->flags & SECT_4K_PMC) {
|
|
nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
|
|
mtd->erasesize = 4096;
|
|
} else
|
|
#endif
|
|
{
|
|
nor->erase_opcode = SPINOR_OP_SE;
|
|
mtd->erasesize = info->sector_size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
|
|
const struct spi_nor_flash_parameter *params,
|
|
const struct spi_nor_hwcaps *hwcaps)
|
|
{
|
|
u32 ignored_mask, shared_mask;
|
|
bool enable_quad_io;
|
|
int err;
|
|
|
|
/*
|
|
* Keep only the hardware capabilities supported by both the SPI
|
|
* controller and the SPI flash memory.
|
|
*/
|
|
shared_mask = hwcaps->mask & params->hwcaps.mask;
|
|
|
|
/* SPI n-n-n protocols are not supported yet. */
|
|
ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
|
|
SNOR_HWCAPS_READ_4_4_4 |
|
|
SNOR_HWCAPS_PP_4_4_4);
|
|
if (shared_mask & ignored_mask) {
|
|
dev_dbg(nor->dev,
|
|
"SPI n-n-n protocols are not supported yet.\n");
|
|
shared_mask &= ~ignored_mask;
|
|
}
|
|
|
|
/* Select the (Fast) Read command. */
|
|
err = spi_nor_select_read(nor, params, shared_mask);
|
|
if (err) {
|
|
dev_err(nor->dev,
|
|
"can't select read settings supported by both the SPI controller and memory.\n");
|
|
return err;
|
|
}
|
|
|
|
/* Select the Page Program command. */
|
|
err = spi_nor_select_pp(nor, params, shared_mask);
|
|
if (err) {
|
|
dev_err(nor->dev,
|
|
"can't select write settings supported by both the SPI controller and memory.\n");
|
|
return err;
|
|
}
|
|
|
|
/* Select the Sector Erase command. */
|
|
err = spi_nor_select_erase(nor, info);
|
|
if (err) {
|
|
dev_err(nor->dev,
|
|
"can't select erase settings supported by both the SPI controller and memory.\n");
|
|
return err;
|
|
}
|
|
|
|
/* Enable Quad I/O if needed. */
|
|
enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
|
|
spi_nor_get_protocol_width(nor->write_proto) == 4);
|
|
if (enable_quad_io && params->quad_enable) {
|
|
err = params->quad_enable(nor);
|
|
if (err) {
|
|
dev_err(nor->dev, "quad mode not supported\n");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int spi_nor_scan(struct spi_nor *nor, const char *name,
|
|
const struct spi_nor_hwcaps *hwcaps)
|
|
{
|
|
struct spi_nor_flash_parameter params;
|
|
const struct flash_info *info = NULL;
|
|
struct device *dev = nor->dev;
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
struct device_node *np = spi_nor_get_flash_node(nor);
|
|
int ret;
|
|
int i;
|
|
|
|
ret = spi_nor_check(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Reset SPI protocol for all commands. */
|
|
nor->reg_proto = SNOR_PROTO_1_1_1;
|
|
nor->read_proto = SNOR_PROTO_1_1_1;
|
|
nor->write_proto = SNOR_PROTO_1_1_1;
|
|
|
|
if (name)
|
|
info = spi_nor_match_id(name);
|
|
/* Try to auto-detect if chip name wasn't specified or not found */
|
|
if (!info)
|
|
info = spi_nor_read_id(nor);
|
|
if (IS_ERR_OR_NULL(info))
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* If caller has specified name of flash model that can normally be
|
|
* detected using JEDEC, let's verify it.
|
|
*/
|
|
if (name && info->id_len) {
|
|
const struct flash_info *jinfo;
|
|
|
|
jinfo = spi_nor_read_id(nor);
|
|
if (IS_ERR(jinfo)) {
|
|
return PTR_ERR(jinfo);
|
|
} else if (jinfo != info) {
|
|
/*
|
|
* JEDEC knows better, so overwrite platform ID. We
|
|
* can't trust partitions any longer, but we'll let
|
|
* mtd apply them anyway, since some partitions may be
|
|
* marked read-only, and we don't want to lose that
|
|
* information, even if it's not 100% accurate.
|
|
*/
|
|
dev_warn(dev, "found %s, expected %s\n",
|
|
jinfo->name, info->name);
|
|
info = jinfo;
|
|
}
|
|
}
|
|
|
|
mutex_init(&nor->lock);
|
|
|
|
/*
|
|
* Make sure the XSR_RDY flag is set before calling
|
|
* spi_nor_wait_till_ready(). Xilinx S3AN share MFR
|
|
* with Atmel spi-nor
|
|
*/
|
|
if (info->flags & SPI_S3AN)
|
|
nor->flags |= SNOR_F_READY_XSR_RDY;
|
|
|
|
/* Parse the Serial Flash Discoverable Parameters table. */
|
|
ret = spi_nor_init_params(nor, info, ¶ms);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
|
|
* with the software protection bits set
|
|
*/
|
|
|
|
if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
|
|
JEDEC_MFR(info) == SNOR_MFR_INTEL ||
|
|
JEDEC_MFR(info) == SNOR_MFR_SST ||
|
|
info->flags & SPI_NOR_HAS_LOCK) {
|
|
write_enable(nor);
|
|
write_sr(nor, 0);
|
|
spi_nor_wait_till_ready(nor);
|
|
}
|
|
|
|
if (!mtd->name)
|
|
mtd->name = dev_name(dev);
|
|
mtd->priv = nor;
|
|
mtd->type = MTD_NORFLASH;
|
|
mtd->writesize = 1;
|
|
mtd->flags = MTD_CAP_NORFLASH;
|
|
mtd->size = params.size;
|
|
mtd->_erase = spi_nor_erase;
|
|
mtd->_read = spi_nor_read;
|
|
|
|
/* NOR protection support for STmicro/Micron chips and similar */
|
|
if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
|
|
info->flags & SPI_NOR_HAS_LOCK) {
|
|
nor->flash_lock = stm_lock;
|
|
nor->flash_unlock = stm_unlock;
|
|
nor->flash_is_locked = stm_is_locked;
|
|
}
|
|
|
|
if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
|
|
mtd->_lock = spi_nor_lock;
|
|
mtd->_unlock = spi_nor_unlock;
|
|
mtd->_is_locked = spi_nor_is_locked;
|
|
}
|
|
|
|
/* sst nor chips use AAI word program */
|
|
if (info->flags & SST_WRITE)
|
|
mtd->_write = sst_write;
|
|
else
|
|
mtd->_write = spi_nor_write;
|
|
|
|
if (info->flags & USE_FSR)
|
|
nor->flags |= SNOR_F_USE_FSR;
|
|
if (info->flags & SPI_NOR_HAS_TB)
|
|
nor->flags |= SNOR_F_HAS_SR_TB;
|
|
if (info->flags & NO_CHIP_ERASE)
|
|
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
|
|
|
|
if (info->flags & SPI_NOR_NO_ERASE)
|
|
mtd->flags |= MTD_NO_ERASE;
|
|
|
|
mtd->dev.parent = dev;
|
|
nor->page_size = params.page_size;
|
|
mtd->writebufsize = nor->page_size;
|
|
|
|
if (np) {
|
|
/* If we were instantiated by DT, use it */
|
|
if (of_property_read_bool(np, "m25p,fast-read"))
|
|
params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
|
|
else
|
|
params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
|
|
} else {
|
|
/* If we weren't instantiated by DT, default to fast-read */
|
|
params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
|
|
}
|
|
|
|
/* Some devices cannot do fast-read, no matter what DT tells us */
|
|
if (info->flags & SPI_NOR_NO_FR)
|
|
params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
|
|
|
|
/*
|
|
* Configure the SPI memory:
|
|
* - select op codes for (Fast) Read, Page Program and Sector Erase.
|
|
* - set the number of dummy cycles (mode cycles + wait states).
|
|
* - set the SPI protocols for register and memory accesses.
|
|
* - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
|
|
*/
|
|
ret = spi_nor_setup(nor, info, ¶ms, hwcaps);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (info->addr_width)
|
|
nor->addr_width = info->addr_width;
|
|
else if (mtd->size > 0x1000000) {
|
|
/* enable 4-byte addressing if the device exceeds 16MiB */
|
|
nor->addr_width = 4;
|
|
if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
|
|
info->flags & SPI_NOR_4B_OPCODES)
|
|
spi_nor_set_4byte_opcodes(nor, info);
|
|
else
|
|
set_4byte(nor, info, 1);
|
|
} else {
|
|
nor->addr_width = 3;
|
|
}
|
|
|
|
if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
|
|
dev_err(dev, "address width is too large: %u\n",
|
|
nor->addr_width);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (info->flags & SPI_S3AN) {
|
|
ret = s3an_nor_scan(info, nor);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
dev_info(dev, "%s (%lld Kbytes)\n", info->name,
|
|
(long long)mtd->size >> 10);
|
|
|
|
dev_dbg(dev,
|
|
"mtd .name = %s, .size = 0x%llx (%lldMiB), "
|
|
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
|
|
mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
|
|
mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
|
|
|
|
if (mtd->numeraseregions)
|
|
for (i = 0; i < mtd->numeraseregions; i++)
|
|
dev_dbg(dev,
|
|
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
|
|
".erasesize = 0x%.8x (%uKiB), "
|
|
".numblocks = %d }\n",
|
|
i, (long long)mtd->eraseregions[i].offset,
|
|
mtd->eraseregions[i].erasesize,
|
|
mtd->eraseregions[i].erasesize / 1024,
|
|
mtd->eraseregions[i].numblocks);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_nor_scan);
|
|
|
|
static const struct flash_info *spi_nor_match_id(const char *name)
|
|
{
|
|
const struct flash_info *id = spi_nor_ids;
|
|
|
|
while (id->name) {
|
|
if (!strcmp(name, id->name))
|
|
return id;
|
|
id++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
|
|
MODULE_AUTHOR("Mike Lavender");
|
|
MODULE_DESCRIPTION("framework for SPI NOR");
|