linux_dsm_epyc7002/drivers/md/raid1.c
NeilBrown 627a2d3c29 md: deal with merge_bvec_fn in component devices better.
If a component device has a merge_bvec_fn then as we never call it
we must ensure we never need to.  Currently this is done by setting
max_sector to 1 PAGE, however this does not stop a bio being created
with several sub-page iovecs that would violate the merge_bvec_fn.

So instead set max_segments to 1 and set the segment boundary to the
same as a page boundary to ensure there is only ever one single-page
segment of IO requested at a time.

This can particularly be an issue when 'xen' is used as it is
known to submit multiple small buffers in a single bio.

Signed-off-by: NeilBrown <neilb@suse.de>
Cc: stable@kernel.org
2010-03-16 17:04:24 +11:00

2389 lines
62 KiB
C

/*
* raid1.c : Multiple Devices driver for Linux
*
* Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
*
* Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
*
* RAID-1 management functions.
*
* Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
*
* Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
* Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
*
* Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
* bitmapped intelligence in resync:
*
* - bitmap marked during normal i/o
* - bitmap used to skip nondirty blocks during sync
*
* Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
* - persistent bitmap code
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example /usr/src/linux/COPYING); if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/delay.h>
#include <linux/blkdev.h>
#include <linux/seq_file.h>
#include "md.h"
#include "raid1.h"
#include "bitmap.h"
#define DEBUG 0
#if DEBUG
#define PRINTK(x...) printk(x)
#else
#define PRINTK(x...)
#endif
/*
* Number of guaranteed r1bios in case of extreme VM load:
*/
#define NR_RAID1_BIOS 256
static void unplug_slaves(mddev_t *mddev);
static void allow_barrier(conf_t *conf);
static void lower_barrier(conf_t *conf);
static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
{
struct pool_info *pi = data;
r1bio_t *r1_bio;
int size = offsetof(r1bio_t, bios[pi->raid_disks]);
/* allocate a r1bio with room for raid_disks entries in the bios array */
r1_bio = kzalloc(size, gfp_flags);
if (!r1_bio && pi->mddev)
unplug_slaves(pi->mddev);
return r1_bio;
}
static void r1bio_pool_free(void *r1_bio, void *data)
{
kfree(r1_bio);
}
#define RESYNC_BLOCK_SIZE (64*1024)
//#define RESYNC_BLOCK_SIZE PAGE_SIZE
#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
#define RESYNC_WINDOW (2048*1024)
static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
{
struct pool_info *pi = data;
struct page *page;
r1bio_t *r1_bio;
struct bio *bio;
int i, j;
r1_bio = r1bio_pool_alloc(gfp_flags, pi);
if (!r1_bio) {
unplug_slaves(pi->mddev);
return NULL;
}
/*
* Allocate bios : 1 for reading, n-1 for writing
*/
for (j = pi->raid_disks ; j-- ; ) {
bio = bio_alloc(gfp_flags, RESYNC_PAGES);
if (!bio)
goto out_free_bio;
r1_bio->bios[j] = bio;
}
/*
* Allocate RESYNC_PAGES data pages and attach them to
* the first bio.
* If this is a user-requested check/repair, allocate
* RESYNC_PAGES for each bio.
*/
if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
j = pi->raid_disks;
else
j = 1;
while(j--) {
bio = r1_bio->bios[j];
for (i = 0; i < RESYNC_PAGES; i++) {
page = alloc_page(gfp_flags);
if (unlikely(!page))
goto out_free_pages;
bio->bi_io_vec[i].bv_page = page;
bio->bi_vcnt = i+1;
}
}
/* If not user-requests, copy the page pointers to all bios */
if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
for (i=0; i<RESYNC_PAGES ; i++)
for (j=1; j<pi->raid_disks; j++)
r1_bio->bios[j]->bi_io_vec[i].bv_page =
r1_bio->bios[0]->bi_io_vec[i].bv_page;
}
r1_bio->master_bio = NULL;
return r1_bio;
out_free_pages:
for (j=0 ; j < pi->raid_disks; j++)
for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
j = -1;
out_free_bio:
while ( ++j < pi->raid_disks )
bio_put(r1_bio->bios[j]);
r1bio_pool_free(r1_bio, data);
return NULL;
}
static void r1buf_pool_free(void *__r1_bio, void *data)
{
struct pool_info *pi = data;
int i,j;
r1bio_t *r1bio = __r1_bio;
for (i = 0; i < RESYNC_PAGES; i++)
for (j = pi->raid_disks; j-- ;) {
if (j == 0 ||
r1bio->bios[j]->bi_io_vec[i].bv_page !=
r1bio->bios[0]->bi_io_vec[i].bv_page)
safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
}
for (i=0 ; i < pi->raid_disks; i++)
bio_put(r1bio->bios[i]);
r1bio_pool_free(r1bio, data);
}
static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
{
int i;
for (i = 0; i < conf->raid_disks; i++) {
struct bio **bio = r1_bio->bios + i;
if (*bio && *bio != IO_BLOCKED)
bio_put(*bio);
*bio = NULL;
}
}
static void free_r1bio(r1bio_t *r1_bio)
{
conf_t *conf = r1_bio->mddev->private;
/*
* Wake up any possible resync thread that waits for the device
* to go idle.
*/
allow_barrier(conf);
put_all_bios(conf, r1_bio);
mempool_free(r1_bio, conf->r1bio_pool);
}
static void put_buf(r1bio_t *r1_bio)
{
conf_t *conf = r1_bio->mddev->private;
int i;
for (i=0; i<conf->raid_disks; i++) {
struct bio *bio = r1_bio->bios[i];
if (bio->bi_end_io)
rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
}
mempool_free(r1_bio, conf->r1buf_pool);
lower_barrier(conf);
}
static void reschedule_retry(r1bio_t *r1_bio)
{
unsigned long flags;
mddev_t *mddev = r1_bio->mddev;
conf_t *conf = mddev->private;
spin_lock_irqsave(&conf->device_lock, flags);
list_add(&r1_bio->retry_list, &conf->retry_list);
conf->nr_queued ++;
spin_unlock_irqrestore(&conf->device_lock, flags);
wake_up(&conf->wait_barrier);
md_wakeup_thread(mddev->thread);
}
/*
* raid_end_bio_io() is called when we have finished servicing a mirrored
* operation and are ready to return a success/failure code to the buffer
* cache layer.
*/
static void raid_end_bio_io(r1bio_t *r1_bio)
{
struct bio *bio = r1_bio->master_bio;
/* if nobody has done the final endio yet, do it now */
if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
(bio_data_dir(bio) == WRITE) ? "write" : "read",
(unsigned long long) bio->bi_sector,
(unsigned long long) bio->bi_sector +
(bio->bi_size >> 9) - 1);
bio_endio(bio,
test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
}
free_r1bio(r1_bio);
}
/*
* Update disk head position estimator based on IRQ completion info.
*/
static inline void update_head_pos(int disk, r1bio_t *r1_bio)
{
conf_t *conf = r1_bio->mddev->private;
conf->mirrors[disk].head_position =
r1_bio->sector + (r1_bio->sectors);
}
static void raid1_end_read_request(struct bio *bio, int error)
{
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
int mirror;
conf_t *conf = r1_bio->mddev->private;
mirror = r1_bio->read_disk;
/*
* this branch is our 'one mirror IO has finished' event handler:
*/
update_head_pos(mirror, r1_bio);
if (uptodate)
set_bit(R1BIO_Uptodate, &r1_bio->state);
else {
/* If all other devices have failed, we want to return
* the error upwards rather than fail the last device.
* Here we redefine "uptodate" to mean "Don't want to retry"
*/
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
if (r1_bio->mddev->degraded == conf->raid_disks ||
(r1_bio->mddev->degraded == conf->raid_disks-1 &&
!test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
uptodate = 1;
spin_unlock_irqrestore(&conf->device_lock, flags);
}
if (uptodate)
raid_end_bio_io(r1_bio);
else {
/*
* oops, read error:
*/
char b[BDEVNAME_SIZE];
if (printk_ratelimit())
printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
reschedule_retry(r1_bio);
}
rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
}
static void raid1_end_write_request(struct bio *bio, int error)
{
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
conf_t *conf = r1_bio->mddev->private;
struct bio *to_put = NULL;
for (mirror = 0; mirror < conf->raid_disks; mirror++)
if (r1_bio->bios[mirror] == bio)
break;
if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
set_bit(R1BIO_BarrierRetry, &r1_bio->state);
r1_bio->mddev->barriers_work = 0;
/* Don't rdev_dec_pending in this branch - keep it for the retry */
} else {
/*
* this branch is our 'one mirror IO has finished' event handler:
*/
r1_bio->bios[mirror] = NULL;
to_put = bio;
if (!uptodate) {
md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
/* an I/O failed, we can't clear the bitmap */
set_bit(R1BIO_Degraded, &r1_bio->state);
} else
/*
* Set R1BIO_Uptodate in our master bio, so that
* we will return a good error code for to the higher
* levels even if IO on some other mirrored buffer fails.
*
* The 'master' represents the composite IO operation to
* user-side. So if something waits for IO, then it will
* wait for the 'master' bio.
*/
set_bit(R1BIO_Uptodate, &r1_bio->state);
update_head_pos(mirror, r1_bio);
if (behind) {
if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
atomic_dec(&r1_bio->behind_remaining);
/* In behind mode, we ACK the master bio once the I/O has safely
* reached all non-writemostly disks. Setting the Returned bit
* ensures that this gets done only once -- we don't ever want to
* return -EIO here, instead we'll wait */
if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
test_bit(R1BIO_Uptodate, &r1_bio->state)) {
/* Maybe we can return now */
if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
struct bio *mbio = r1_bio->master_bio;
PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
(unsigned long long) mbio->bi_sector,
(unsigned long long) mbio->bi_sector +
(mbio->bi_size >> 9) - 1);
bio_endio(mbio, 0);
}
}
}
rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
}
/*
*
* Let's see if all mirrored write operations have finished
* already.
*/
if (atomic_dec_and_test(&r1_bio->remaining)) {
if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
reschedule_retry(r1_bio);
else {
/* it really is the end of this request */
if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
/* free extra copy of the data pages */
int i = bio->bi_vcnt;
while (i--)
safe_put_page(bio->bi_io_vec[i].bv_page);
}
/* clear the bitmap if all writes complete successfully */
bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
r1_bio->sectors,
!test_bit(R1BIO_Degraded, &r1_bio->state),
behind);
md_write_end(r1_bio->mddev);
raid_end_bio_io(r1_bio);
}
}
if (to_put)
bio_put(to_put);
}
/*
* This routine returns the disk from which the requested read should
* be done. There is a per-array 'next expected sequential IO' sector
* number - if this matches on the next IO then we use the last disk.
* There is also a per-disk 'last know head position' sector that is
* maintained from IRQ contexts, both the normal and the resync IO
* completion handlers update this position correctly. If there is no
* perfect sequential match then we pick the disk whose head is closest.
*
* If there are 2 mirrors in the same 2 devices, performance degrades
* because position is mirror, not device based.
*
* The rdev for the device selected will have nr_pending incremented.
*/
static int read_balance(conf_t *conf, r1bio_t *r1_bio)
{
const unsigned long this_sector = r1_bio->sector;
int new_disk = conf->last_used, disk = new_disk;
int wonly_disk = -1;
const int sectors = r1_bio->sectors;
sector_t new_distance, current_distance;
mdk_rdev_t *rdev;
rcu_read_lock();
/*
* Check if we can balance. We can balance on the whole
* device if no resync is going on, or below the resync window.
* We take the first readable disk when above the resync window.
*/
retry:
if (conf->mddev->recovery_cp < MaxSector &&
(this_sector + sectors >= conf->next_resync)) {
/* Choose the first operation device, for consistancy */
new_disk = 0;
for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
r1_bio->bios[new_disk] == IO_BLOCKED ||
!rdev || !test_bit(In_sync, &rdev->flags)
|| test_bit(WriteMostly, &rdev->flags);
rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
if (rdev && test_bit(In_sync, &rdev->flags) &&
r1_bio->bios[new_disk] != IO_BLOCKED)
wonly_disk = new_disk;
if (new_disk == conf->raid_disks - 1) {
new_disk = wonly_disk;
break;
}
}
goto rb_out;
}
/* make sure the disk is operational */
for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
r1_bio->bios[new_disk] == IO_BLOCKED ||
!rdev || !test_bit(In_sync, &rdev->flags) ||
test_bit(WriteMostly, &rdev->flags);
rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
if (rdev && test_bit(In_sync, &rdev->flags) &&
r1_bio->bios[new_disk] != IO_BLOCKED)
wonly_disk = new_disk;
if (new_disk <= 0)
new_disk = conf->raid_disks;
new_disk--;
if (new_disk == disk) {
new_disk = wonly_disk;
break;
}
}
if (new_disk < 0)
goto rb_out;
disk = new_disk;
/* now disk == new_disk == starting point for search */
/*
* Don't change to another disk for sequential reads:
*/
if (conf->next_seq_sect == this_sector)
goto rb_out;
if (this_sector == conf->mirrors[new_disk].head_position)
goto rb_out;
current_distance = abs(this_sector - conf->mirrors[disk].head_position);
/* Find the disk whose head is closest */
do {
if (disk <= 0)
disk = conf->raid_disks;
disk--;
rdev = rcu_dereference(conf->mirrors[disk].rdev);
if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
!test_bit(In_sync, &rdev->flags) ||
test_bit(WriteMostly, &rdev->flags))
continue;
if (!atomic_read(&rdev->nr_pending)) {
new_disk = disk;
break;
}
new_distance = abs(this_sector - conf->mirrors[disk].head_position);
if (new_distance < current_distance) {
current_distance = new_distance;
new_disk = disk;
}
} while (disk != conf->last_used);
rb_out:
if (new_disk >= 0) {
rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
if (!rdev)
goto retry;
atomic_inc(&rdev->nr_pending);
if (!test_bit(In_sync, &rdev->flags)) {
/* cannot risk returning a device that failed
* before we inc'ed nr_pending
*/
rdev_dec_pending(rdev, conf->mddev);
goto retry;
}
conf->next_seq_sect = this_sector + sectors;
conf->last_used = new_disk;
}
rcu_read_unlock();
return new_disk;
}
static void unplug_slaves(mddev_t *mddev)
{
conf_t *conf = mddev->private;
int i;
rcu_read_lock();
for (i=0; i<mddev->raid_disks; i++) {
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
blk_unplug(r_queue);
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
}
}
rcu_read_unlock();
}
static void raid1_unplug(struct request_queue *q)
{
mddev_t *mddev = q->queuedata;
unplug_slaves(mddev);
md_wakeup_thread(mddev->thread);
}
static int raid1_congested(void *data, int bits)
{
mddev_t *mddev = data;
conf_t *conf = mddev->private;
int i, ret = 0;
if (mddev_congested(mddev, bits))
return 1;
rcu_read_lock();
for (i = 0; i < mddev->raid_disks; i++) {
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
if (rdev && !test_bit(Faulty, &rdev->flags)) {
struct request_queue *q = bdev_get_queue(rdev->bdev);
/* Note the '|| 1' - when read_balance prefers
* non-congested targets, it can be removed
*/
if ((bits & (1<<BDI_async_congested)) || 1)
ret |= bdi_congested(&q->backing_dev_info, bits);
else
ret &= bdi_congested(&q->backing_dev_info, bits);
}
}
rcu_read_unlock();
return ret;
}
static int flush_pending_writes(conf_t *conf)
{
/* Any writes that have been queued but are awaiting
* bitmap updates get flushed here.
* We return 1 if any requests were actually submitted.
*/
int rv = 0;
spin_lock_irq(&conf->device_lock);
if (conf->pending_bio_list.head) {
struct bio *bio;
bio = bio_list_get(&conf->pending_bio_list);
blk_remove_plug(conf->mddev->queue);
spin_unlock_irq(&conf->device_lock);
/* flush any pending bitmap writes to
* disk before proceeding w/ I/O */
bitmap_unplug(conf->mddev->bitmap);
while (bio) { /* submit pending writes */
struct bio *next = bio->bi_next;
bio->bi_next = NULL;
generic_make_request(bio);
bio = next;
}
rv = 1;
} else
spin_unlock_irq(&conf->device_lock);
return rv;
}
/* Barriers....
* Sometimes we need to suspend IO while we do something else,
* either some resync/recovery, or reconfigure the array.
* To do this we raise a 'barrier'.
* The 'barrier' is a counter that can be raised multiple times
* to count how many activities are happening which preclude
* normal IO.
* We can only raise the barrier if there is no pending IO.
* i.e. if nr_pending == 0.
* We choose only to raise the barrier if no-one is waiting for the
* barrier to go down. This means that as soon as an IO request
* is ready, no other operations which require a barrier will start
* until the IO request has had a chance.
*
* So: regular IO calls 'wait_barrier'. When that returns there
* is no backgroup IO happening, It must arrange to call
* allow_barrier when it has finished its IO.
* backgroup IO calls must call raise_barrier. Once that returns
* there is no normal IO happeing. It must arrange to call
* lower_barrier when the particular background IO completes.
*/
#define RESYNC_DEPTH 32
static void raise_barrier(conf_t *conf)
{
spin_lock_irq(&conf->resync_lock);
/* Wait until no block IO is waiting */
wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
conf->resync_lock,
raid1_unplug(conf->mddev->queue));
/* block any new IO from starting */
conf->barrier++;
/* No wait for all pending IO to complete */
wait_event_lock_irq(conf->wait_barrier,
!conf->nr_pending && conf->barrier < RESYNC_DEPTH,
conf->resync_lock,
raid1_unplug(conf->mddev->queue));
spin_unlock_irq(&conf->resync_lock);
}
static void lower_barrier(conf_t *conf)
{
unsigned long flags;
BUG_ON(conf->barrier <= 0);
spin_lock_irqsave(&conf->resync_lock, flags);
conf->barrier--;
spin_unlock_irqrestore(&conf->resync_lock, flags);
wake_up(&conf->wait_barrier);
}
static void wait_barrier(conf_t *conf)
{
spin_lock_irq(&conf->resync_lock);
if (conf->barrier) {
conf->nr_waiting++;
wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
conf->resync_lock,
raid1_unplug(conf->mddev->queue));
conf->nr_waiting--;
}
conf->nr_pending++;
spin_unlock_irq(&conf->resync_lock);
}
static void allow_barrier(conf_t *conf)
{
unsigned long flags;
spin_lock_irqsave(&conf->resync_lock, flags);
conf->nr_pending--;
spin_unlock_irqrestore(&conf->resync_lock, flags);
wake_up(&conf->wait_barrier);
}
static void freeze_array(conf_t *conf)
{
/* stop syncio and normal IO and wait for everything to
* go quite.
* We increment barrier and nr_waiting, and then
* wait until nr_pending match nr_queued+1
* This is called in the context of one normal IO request
* that has failed. Thus any sync request that might be pending
* will be blocked by nr_pending, and we need to wait for
* pending IO requests to complete or be queued for re-try.
* Thus the number queued (nr_queued) plus this request (1)
* must match the number of pending IOs (nr_pending) before
* we continue.
*/
spin_lock_irq(&conf->resync_lock);
conf->barrier++;
conf->nr_waiting++;
wait_event_lock_irq(conf->wait_barrier,
conf->nr_pending == conf->nr_queued+1,
conf->resync_lock,
({ flush_pending_writes(conf);
raid1_unplug(conf->mddev->queue); }));
spin_unlock_irq(&conf->resync_lock);
}
static void unfreeze_array(conf_t *conf)
{
/* reverse the effect of the freeze */
spin_lock_irq(&conf->resync_lock);
conf->barrier--;
conf->nr_waiting--;
wake_up(&conf->wait_barrier);
spin_unlock_irq(&conf->resync_lock);
}
/* duplicate the data pages for behind I/O */
static struct page **alloc_behind_pages(struct bio *bio)
{
int i;
struct bio_vec *bvec;
struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
GFP_NOIO);
if (unlikely(!pages))
goto do_sync_io;
bio_for_each_segment(bvec, bio, i) {
pages[i] = alloc_page(GFP_NOIO);
if (unlikely(!pages[i]))
goto do_sync_io;
memcpy(kmap(pages[i]) + bvec->bv_offset,
kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
kunmap(pages[i]);
kunmap(bvec->bv_page);
}
return pages;
do_sync_io:
if (pages)
for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
put_page(pages[i]);
kfree(pages);
PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
return NULL;
}
static int make_request(struct request_queue *q, struct bio * bio)
{
mddev_t *mddev = q->queuedata;
conf_t *conf = mddev->private;
mirror_info_t *mirror;
r1bio_t *r1_bio;
struct bio *read_bio;
int i, targets = 0, disks;
struct bitmap *bitmap;
unsigned long flags;
struct bio_list bl;
struct page **behind_pages = NULL;
const int rw = bio_data_dir(bio);
const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
int cpu;
bool do_barriers;
mdk_rdev_t *blocked_rdev;
/*
* Register the new request and wait if the reconstruction
* thread has put up a bar for new requests.
* Continue immediately if no resync is active currently.
* We test barriers_work *after* md_write_start as md_write_start
* may cause the first superblock write, and that will check out
* if barriers work.
*/
md_write_start(mddev, bio); /* wait on superblock update early */
if (bio_data_dir(bio) == WRITE &&
bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
bio->bi_sector < mddev->suspend_hi) {
/* As the suspend_* range is controlled by
* userspace, we want an interruptible
* wait.
*/
DEFINE_WAIT(w);
for (;;) {
flush_signals(current);
prepare_to_wait(&conf->wait_barrier,
&w, TASK_INTERRUPTIBLE);
if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
bio->bi_sector >= mddev->suspend_hi)
break;
schedule();
}
finish_wait(&conf->wait_barrier, &w);
}
if (unlikely(!mddev->barriers_work &&
bio_rw_flagged(bio, BIO_RW_BARRIER))) {
if (rw == WRITE)
md_write_end(mddev);
bio_endio(bio, -EOPNOTSUPP);
return 0;
}
wait_barrier(conf);
bitmap = mddev->bitmap;
cpu = part_stat_lock();
part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
bio_sectors(bio));
part_stat_unlock();
/*
* make_request() can abort the operation when READA is being
* used and no empty request is available.
*
*/
r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
r1_bio->master_bio = bio;
r1_bio->sectors = bio->bi_size >> 9;
r1_bio->state = 0;
r1_bio->mddev = mddev;
r1_bio->sector = bio->bi_sector;
if (rw == READ) {
/*
* read balancing logic:
*/
int rdisk = read_balance(conf, r1_bio);
if (rdisk < 0) {
/* couldn't find anywhere to read from */
raid_end_bio_io(r1_bio);
return 0;
}
mirror = conf->mirrors + rdisk;
r1_bio->read_disk = rdisk;
read_bio = bio_clone(bio, GFP_NOIO);
r1_bio->bios[rdisk] = read_bio;
read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
read_bio->bi_bdev = mirror->rdev->bdev;
read_bio->bi_end_io = raid1_end_read_request;
read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
read_bio->bi_private = r1_bio;
generic_make_request(read_bio);
return 0;
}
/*
* WRITE:
*/
/* first select target devices under spinlock and
* inc refcount on their rdev. Record them by setting
* bios[x] to bio
*/
disks = conf->raid_disks;
#if 0
{ static int first=1;
if (first) printk("First Write sector %llu disks %d\n",
(unsigned long long)r1_bio->sector, disks);
first = 0;
}
#endif
retry_write:
blocked_rdev = NULL;
rcu_read_lock();
for (i = 0; i < disks; i++) {
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
atomic_inc(&rdev->nr_pending);
blocked_rdev = rdev;
break;
}
if (rdev && !test_bit(Faulty, &rdev->flags)) {
atomic_inc(&rdev->nr_pending);
if (test_bit(Faulty, &rdev->flags)) {
rdev_dec_pending(rdev, mddev);
r1_bio->bios[i] = NULL;
} else
r1_bio->bios[i] = bio;
targets++;
} else
r1_bio->bios[i] = NULL;
}
rcu_read_unlock();
if (unlikely(blocked_rdev)) {
/* Wait for this device to become unblocked */
int j;
for (j = 0; j < i; j++)
if (r1_bio->bios[j])
rdev_dec_pending(conf->mirrors[j].rdev, mddev);
allow_barrier(conf);
md_wait_for_blocked_rdev(blocked_rdev, mddev);
wait_barrier(conf);
goto retry_write;
}
BUG_ON(targets == 0); /* we never fail the last device */
if (targets < conf->raid_disks) {
/* array is degraded, we will not clear the bitmap
* on I/O completion (see raid1_end_write_request) */
set_bit(R1BIO_Degraded, &r1_bio->state);
}
/* do behind I/O ? */
if (bitmap &&
(atomic_read(&bitmap->behind_writes)
< mddev->bitmap_info.max_write_behind) &&
(behind_pages = alloc_behind_pages(bio)) != NULL)
set_bit(R1BIO_BehindIO, &r1_bio->state);
atomic_set(&r1_bio->remaining, 0);
atomic_set(&r1_bio->behind_remaining, 0);
do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
if (do_barriers)
set_bit(R1BIO_Barrier, &r1_bio->state);
bio_list_init(&bl);
for (i = 0; i < disks; i++) {
struct bio *mbio;
if (!r1_bio->bios[i])
continue;
mbio = bio_clone(bio, GFP_NOIO);
r1_bio->bios[i] = mbio;
mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
mbio->bi_end_io = raid1_end_write_request;
mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
(do_sync << BIO_RW_SYNCIO);
mbio->bi_private = r1_bio;
if (behind_pages) {
struct bio_vec *bvec;
int j;
/* Yes, I really want the '__' version so that
* we clear any unused pointer in the io_vec, rather
* than leave them unchanged. This is important
* because when we come to free the pages, we won't
* know the originial bi_idx, so we just free
* them all
*/
__bio_for_each_segment(bvec, mbio, j, 0)
bvec->bv_page = behind_pages[j];
if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
atomic_inc(&r1_bio->behind_remaining);
}
atomic_inc(&r1_bio->remaining);
bio_list_add(&bl, mbio);
}
kfree(behind_pages); /* the behind pages are attached to the bios now */
bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
test_bit(R1BIO_BehindIO, &r1_bio->state));
spin_lock_irqsave(&conf->device_lock, flags);
bio_list_merge(&conf->pending_bio_list, &bl);
bio_list_init(&bl);
blk_plug_device(mddev->queue);
spin_unlock_irqrestore(&conf->device_lock, flags);
/* In case raid1d snuck into freeze_array */
wake_up(&conf->wait_barrier);
if (do_sync)
md_wakeup_thread(mddev->thread);
#if 0
while ((bio = bio_list_pop(&bl)) != NULL)
generic_make_request(bio);
#endif
return 0;
}
static void status(struct seq_file *seq, mddev_t *mddev)
{
conf_t *conf = mddev->private;
int i;
seq_printf(seq, " [%d/%d] [", conf->raid_disks,
conf->raid_disks - mddev->degraded);
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
seq_printf(seq, "%s",
rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
}
rcu_read_unlock();
seq_printf(seq, "]");
}
static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
char b[BDEVNAME_SIZE];
conf_t *conf = mddev->private;
/*
* If it is not operational, then we have already marked it as dead
* else if it is the last working disks, ignore the error, let the
* next level up know.
* else mark the drive as failed
*/
if (test_bit(In_sync, &rdev->flags)
&& (conf->raid_disks - mddev->degraded) == 1) {
/*
* Don't fail the drive, act as though we were just a
* normal single drive.
* However don't try a recovery from this drive as
* it is very likely to fail.
*/
mddev->recovery_disabled = 1;
return;
}
if (test_and_clear_bit(In_sync, &rdev->flags)) {
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded++;
set_bit(Faulty, &rdev->flags);
spin_unlock_irqrestore(&conf->device_lock, flags);
/*
* if recovery is running, make sure it aborts.
*/
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
} else
set_bit(Faulty, &rdev->flags);
set_bit(MD_CHANGE_DEVS, &mddev->flags);
printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
"raid1: Operation continuing on %d devices.\n",
bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
}
static void print_conf(conf_t *conf)
{
int i;
printk("RAID1 conf printout:\n");
if (!conf) {
printk("(!conf)\n");
return;
}
printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
conf->raid_disks);
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
char b[BDEVNAME_SIZE];
mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
if (rdev)
printk(" disk %d, wo:%d, o:%d, dev:%s\n",
i, !test_bit(In_sync, &rdev->flags),
!test_bit(Faulty, &rdev->flags),
bdevname(rdev->bdev,b));
}
rcu_read_unlock();
}
static void close_sync(conf_t *conf)
{
wait_barrier(conf);
allow_barrier(conf);
mempool_destroy(conf->r1buf_pool);
conf->r1buf_pool = NULL;
}
static int raid1_spare_active(mddev_t *mddev)
{
int i;
conf_t *conf = mddev->private;
/*
* Find all failed disks within the RAID1 configuration
* and mark them readable.
* Called under mddev lock, so rcu protection not needed.
*/
for (i = 0; i < conf->raid_disks; i++) {
mdk_rdev_t *rdev = conf->mirrors[i].rdev;
if (rdev
&& !test_bit(Faulty, &rdev->flags)
&& !test_and_set_bit(In_sync, &rdev->flags)) {
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded--;
spin_unlock_irqrestore(&conf->device_lock, flags);
}
}
print_conf(conf);
return 0;
}
static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
conf_t *conf = mddev->private;
int err = -EEXIST;
int mirror = 0;
mirror_info_t *p;
int first = 0;
int last = mddev->raid_disks - 1;
if (rdev->raid_disk >= 0)
first = last = rdev->raid_disk;
for (mirror = first; mirror <= last; mirror++)
if ( !(p=conf->mirrors+mirror)->rdev) {
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
/* as we don't honour merge_bvec_fn, we must
* never risk violating it, so limit
* ->max_segments to one lying with a single
* page, as a one page request is never in
* violation.
*/
if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
blk_queue_max_segments(mddev->queue, 1);
blk_queue_segment_boundary(mddev->queue,
PAGE_CACHE_SIZE - 1);
}
p->head_position = 0;
rdev->raid_disk = mirror;
err = 0;
/* As all devices are equivalent, we don't need a full recovery
* if this was recently any drive of the array
*/
if (rdev->saved_raid_disk < 0)
conf->fullsync = 1;
rcu_assign_pointer(p->rdev, rdev);
break;
}
md_integrity_add_rdev(rdev, mddev);
print_conf(conf);
return err;
}
static int raid1_remove_disk(mddev_t *mddev, int number)
{
conf_t *conf = mddev->private;
int err = 0;
mdk_rdev_t *rdev;
mirror_info_t *p = conf->mirrors+ number;
print_conf(conf);
rdev = p->rdev;
if (rdev) {
if (test_bit(In_sync, &rdev->flags) ||
atomic_read(&rdev->nr_pending)) {
err = -EBUSY;
goto abort;
}
/* Only remove non-faulty devices is recovery
* is not possible.
*/
if (!test_bit(Faulty, &rdev->flags) &&
mddev->degraded < conf->raid_disks) {
err = -EBUSY;
goto abort;
}
p->rdev = NULL;
synchronize_rcu();
if (atomic_read(&rdev->nr_pending)) {
/* lost the race, try later */
err = -EBUSY;
p->rdev = rdev;
goto abort;
}
md_integrity_register(mddev);
}
abort:
print_conf(conf);
return err;
}
static void end_sync_read(struct bio *bio, int error)
{
r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
int i;
for (i=r1_bio->mddev->raid_disks; i--; )
if (r1_bio->bios[i] == bio)
break;
BUG_ON(i < 0);
update_head_pos(i, r1_bio);
/*
* we have read a block, now it needs to be re-written,
* or re-read if the read failed.
* We don't do much here, just schedule handling by raid1d
*/
if (test_bit(BIO_UPTODATE, &bio->bi_flags))
set_bit(R1BIO_Uptodate, &r1_bio->state);
if (atomic_dec_and_test(&r1_bio->remaining))
reschedule_retry(r1_bio);
}
static void end_sync_write(struct bio *bio, int error)
{
int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
mddev_t *mddev = r1_bio->mddev;
conf_t *conf = mddev->private;
int i;
int mirror=0;
for (i = 0; i < conf->raid_disks; i++)
if (r1_bio->bios[i] == bio) {
mirror = i;
break;
}
if (!uptodate) {
int sync_blocks = 0;
sector_t s = r1_bio->sector;
long sectors_to_go = r1_bio->sectors;
/* make sure these bits doesn't get cleared. */
do {
bitmap_end_sync(mddev->bitmap, s,
&sync_blocks, 1);
s += sync_blocks;
sectors_to_go -= sync_blocks;
} while (sectors_to_go > 0);
md_error(mddev, conf->mirrors[mirror].rdev);
}
update_head_pos(mirror, r1_bio);
if (atomic_dec_and_test(&r1_bio->remaining)) {
sector_t s = r1_bio->sectors;
put_buf(r1_bio);
md_done_sync(mddev, s, uptodate);
}
}
static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
{
conf_t *conf = mddev->private;
int i;
int disks = conf->raid_disks;
struct bio *bio, *wbio;
bio = r1_bio->bios[r1_bio->read_disk];
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
/* We have read all readable devices. If we haven't
* got the block, then there is no hope left.
* If we have, then we want to do a comparison
* and skip the write if everything is the same.
* If any blocks failed to read, then we need to
* attempt an over-write
*/
int primary;
if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
for (i=0; i<mddev->raid_disks; i++)
if (r1_bio->bios[i]->bi_end_io == end_sync_read)
md_error(mddev, conf->mirrors[i].rdev);
md_done_sync(mddev, r1_bio->sectors, 1);
put_buf(r1_bio);
return;
}
for (primary=0; primary<mddev->raid_disks; primary++)
if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
r1_bio->bios[primary]->bi_end_io = NULL;
rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
break;
}
r1_bio->read_disk = primary;
for (i=0; i<mddev->raid_disks; i++)
if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
int j;
int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
struct bio *pbio = r1_bio->bios[primary];
struct bio *sbio = r1_bio->bios[i];
if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
for (j = vcnt; j-- ; ) {
struct page *p, *s;
p = pbio->bi_io_vec[j].bv_page;
s = sbio->bi_io_vec[j].bv_page;
if (memcmp(page_address(p),
page_address(s),
PAGE_SIZE))
break;
}
} else
j = 0;
if (j >= 0)
mddev->resync_mismatches += r1_bio->sectors;
if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
&& test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
sbio->bi_end_io = NULL;
rdev_dec_pending(conf->mirrors[i].rdev, mddev);
} else {
/* fixup the bio for reuse */
int size;
sbio->bi_vcnt = vcnt;
sbio->bi_size = r1_bio->sectors << 9;
sbio->bi_idx = 0;
sbio->bi_phys_segments = 0;
sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
sbio->bi_flags |= 1 << BIO_UPTODATE;
sbio->bi_next = NULL;
sbio->bi_sector = r1_bio->sector +
conf->mirrors[i].rdev->data_offset;
sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
size = sbio->bi_size;
for (j = 0; j < vcnt ; j++) {
struct bio_vec *bi;
bi = &sbio->bi_io_vec[j];
bi->bv_offset = 0;
if (size > PAGE_SIZE)
bi->bv_len = PAGE_SIZE;
else
bi->bv_len = size;
size -= PAGE_SIZE;
memcpy(page_address(bi->bv_page),
page_address(pbio->bi_io_vec[j].bv_page),
PAGE_SIZE);
}
}
}
}
if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
/* ouch - failed to read all of that.
* Try some synchronous reads of other devices to get
* good data, much like with normal read errors. Only
* read into the pages we already have so we don't
* need to re-issue the read request.
* We don't need to freeze the array, because being in an
* active sync request, there is no normal IO, and
* no overlapping syncs.
*/
sector_t sect = r1_bio->sector;
int sectors = r1_bio->sectors;
int idx = 0;
while(sectors) {
int s = sectors;
int d = r1_bio->read_disk;
int success = 0;
mdk_rdev_t *rdev;
if (s > (PAGE_SIZE>>9))
s = PAGE_SIZE >> 9;
do {
if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
/* No rcu protection needed here devices
* can only be removed when no resync is
* active, and resync is currently active
*/
rdev = conf->mirrors[d].rdev;
if (sync_page_io(rdev->bdev,
sect + rdev->data_offset,
s<<9,
bio->bi_io_vec[idx].bv_page,
READ)) {
success = 1;
break;
}
}
d++;
if (d == conf->raid_disks)
d = 0;
} while (!success && d != r1_bio->read_disk);
if (success) {
int start = d;
/* write it back and re-read */
set_bit(R1BIO_Uptodate, &r1_bio->state);
while (d != r1_bio->read_disk) {
if (d == 0)
d = conf->raid_disks;
d--;
if (r1_bio->bios[d]->bi_end_io != end_sync_read)
continue;
rdev = conf->mirrors[d].rdev;
atomic_add(s, &rdev->corrected_errors);
if (sync_page_io(rdev->bdev,
sect + rdev->data_offset,
s<<9,
bio->bi_io_vec[idx].bv_page,
WRITE) == 0)
md_error(mddev, rdev);
}
d = start;
while (d != r1_bio->read_disk) {
if (d == 0)
d = conf->raid_disks;
d--;
if (r1_bio->bios[d]->bi_end_io != end_sync_read)
continue;
rdev = conf->mirrors[d].rdev;
if (sync_page_io(rdev->bdev,
sect + rdev->data_offset,
s<<9,
bio->bi_io_vec[idx].bv_page,
READ) == 0)
md_error(mddev, rdev);
}
} else {
char b[BDEVNAME_SIZE];
/* Cannot read from anywhere, array is toast */
md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
" for block %llu\n",
bdevname(bio->bi_bdev,b),
(unsigned long long)r1_bio->sector);
md_done_sync(mddev, r1_bio->sectors, 0);
put_buf(r1_bio);
return;
}
sectors -= s;
sect += s;
idx ++;
}
}
/*
* schedule writes
*/
atomic_set(&r1_bio->remaining, 1);
for (i = 0; i < disks ; i++) {
wbio = r1_bio->bios[i];
if (wbio->bi_end_io == NULL ||
(wbio->bi_end_io == end_sync_read &&
(i == r1_bio->read_disk ||
!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
continue;
wbio->bi_rw = WRITE;
wbio->bi_end_io = end_sync_write;
atomic_inc(&r1_bio->remaining);
md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
generic_make_request(wbio);
}
if (atomic_dec_and_test(&r1_bio->remaining)) {
/* if we're here, all write(s) have completed, so clean up */
md_done_sync(mddev, r1_bio->sectors, 1);
put_buf(r1_bio);
}
}
/*
* This is a kernel thread which:
*
* 1. Retries failed read operations on working mirrors.
* 2. Updates the raid superblock when problems encounter.
* 3. Performs writes following reads for array syncronising.
*/
static void fix_read_error(conf_t *conf, int read_disk,
sector_t sect, int sectors)
{
mddev_t *mddev = conf->mddev;
while(sectors) {
int s = sectors;
int d = read_disk;
int success = 0;
int start;
mdk_rdev_t *rdev;
if (s > (PAGE_SIZE>>9))
s = PAGE_SIZE >> 9;
do {
/* Note: no rcu protection needed here
* as this is synchronous in the raid1d thread
* which is the thread that might remove
* a device. If raid1d ever becomes multi-threaded....
*/
rdev = conf->mirrors[d].rdev;
if (rdev &&
test_bit(In_sync, &rdev->flags) &&
sync_page_io(rdev->bdev,
sect + rdev->data_offset,
s<<9,
conf->tmppage, READ))
success = 1;
else {
d++;
if (d == conf->raid_disks)
d = 0;
}
} while (!success && d != read_disk);
if (!success) {
/* Cannot read from anywhere -- bye bye array */
md_error(mddev, conf->mirrors[read_disk].rdev);
break;
}
/* write it back and re-read */
start = d;
while (d != read_disk) {
if (d==0)
d = conf->raid_disks;
d--;
rdev = conf->mirrors[d].rdev;
if (rdev &&
test_bit(In_sync, &rdev->flags)) {
if (sync_page_io(rdev->bdev,
sect + rdev->data_offset,
s<<9, conf->tmppage, WRITE)
== 0)
/* Well, this device is dead */
md_error(mddev, rdev);
}
}
d = start;
while (d != read_disk) {
char b[BDEVNAME_SIZE];
if (d==0)
d = conf->raid_disks;
d--;
rdev = conf->mirrors[d].rdev;
if (rdev &&
test_bit(In_sync, &rdev->flags)) {
if (sync_page_io(rdev->bdev,
sect + rdev->data_offset,
s<<9, conf->tmppage, READ)
== 0)
/* Well, this device is dead */
md_error(mddev, rdev);
else {
atomic_add(s, &rdev->corrected_errors);
printk(KERN_INFO
"raid1:%s: read error corrected "
"(%d sectors at %llu on %s)\n",
mdname(mddev), s,
(unsigned long long)(sect +
rdev->data_offset),
bdevname(rdev->bdev, b));
}
}
}
sectors -= s;
sect += s;
}
}
static void raid1d(mddev_t *mddev)
{
r1bio_t *r1_bio;
struct bio *bio;
unsigned long flags;
conf_t *conf = mddev->private;
struct list_head *head = &conf->retry_list;
int unplug=0;
mdk_rdev_t *rdev;
md_check_recovery(mddev);
for (;;) {
char b[BDEVNAME_SIZE];
unplug += flush_pending_writes(conf);
spin_lock_irqsave(&conf->device_lock, flags);
if (list_empty(head)) {
spin_unlock_irqrestore(&conf->device_lock, flags);
break;
}
r1_bio = list_entry(head->prev, r1bio_t, retry_list);
list_del(head->prev);
conf->nr_queued--;
spin_unlock_irqrestore(&conf->device_lock, flags);
mddev = r1_bio->mddev;
conf = mddev->private;
if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
sync_request_write(mddev, r1_bio);
unplug = 1;
} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
/* some requests in the r1bio were BIO_RW_BARRIER
* requests which failed with -EOPNOTSUPP. Hohumm..
* Better resubmit without the barrier.
* We know which devices to resubmit for, because
* all others have had their bios[] entry cleared.
* We already have a nr_pending reference on these rdevs.
*/
int i;
const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
clear_bit(R1BIO_Barrier, &r1_bio->state);
for (i=0; i < conf->raid_disks; i++)
if (r1_bio->bios[i])
atomic_inc(&r1_bio->remaining);
for (i=0; i < conf->raid_disks; i++)
if (r1_bio->bios[i]) {
struct bio_vec *bvec;
int j;
bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
/* copy pages from the failed bio, as
* this might be a write-behind device */
__bio_for_each_segment(bvec, bio, j, 0)
bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
bio_put(r1_bio->bios[i]);
bio->bi_sector = r1_bio->sector +
conf->mirrors[i].rdev->data_offset;
bio->bi_bdev = conf->mirrors[i].rdev->bdev;
bio->bi_end_io = raid1_end_write_request;
bio->bi_rw = WRITE |
(do_sync << BIO_RW_SYNCIO);
bio->bi_private = r1_bio;
r1_bio->bios[i] = bio;
generic_make_request(bio);
}
} else {
int disk;
/* we got a read error. Maybe the drive is bad. Maybe just
* the block and we can fix it.
* We freeze all other IO, and try reading the block from
* other devices. When we find one, we re-write
* and check it that fixes the read error.
* This is all done synchronously while the array is
* frozen
*/
if (mddev->ro == 0) {
freeze_array(conf);
fix_read_error(conf, r1_bio->read_disk,
r1_bio->sector,
r1_bio->sectors);
unfreeze_array(conf);
} else
md_error(mddev,
conf->mirrors[r1_bio->read_disk].rdev);
bio = r1_bio->bios[r1_bio->read_disk];
if ((disk=read_balance(conf, r1_bio)) == -1) {
printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
" read error for block %llu\n",
bdevname(bio->bi_bdev,b),
(unsigned long long)r1_bio->sector);
raid_end_bio_io(r1_bio);
} else {
const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
r1_bio->bios[r1_bio->read_disk] =
mddev->ro ? IO_BLOCKED : NULL;
r1_bio->read_disk = disk;
bio_put(bio);
bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
r1_bio->bios[r1_bio->read_disk] = bio;
rdev = conf->mirrors[disk].rdev;
if (printk_ratelimit())
printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
" another mirror\n",
bdevname(rdev->bdev,b),
(unsigned long long)r1_bio->sector);
bio->bi_sector = r1_bio->sector + rdev->data_offset;
bio->bi_bdev = rdev->bdev;
bio->bi_end_io = raid1_end_read_request;
bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
bio->bi_private = r1_bio;
unplug = 1;
generic_make_request(bio);
}
}
cond_resched();
}
if (unplug)
unplug_slaves(mddev);
}
static int init_resync(conf_t *conf)
{
int buffs;
buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
BUG_ON(conf->r1buf_pool);
conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
conf->poolinfo);
if (!conf->r1buf_pool)
return -ENOMEM;
conf->next_resync = 0;
return 0;
}
/*
* perform a "sync" on one "block"
*
* We need to make sure that no normal I/O request - particularly write
* requests - conflict with active sync requests.
*
* This is achieved by tracking pending requests and a 'barrier' concept
* that can be installed to exclude normal IO requests.
*/
static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
conf_t *conf = mddev->private;
r1bio_t *r1_bio;
struct bio *bio;
sector_t max_sector, nr_sectors;
int disk = -1;
int i;
int wonly = -1;
int write_targets = 0, read_targets = 0;
int sync_blocks;
int still_degraded = 0;
if (!conf->r1buf_pool)
{
/*
printk("sync start - bitmap %p\n", mddev->bitmap);
*/
if (init_resync(conf))
return 0;
}
max_sector = mddev->dev_sectors;
if (sector_nr >= max_sector) {
/* If we aborted, we need to abort the
* sync on the 'current' bitmap chunk (there will
* only be one in raid1 resync.
* We can find the current addess in mddev->curr_resync
*/
if (mddev->curr_resync < max_sector) /* aborted */
bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
else /* completed sync */
conf->fullsync = 0;
bitmap_close_sync(mddev->bitmap);
close_sync(conf);
return 0;
}
if (mddev->bitmap == NULL &&
mddev->recovery_cp == MaxSector &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
conf->fullsync == 0) {
*skipped = 1;
return max_sector - sector_nr;
}
/* before building a request, check if we can skip these blocks..
* This call the bitmap_start_sync doesn't actually record anything
*/
if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
!conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
/* We can skip this block, and probably several more */
*skipped = 1;
return sync_blocks;
}
/*
* If there is non-resync activity waiting for a turn,
* and resync is going fast enough,
* then let it though before starting on this new sync request.
*/
if (!go_faster && conf->nr_waiting)
msleep_interruptible(1000);
bitmap_cond_end_sync(mddev->bitmap, sector_nr);
raise_barrier(conf);
conf->next_resync = sector_nr;
r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
rcu_read_lock();
/*
* If we get a correctably read error during resync or recovery,
* we might want to read from a different device. So we
* flag all drives that could conceivably be read from for READ,
* and any others (which will be non-In_sync devices) for WRITE.
* If a read fails, we try reading from something else for which READ
* is OK.
*/
r1_bio->mddev = mddev;
r1_bio->sector = sector_nr;
r1_bio->state = 0;
set_bit(R1BIO_IsSync, &r1_bio->state);
for (i=0; i < conf->raid_disks; i++) {
mdk_rdev_t *rdev;
bio = r1_bio->bios[i];
/* take from bio_init */
bio->bi_next = NULL;
bio->bi_flags |= 1 << BIO_UPTODATE;
bio->bi_rw = READ;
bio->bi_vcnt = 0;
bio->bi_idx = 0;
bio->bi_phys_segments = 0;
bio->bi_size = 0;
bio->bi_end_io = NULL;
bio->bi_private = NULL;
rdev = rcu_dereference(conf->mirrors[i].rdev);
if (rdev == NULL ||
test_bit(Faulty, &rdev->flags)) {
still_degraded = 1;
continue;
} else if (!test_bit(In_sync, &rdev->flags)) {
bio->bi_rw = WRITE;
bio->bi_end_io = end_sync_write;
write_targets ++;
} else {
/* may need to read from here */
bio->bi_rw = READ;
bio->bi_end_io = end_sync_read;
if (test_bit(WriteMostly, &rdev->flags)) {
if (wonly < 0)
wonly = i;
} else {
if (disk < 0)
disk = i;
}
read_targets++;
}
atomic_inc(&rdev->nr_pending);
bio->bi_sector = sector_nr + rdev->data_offset;
bio->bi_bdev = rdev->bdev;
bio->bi_private = r1_bio;
}
rcu_read_unlock();
if (disk < 0)
disk = wonly;
r1_bio->read_disk = disk;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
/* extra read targets are also write targets */
write_targets += read_targets-1;
if (write_targets == 0 || read_targets == 0) {
/* There is nowhere to write, so all non-sync
* drives must be failed - so we are finished
*/
sector_t rv = max_sector - sector_nr;
*skipped = 1;
put_buf(r1_bio);
return rv;
}
if (max_sector > mddev->resync_max)
max_sector = mddev->resync_max; /* Don't do IO beyond here */
nr_sectors = 0;
sync_blocks = 0;
do {
struct page *page;
int len = PAGE_SIZE;
if (sector_nr + (len>>9) > max_sector)
len = (max_sector - sector_nr) << 9;
if (len == 0)
break;
if (sync_blocks == 0) {
if (!bitmap_start_sync(mddev->bitmap, sector_nr,
&sync_blocks, still_degraded) &&
!conf->fullsync &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
break;
BUG_ON(sync_blocks < (PAGE_SIZE>>9));
if (len > (sync_blocks<<9))
len = sync_blocks<<9;
}
for (i=0 ; i < conf->raid_disks; i++) {
bio = r1_bio->bios[i];
if (bio->bi_end_io) {
page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
if (bio_add_page(bio, page, len, 0) == 0) {
/* stop here */
bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
while (i > 0) {
i--;
bio = r1_bio->bios[i];
if (bio->bi_end_io==NULL)
continue;
/* remove last page from this bio */
bio->bi_vcnt--;
bio->bi_size -= len;
bio->bi_flags &= ~(1<< BIO_SEG_VALID);
}
goto bio_full;
}
}
}
nr_sectors += len>>9;
sector_nr += len>>9;
sync_blocks -= (len>>9);
} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
bio_full:
r1_bio->sectors = nr_sectors;
/* For a user-requested sync, we read all readable devices and do a
* compare
*/
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
atomic_set(&r1_bio->remaining, read_targets);
for (i=0; i<conf->raid_disks; i++) {
bio = r1_bio->bios[i];
if (bio->bi_end_io == end_sync_read) {
md_sync_acct(bio->bi_bdev, nr_sectors);
generic_make_request(bio);
}
}
} else {
atomic_set(&r1_bio->remaining, 1);
bio = r1_bio->bios[r1_bio->read_disk];
md_sync_acct(bio->bi_bdev, nr_sectors);
generic_make_request(bio);
}
return nr_sectors;
}
static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
if (sectors)
return sectors;
return mddev->dev_sectors;
}
static conf_t *setup_conf(mddev_t *mddev)
{
conf_t *conf;
int i;
mirror_info_t *disk;
mdk_rdev_t *rdev;
int err = -ENOMEM;
conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
if (!conf)
goto abort;
conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
GFP_KERNEL);
if (!conf->mirrors)
goto abort;
conf->tmppage = alloc_page(GFP_KERNEL);
if (!conf->tmppage)
goto abort;
conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
if (!conf->poolinfo)
goto abort;
conf->poolinfo->raid_disks = mddev->raid_disks;
conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
r1bio_pool_free,
conf->poolinfo);
if (!conf->r1bio_pool)
goto abort;
conf->poolinfo->mddev = mddev;
spin_lock_init(&conf->device_lock);
list_for_each_entry(rdev, &mddev->disks, same_set) {
int disk_idx = rdev->raid_disk;
if (disk_idx >= mddev->raid_disks
|| disk_idx < 0)
continue;
disk = conf->mirrors + disk_idx;
disk->rdev = rdev;
disk->head_position = 0;
}
conf->raid_disks = mddev->raid_disks;
conf->mddev = mddev;
INIT_LIST_HEAD(&conf->retry_list);
spin_lock_init(&conf->resync_lock);
init_waitqueue_head(&conf->wait_barrier);
bio_list_init(&conf->pending_bio_list);
bio_list_init(&conf->flushing_bio_list);
conf->last_used = -1;
for (i = 0; i < conf->raid_disks; i++) {
disk = conf->mirrors + i;
if (!disk->rdev ||
!test_bit(In_sync, &disk->rdev->flags)) {
disk->head_position = 0;
if (disk->rdev)
conf->fullsync = 1;
} else if (conf->last_used < 0)
/*
* The first working device is used as a
* starting point to read balancing.
*/
conf->last_used = i;
}
err = -EIO;
if (conf->last_used < 0) {
printk(KERN_ERR "raid1: no operational mirrors for %s\n",
mdname(mddev));
goto abort;
}
err = -ENOMEM;
conf->thread = md_register_thread(raid1d, mddev, NULL);
if (!conf->thread) {
printk(KERN_ERR
"raid1: couldn't allocate thread for %s\n",
mdname(mddev));
goto abort;
}
return conf;
abort:
if (conf) {
if (conf->r1bio_pool)
mempool_destroy(conf->r1bio_pool);
kfree(conf->mirrors);
safe_put_page(conf->tmppage);
kfree(conf->poolinfo);
kfree(conf);
}
return ERR_PTR(err);
}
static int run(mddev_t *mddev)
{
conf_t *conf;
int i;
mdk_rdev_t *rdev;
if (mddev->level != 1) {
printk("raid1: %s: raid level not set to mirroring (%d)\n",
mdname(mddev), mddev->level);
return -EIO;
}
if (mddev->reshape_position != MaxSector) {
printk("raid1: %s: reshape_position set but not supported\n",
mdname(mddev));
return -EIO;
}
/*
* copy the already verified devices into our private RAID1
* bookkeeping area. [whatever we allocate in run(),
* should be freed in stop()]
*/
if (mddev->private == NULL)
conf = setup_conf(mddev);
else
conf = mddev->private;
if (IS_ERR(conf))
return PTR_ERR(conf);
mddev->queue->queue_lock = &conf->device_lock;
list_for_each_entry(rdev, &mddev->disks, same_set) {
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
/* as we don't honour merge_bvec_fn, we must never risk
* violating it, so limit ->max_segments to 1 lying within
* a single page, as a one page request is never in violation.
*/
if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
blk_queue_max_segments(mddev->queue, 1);
blk_queue_segment_boundary(mddev->queue,
PAGE_CACHE_SIZE - 1);
}
}
mddev->degraded = 0;
for (i=0; i < conf->raid_disks; i++)
if (conf->mirrors[i].rdev == NULL ||
!test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
test_bit(Faulty, &conf->mirrors[i].rdev->flags))
mddev->degraded++;
if (conf->raid_disks - mddev->degraded == 1)
mddev->recovery_cp = MaxSector;
if (mddev->recovery_cp != MaxSector)
printk(KERN_NOTICE "raid1: %s is not clean"
" -- starting background reconstruction\n",
mdname(mddev));
printk(KERN_INFO
"raid1: raid set %s active with %d out of %d mirrors\n",
mdname(mddev), mddev->raid_disks - mddev->degraded,
mddev->raid_disks);
/*
* Ok, everything is just fine now
*/
mddev->thread = conf->thread;
conf->thread = NULL;
mddev->private = conf;
md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
mddev->queue->unplug_fn = raid1_unplug;
mddev->queue->backing_dev_info.congested_fn = raid1_congested;
mddev->queue->backing_dev_info.congested_data = mddev;
md_integrity_register(mddev);
return 0;
}
static int stop(mddev_t *mddev)
{
conf_t *conf = mddev->private;
struct bitmap *bitmap = mddev->bitmap;
int behind_wait = 0;
/* wait for behind writes to complete */
while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
behind_wait++;
printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ); /* wait a second */
/* need to kick something here to make sure I/O goes? */
}
raise_barrier(conf);
lower_barrier(conf);
md_unregister_thread(mddev->thread);
mddev->thread = NULL;
blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
if (conf->r1bio_pool)
mempool_destroy(conf->r1bio_pool);
kfree(conf->mirrors);
kfree(conf->poolinfo);
kfree(conf);
mddev->private = NULL;
return 0;
}
static int raid1_resize(mddev_t *mddev, sector_t sectors)
{
/* no resync is happening, and there is enough space
* on all devices, so we can resize.
* We need to make sure resync covers any new space.
* If the array is shrinking we should possibly wait until
* any io in the removed space completes, but it hardly seems
* worth it.
*/
md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
return -EINVAL;
set_capacity(mddev->gendisk, mddev->array_sectors);
mddev->changed = 1;
revalidate_disk(mddev->gendisk);
if (sectors > mddev->dev_sectors &&
mddev->recovery_cp == MaxSector) {
mddev->recovery_cp = mddev->dev_sectors;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
mddev->dev_sectors = sectors;
mddev->resync_max_sectors = sectors;
return 0;
}
static int raid1_reshape(mddev_t *mddev)
{
/* We need to:
* 1/ resize the r1bio_pool
* 2/ resize conf->mirrors
*
* We allocate a new r1bio_pool if we can.
* Then raise a device barrier and wait until all IO stops.
* Then resize conf->mirrors and swap in the new r1bio pool.
*
* At the same time, we "pack" the devices so that all the missing
* devices have the higher raid_disk numbers.
*/
mempool_t *newpool, *oldpool;
struct pool_info *newpoolinfo;
mirror_info_t *newmirrors;
conf_t *conf = mddev->private;
int cnt, raid_disks;
unsigned long flags;
int d, d2, err;
/* Cannot change chunk_size, layout, or level */
if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
mddev->layout != mddev->new_layout ||
mddev->level != mddev->new_level) {
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->new_layout = mddev->layout;
mddev->new_level = mddev->level;
return -EINVAL;
}
err = md_allow_write(mddev);
if (err)
return err;
raid_disks = mddev->raid_disks + mddev->delta_disks;
if (raid_disks < conf->raid_disks) {
cnt=0;
for (d= 0; d < conf->raid_disks; d++)
if (conf->mirrors[d].rdev)
cnt++;
if (cnt > raid_disks)
return -EBUSY;
}
newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
if (!newpoolinfo)
return -ENOMEM;
newpoolinfo->mddev = mddev;
newpoolinfo->raid_disks = raid_disks;
newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
r1bio_pool_free, newpoolinfo);
if (!newpool) {
kfree(newpoolinfo);
return -ENOMEM;
}
newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
if (!newmirrors) {
kfree(newpoolinfo);
mempool_destroy(newpool);
return -ENOMEM;
}
raise_barrier(conf);
/* ok, everything is stopped */
oldpool = conf->r1bio_pool;
conf->r1bio_pool = newpool;
for (d = d2 = 0; d < conf->raid_disks; d++) {
mdk_rdev_t *rdev = conf->mirrors[d].rdev;
if (rdev && rdev->raid_disk != d2) {
char nm[20];
sprintf(nm, "rd%d", rdev->raid_disk);
sysfs_remove_link(&mddev->kobj, nm);
rdev->raid_disk = d2;
sprintf(nm, "rd%d", rdev->raid_disk);
sysfs_remove_link(&mddev->kobj, nm);
if (sysfs_create_link(&mddev->kobj,
&rdev->kobj, nm))
printk(KERN_WARNING
"md/raid1: cannot register "
"%s for %s\n",
nm, mdname(mddev));
}
if (rdev)
newmirrors[d2++].rdev = rdev;
}
kfree(conf->mirrors);
conf->mirrors = newmirrors;
kfree(conf->poolinfo);
conf->poolinfo = newpoolinfo;
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded += (raid_disks - conf->raid_disks);
spin_unlock_irqrestore(&conf->device_lock, flags);
conf->raid_disks = mddev->raid_disks = raid_disks;
mddev->delta_disks = 0;
conf->last_used = 0; /* just make sure it is in-range */
lower_barrier(conf);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
mempool_destroy(oldpool);
return 0;
}
static void raid1_quiesce(mddev_t *mddev, int state)
{
conf_t *conf = mddev->private;
switch(state) {
case 2: /* wake for suspend */
wake_up(&conf->wait_barrier);
break;
case 1:
raise_barrier(conf);
break;
case 0:
lower_barrier(conf);
break;
}
}
static void *raid1_takeover(mddev_t *mddev)
{
/* raid1 can take over:
* raid5 with 2 devices, any layout or chunk size
*/
if (mddev->level == 5 && mddev->raid_disks == 2) {
conf_t *conf;
mddev->new_level = 1;
mddev->new_layout = 0;
mddev->new_chunk_sectors = 0;
conf = setup_conf(mddev);
if (!IS_ERR(conf))
conf->barrier = 1;
return conf;
}
return ERR_PTR(-EINVAL);
}
static struct mdk_personality raid1_personality =
{
.name = "raid1",
.level = 1,
.owner = THIS_MODULE,
.make_request = make_request,
.run = run,
.stop = stop,
.status = status,
.error_handler = error,
.hot_add_disk = raid1_add_disk,
.hot_remove_disk= raid1_remove_disk,
.spare_active = raid1_spare_active,
.sync_request = sync_request,
.resize = raid1_resize,
.size = raid1_size,
.check_reshape = raid1_reshape,
.quiesce = raid1_quiesce,
.takeover = raid1_takeover,
};
static int __init raid_init(void)
{
return register_md_personality(&raid1_personality);
}
static void raid_exit(void)
{
unregister_md_personality(&raid1_personality);
}
module_init(raid_init);
module_exit(raid_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
MODULE_ALIAS("md-personality-3"); /* RAID1 */
MODULE_ALIAS("md-raid1");
MODULE_ALIAS("md-level-1");