linux_dsm_epyc7002/drivers/usb/host/xhci-ring.c
Sarah Sharp 50d0206fca xhci: Fix bug after deq ptr set to link TRB.
This patch fixes a particularly nasty bug that was revealed by the ring
expansion patches.  The bug has been present since the very beginning of
the xHCI driver history, and could have caused general protection faults
from bad memory accesses.

The first thing to note is that a Set TR Dequeue Pointer command can
move the dequeue pointer to a link TRB, if the canceled or stalled
transfer TD ended just before a link TRB.  The function to increment the
dequeue pointer, inc_deq, was written before cancellation and stall
support was added.  It assumed that the dequeue pointer could never
point to a link TRB.  It would unconditionally increment the dequeue
pointer at the start of the function, check if the pointer was now on a
link TRB, and move it to the top of the next segment if so.

This means that if a Set TR Dequeue Point command moved the dequeue
pointer to a link TRB, a subsequent call to inc_deq() would move the
pointer off the segment and into la-la-land.  It would then read from
that memory to determine if it was a link TRB.  Other functions would
often call inc_deq() until the dequeue pointer matched some other
pointer, which means this function would quite happily read all of
system memory before wrapping around to the right pointer value.

Often, there would be another endpoint segment from a different ring
allocated from the same DMA pool, which would be contiguous to the
segment inc_deq just stepped off of.  inc_deq would eventually find the
link TRB in that segment, and blindly move the dequeue pointer back to
the top of the correct ring segment.

The only reason the original code worked at all is because there was
only one ring segment.  With the ring expansion patches, the dequeue
pointer would eventually wrap into place, but the dequeue segment would
be out-of-sync.  On the second TD after the dequeue pointer was moved to
a link TRB, trb_in_td() would fail (because the dequeue pointer and
dequeue segment were out-of-sync), and this message would appear:

ERROR Transfer event TRB DMA ptr not part of current TD

This fixes bugzilla entry 4333 (option-based modem unhappy on USB 3.0
port: "Transfer event TRB DMA ptr not part of current TD", "rejecting
I/O to offline device"),

	https://bugzilla.kernel.org/show_bug.cgi?id=43333

and possibly other general protection fault bugs as well.

This patch should be backported to kernels as old as 2.6.31.  A separate
patch will be created for kernels older than 3.4, since inc_deq was
modified in 3.4 and this patch will not apply.

Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: James Ettle <theholyettlz@googlemail.com>
Tested-by: Matthew Hall <mhall@mhcomputing.net>
Cc: stable@vger.kernel.org
2012-08-08 12:17:38 -07:00

3700 lines
114 KiB
C

/*
* xHCI host controller driver
*
* Copyright (C) 2008 Intel Corp.
*
* Author: Sarah Sharp
* Some code borrowed from the Linux EHCI driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Ring initialization rules:
* 1. Each segment is initialized to zero, except for link TRBs.
* 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
* Consumer Cycle State (CCS), depending on ring function.
* 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
*
* Ring behavior rules:
* 1. A ring is empty if enqueue == dequeue. This means there will always be at
* least one free TRB in the ring. This is useful if you want to turn that
* into a link TRB and expand the ring.
* 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
* link TRB, then load the pointer with the address in the link TRB. If the
* link TRB had its toggle bit set, you may need to update the ring cycle
* state (see cycle bit rules). You may have to do this multiple times
* until you reach a non-link TRB.
* 3. A ring is full if enqueue++ (for the definition of increment above)
* equals the dequeue pointer.
*
* Cycle bit rules:
* 1. When a consumer increments a dequeue pointer and encounters a toggle bit
* in a link TRB, it must toggle the ring cycle state.
* 2. When a producer increments an enqueue pointer and encounters a toggle bit
* in a link TRB, it must toggle the ring cycle state.
*
* Producer rules:
* 1. Check if ring is full before you enqueue.
* 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
* Update enqueue pointer between each write (which may update the ring
* cycle state).
* 3. Notify consumer. If SW is producer, it rings the doorbell for command
* and endpoint rings. If HC is the producer for the event ring,
* and it generates an interrupt according to interrupt modulation rules.
*
* Consumer rules:
* 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
* the TRB is owned by the consumer.
* 2. Update dequeue pointer (which may update the ring cycle state) and
* continue processing TRBs until you reach a TRB which is not owned by you.
* 3. Notify the producer. SW is the consumer for the event ring, and it
* updates event ring dequeue pointer. HC is the consumer for the command and
* endpoint rings; it generates events on the event ring for these.
*/
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include "xhci.h"
static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct xhci_event_cmd *event);
/*
* Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
* address of the TRB.
*/
dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
union xhci_trb *trb)
{
unsigned long segment_offset;
if (!seg || !trb || trb < seg->trbs)
return 0;
/* offset in TRBs */
segment_offset = trb - seg->trbs;
if (segment_offset > TRBS_PER_SEGMENT)
return 0;
return seg->dma + (segment_offset * sizeof(*trb));
}
/* Does this link TRB point to the first segment in a ring,
* or was the previous TRB the last TRB on the last segment in the ERST?
*/
static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
struct xhci_segment *seg, union xhci_trb *trb)
{
if (ring == xhci->event_ring)
return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
(seg->next == xhci->event_ring->first_seg);
else
return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
}
/* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
* segment? I.e. would the updated event TRB pointer step off the end of the
* event seg?
*/
static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
struct xhci_segment *seg, union xhci_trb *trb)
{
if (ring == xhci->event_ring)
return trb == &seg->trbs[TRBS_PER_SEGMENT];
else
return TRB_TYPE_LINK_LE32(trb->link.control);
}
static int enqueue_is_link_trb(struct xhci_ring *ring)
{
struct xhci_link_trb *link = &ring->enqueue->link;
return TRB_TYPE_LINK_LE32(link->control);
}
/* Updates trb to point to the next TRB in the ring, and updates seg if the next
* TRB is in a new segment. This does not skip over link TRBs, and it does not
* effect the ring dequeue or enqueue pointers.
*/
static void next_trb(struct xhci_hcd *xhci,
struct xhci_ring *ring,
struct xhci_segment **seg,
union xhci_trb **trb)
{
if (last_trb(xhci, ring, *seg, *trb)) {
*seg = (*seg)->next;
*trb = ((*seg)->trbs);
} else {
(*trb)++;
}
}
/*
* See Cycle bit rules. SW is the consumer for the event ring only.
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
*/
static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
{
unsigned long long addr;
ring->deq_updates++;
/*
* If this is not event ring, and the dequeue pointer
* is not on a link TRB, there is one more usable TRB
*/
if (ring->type != TYPE_EVENT &&
!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
ring->num_trbs_free++;
do {
/*
* Update the dequeue pointer further if that was a link TRB or
* we're at the end of an event ring segment (which doesn't have
* link TRBS)
*/
if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
if (ring->type == TYPE_EVENT &&
last_trb_on_last_seg(xhci, ring,
ring->deq_seg, ring->dequeue)) {
ring->cycle_state = (ring->cycle_state ? 0 : 1);
}
ring->deq_seg = ring->deq_seg->next;
ring->dequeue = ring->deq_seg->trbs;
} else {
ring->dequeue++;
}
} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
}
/*
* See Cycle bit rules. SW is the consumer for the event ring only.
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
*
* If we've just enqueued a TRB that is in the middle of a TD (meaning the
* chain bit is set), then set the chain bit in all the following link TRBs.
* If we've enqueued the last TRB in a TD, make sure the following link TRBs
* have their chain bit cleared (so that each Link TRB is a separate TD).
*
* Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
* set, but other sections talk about dealing with the chain bit set. This was
* fixed in the 0.96 specification errata, but we have to assume that all 0.95
* xHCI hardware can't handle the chain bit being cleared on a link TRB.
*
* @more_trbs_coming: Will you enqueue more TRBs before calling
* prepare_transfer()?
*/
static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
bool more_trbs_coming)
{
u32 chain;
union xhci_trb *next;
unsigned long long addr;
chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
/* If this is not event ring, there is one less usable TRB */
if (ring->type != TYPE_EVENT &&
!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
ring->num_trbs_free--;
next = ++(ring->enqueue);
ring->enq_updates++;
/* Update the dequeue pointer further if that was a link TRB or we're at
* the end of an event ring segment (which doesn't have link TRBS)
*/
while (last_trb(xhci, ring, ring->enq_seg, next)) {
if (ring->type != TYPE_EVENT) {
/*
* If the caller doesn't plan on enqueueing more
* TDs before ringing the doorbell, then we
* don't want to give the link TRB to the
* hardware just yet. We'll give the link TRB
* back in prepare_ring() just before we enqueue
* the TD at the top of the ring.
*/
if (!chain && !more_trbs_coming)
break;
/* If we're not dealing with 0.95 hardware or
* isoc rings on AMD 0.96 host,
* carry over the chain bit of the previous TRB
* (which may mean the chain bit is cleared).
*/
if (!(ring->type == TYPE_ISOC &&
(xhci->quirks & XHCI_AMD_0x96_HOST))
&& !xhci_link_trb_quirk(xhci)) {
next->link.control &=
cpu_to_le32(~TRB_CHAIN);
next->link.control |=
cpu_to_le32(chain);
}
/* Give this link TRB to the hardware */
wmb();
next->link.control ^= cpu_to_le32(TRB_CYCLE);
/* Toggle the cycle bit after the last ring segment. */
if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
ring->cycle_state = (ring->cycle_state ? 0 : 1);
}
}
ring->enq_seg = ring->enq_seg->next;
ring->enqueue = ring->enq_seg->trbs;
next = ring->enqueue;
}
addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
}
/*
* Check to see if there's room to enqueue num_trbs on the ring and make sure
* enqueue pointer will not advance into dequeue segment. See rules above.
*/
static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
unsigned int num_trbs)
{
int num_trbs_in_deq_seg;
if (ring->num_trbs_free < num_trbs)
return 0;
if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
return 0;
}
return 1;
}
/* Ring the host controller doorbell after placing a command on the ring */
void xhci_ring_cmd_db(struct xhci_hcd *xhci)
{
xhci_dbg(xhci, "// Ding dong!\n");
xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
/* Flush PCI posted writes */
xhci_readl(xhci, &xhci->dba->doorbell[0]);
}
void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
unsigned int slot_id,
unsigned int ep_index,
unsigned int stream_id)
{
__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
unsigned int ep_state = ep->ep_state;
/* Don't ring the doorbell for this endpoint if there are pending
* cancellations because we don't want to interrupt processing.
* We don't want to restart any stream rings if there's a set dequeue
* pointer command pending because the device can choose to start any
* stream once the endpoint is on the HW schedule.
* FIXME - check all the stream rings for pending cancellations.
*/
if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
(ep_state & EP_HALTED))
return;
xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
/* The CPU has better things to do at this point than wait for a
* write-posting flush. It'll get there soon enough.
*/
}
/* Ring the doorbell for any rings with pending URBs */
static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
unsigned int slot_id,
unsigned int ep_index)
{
unsigned int stream_id;
struct xhci_virt_ep *ep;
ep = &xhci->devs[slot_id]->eps[ep_index];
/* A ring has pending URBs if its TD list is not empty */
if (!(ep->ep_state & EP_HAS_STREAMS)) {
if (!(list_empty(&ep->ring->td_list)))
xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
return;
}
for (stream_id = 1; stream_id < ep->stream_info->num_streams;
stream_id++) {
struct xhci_stream_info *stream_info = ep->stream_info;
if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
stream_id);
}
}
/*
* Find the segment that trb is in. Start searching in start_seg.
* If we must move past a segment that has a link TRB with a toggle cycle state
* bit set, then we will toggle the value pointed at by cycle_state.
*/
static struct xhci_segment *find_trb_seg(
struct xhci_segment *start_seg,
union xhci_trb *trb, int *cycle_state)
{
struct xhci_segment *cur_seg = start_seg;
struct xhci_generic_trb *generic_trb;
while (cur_seg->trbs > trb ||
&cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
*cycle_state ^= 0x1;
cur_seg = cur_seg->next;
if (cur_seg == start_seg)
/* Looped over the entire list. Oops! */
return NULL;
}
return cur_seg;
}
static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
unsigned int stream_id)
{
struct xhci_virt_ep *ep;
ep = &xhci->devs[slot_id]->eps[ep_index];
/* Common case: no streams */
if (!(ep->ep_state & EP_HAS_STREAMS))
return ep->ring;
if (stream_id == 0) {
xhci_warn(xhci,
"WARN: Slot ID %u, ep index %u has streams, "
"but URB has no stream ID.\n",
slot_id, ep_index);
return NULL;
}
if (stream_id < ep->stream_info->num_streams)
return ep->stream_info->stream_rings[stream_id];
xhci_warn(xhci,
"WARN: Slot ID %u, ep index %u has "
"stream IDs 1 to %u allocated, "
"but stream ID %u is requested.\n",
slot_id, ep_index,
ep->stream_info->num_streams - 1,
stream_id);
return NULL;
}
/* Get the right ring for the given URB.
* If the endpoint supports streams, boundary check the URB's stream ID.
* If the endpoint doesn't support streams, return the singular endpoint ring.
*/
static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
struct urb *urb)
{
return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
}
/*
* Move the xHC's endpoint ring dequeue pointer past cur_td.
* Record the new state of the xHC's endpoint ring dequeue segment,
* dequeue pointer, and new consumer cycle state in state.
* Update our internal representation of the ring's dequeue pointer.
*
* We do this in three jumps:
* - First we update our new ring state to be the same as when the xHC stopped.
* - Then we traverse the ring to find the segment that contains
* the last TRB in the TD. We toggle the xHC's new cycle state when we pass
* any link TRBs with the toggle cycle bit set.
* - Finally we move the dequeue state one TRB further, toggling the cycle bit
* if we've moved it past a link TRB with the toggle cycle bit set.
*
* Some of the uses of xhci_generic_trb are grotty, but if they're done
* with correct __le32 accesses they should work fine. Only users of this are
* in here.
*/
void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
unsigned int stream_id, struct xhci_td *cur_td,
struct xhci_dequeue_state *state)
{
struct xhci_virt_device *dev = xhci->devs[slot_id];
struct xhci_ring *ep_ring;
struct xhci_generic_trb *trb;
struct xhci_ep_ctx *ep_ctx;
dma_addr_t addr;
ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
ep_index, stream_id);
if (!ep_ring) {
xhci_warn(xhci, "WARN can't find new dequeue state "
"for invalid stream ID %u.\n",
stream_id);
return;
}
state->new_cycle_state = 0;
xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
state->new_deq_seg = find_trb_seg(cur_td->start_seg,
dev->eps[ep_index].stopped_trb,
&state->new_cycle_state);
if (!state->new_deq_seg) {
WARN_ON(1);
return;
}
/* Dig out the cycle state saved by the xHC during the stop ep cmd */
xhci_dbg(xhci, "Finding endpoint context\n");
ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
state->new_deq_ptr = cur_td->last_trb;
xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
state->new_deq_seg = find_trb_seg(state->new_deq_seg,
state->new_deq_ptr,
&state->new_cycle_state);
if (!state->new_deq_seg) {
WARN_ON(1);
return;
}
trb = &state->new_deq_ptr->generic;
if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
(trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
state->new_cycle_state ^= 0x1;
next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
/*
* If there is only one segment in a ring, find_trb_seg()'s while loop
* will not run, and it will return before it has a chance to see if it
* needs to toggle the cycle bit. It can't tell if the stalled transfer
* ended just before the link TRB on a one-segment ring, or if the TD
* wrapped around the top of the ring, because it doesn't have the TD in
* question. Look for the one-segment case where stalled TRB's address
* is greater than the new dequeue pointer address.
*/
if (ep_ring->first_seg == ep_ring->first_seg->next &&
state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
state->new_cycle_state ^= 0x1;
xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
/* Don't update the ring cycle state for the producer (us). */
xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
state->new_deq_seg);
addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
(unsigned long long) addr);
}
/* flip_cycle means flip the cycle bit of all but the first and last TRB.
* (The last TRB actually points to the ring enqueue pointer, which is not part
* of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
*/
static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
struct xhci_td *cur_td, bool flip_cycle)
{
struct xhci_segment *cur_seg;
union xhci_trb *cur_trb;
for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
true;
next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
/* Unchain any chained Link TRBs, but
* leave the pointers intact.
*/
cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
/* Flip the cycle bit (link TRBs can't be the first
* or last TRB).
*/
if (flip_cycle)
cur_trb->generic.field[3] ^=
cpu_to_le32(TRB_CYCLE);
xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
xhci_dbg(xhci, "Address = %p (0x%llx dma); "
"in seg %p (0x%llx dma)\n",
cur_trb,
(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
cur_seg,
(unsigned long long)cur_seg->dma);
} else {
cur_trb->generic.field[0] = 0;
cur_trb->generic.field[1] = 0;
cur_trb->generic.field[2] = 0;
/* Preserve only the cycle bit of this TRB */
cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
/* Flip the cycle bit except on the first or last TRB */
if (flip_cycle && cur_trb != cur_td->first_trb &&
cur_trb != cur_td->last_trb)
cur_trb->generic.field[3] ^=
cpu_to_le32(TRB_CYCLE);
cur_trb->generic.field[3] |= cpu_to_le32(
TRB_TYPE(TRB_TR_NOOP));
xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n",
(unsigned long long)
xhci_trb_virt_to_dma(cur_seg, cur_trb));
}
if (cur_trb == cur_td->last_trb)
break;
}
}
static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
unsigned int ep_index, unsigned int stream_id,
struct xhci_segment *deq_seg,
union xhci_trb *deq_ptr, u32 cycle_state);
void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
unsigned int stream_id,
struct xhci_dequeue_state *deq_state)
{
struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
"new deq ptr = %p (0x%llx dma), new cycle = %u\n",
deq_state->new_deq_seg,
(unsigned long long)deq_state->new_deq_seg->dma,
deq_state->new_deq_ptr,
(unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
deq_state->new_cycle_state);
queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
deq_state->new_deq_seg,
deq_state->new_deq_ptr,
(u32) deq_state->new_cycle_state);
/* Stop the TD queueing code from ringing the doorbell until
* this command completes. The HC won't set the dequeue pointer
* if the ring is running, and ringing the doorbell starts the
* ring running.
*/
ep->ep_state |= SET_DEQ_PENDING;
}
static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
struct xhci_virt_ep *ep)
{
ep->ep_state &= ~EP_HALT_PENDING;
/* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
* timer is running on another CPU, we don't decrement stop_cmds_pending
* (since we didn't successfully stop the watchdog timer).
*/
if (del_timer(&ep->stop_cmd_timer))
ep->stop_cmds_pending--;
}
/* Must be called with xhci->lock held in interrupt context */
static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
struct xhci_td *cur_td, int status, char *adjective)
{
struct usb_hcd *hcd;
struct urb *urb;
struct urb_priv *urb_priv;
urb = cur_td->urb;
urb_priv = urb->hcpriv;
urb_priv->td_cnt++;
hcd = bus_to_hcd(urb->dev->bus);
/* Only giveback urb when this is the last td in urb */
if (urb_priv->td_cnt == urb_priv->length) {
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
if (xhci->quirks & XHCI_AMD_PLL_FIX)
usb_amd_quirk_pll_enable();
}
}
usb_hcd_unlink_urb_from_ep(hcd, urb);
spin_unlock(&xhci->lock);
usb_hcd_giveback_urb(hcd, urb, status);
xhci_urb_free_priv(xhci, urb_priv);
spin_lock(&xhci->lock);
}
}
/*
* When we get a command completion for a Stop Endpoint Command, we need to
* unlink any cancelled TDs from the ring. There are two ways to do that:
*
* 1. If the HW was in the middle of processing the TD that needs to be
* cancelled, then we must move the ring's dequeue pointer past the last TRB
* in the TD with a Set Dequeue Pointer Command.
* 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
* bit cleared) so that the HW will skip over them.
*/
static void handle_stopped_endpoint(struct xhci_hcd *xhci,
union xhci_trb *trb, struct xhci_event_cmd *event)
{
unsigned int slot_id;
unsigned int ep_index;
struct xhci_virt_device *virt_dev;
struct xhci_ring *ep_ring;
struct xhci_virt_ep *ep;
struct list_head *entry;
struct xhci_td *cur_td = NULL;
struct xhci_td *last_unlinked_td;
struct xhci_dequeue_state deq_state;
if (unlikely(TRB_TO_SUSPEND_PORT(
le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
slot_id = TRB_TO_SLOT_ID(
le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
virt_dev = xhci->devs[slot_id];
if (virt_dev)
handle_cmd_in_cmd_wait_list(xhci, virt_dev,
event);
else
xhci_warn(xhci, "Stop endpoint command "
"completion for disabled slot %u\n",
slot_id);
return;
}
memset(&deq_state, 0, sizeof(deq_state));
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
ep = &xhci->devs[slot_id]->eps[ep_index];
if (list_empty(&ep->cancelled_td_list)) {
xhci_stop_watchdog_timer_in_irq(xhci, ep);
ep->stopped_td = NULL;
ep->stopped_trb = NULL;
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
return;
}
/* Fix up the ep ring first, so HW stops executing cancelled TDs.
* We have the xHCI lock, so nothing can modify this list until we drop
* it. We're also in the event handler, so we can't get re-interrupted
* if another Stop Endpoint command completes
*/
list_for_each(entry, &ep->cancelled_td_list) {
cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n",
(unsigned long long)xhci_trb_virt_to_dma(
cur_td->start_seg, cur_td->first_trb));
ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
if (!ep_ring) {
/* This shouldn't happen unless a driver is mucking
* with the stream ID after submission. This will
* leave the TD on the hardware ring, and the hardware
* will try to execute it, and may access a buffer
* that has already been freed. In the best case, the
* hardware will execute it, and the event handler will
* ignore the completion event for that TD, since it was
* removed from the td_list for that endpoint. In
* short, don't muck with the stream ID after
* submission.
*/
xhci_warn(xhci, "WARN Cancelled URB %p "
"has invalid stream ID %u.\n",
cur_td->urb,
cur_td->urb->stream_id);
goto remove_finished_td;
}
/*
* If we stopped on the TD we need to cancel, then we have to
* move the xHC endpoint ring dequeue pointer past this TD.
*/
if (cur_td == ep->stopped_td)
xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
cur_td->urb->stream_id,
cur_td, &deq_state);
else
td_to_noop(xhci, ep_ring, cur_td, false);
remove_finished_td:
/*
* The event handler won't see a completion for this TD anymore,
* so remove it from the endpoint ring's TD list. Keep it in
* the cancelled TD list for URB completion later.
*/
list_del_init(&cur_td->td_list);
}
last_unlinked_td = cur_td;
xhci_stop_watchdog_timer_in_irq(xhci, ep);
/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
xhci_queue_new_dequeue_state(xhci,
slot_id, ep_index,
ep->stopped_td->urb->stream_id,
&deq_state);
xhci_ring_cmd_db(xhci);
} else {
/* Otherwise ring the doorbell(s) to restart queued transfers */
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
}
ep->stopped_td = NULL;
ep->stopped_trb = NULL;
/*
* Drop the lock and complete the URBs in the cancelled TD list.
* New TDs to be cancelled might be added to the end of the list before
* we can complete all the URBs for the TDs we already unlinked.
* So stop when we've completed the URB for the last TD we unlinked.
*/
do {
cur_td = list_entry(ep->cancelled_td_list.next,
struct xhci_td, cancelled_td_list);
list_del_init(&cur_td->cancelled_td_list);
/* Clean up the cancelled URB */
/* Doesn't matter what we pass for status, since the core will
* just overwrite it (because the URB has been unlinked).
*/
xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
/* Stop processing the cancelled list if the watchdog timer is
* running.
*/
if (xhci->xhc_state & XHCI_STATE_DYING)
return;
} while (cur_td != last_unlinked_td);
/* Return to the event handler with xhci->lock re-acquired */
}
/* Watchdog timer function for when a stop endpoint command fails to complete.
* In this case, we assume the host controller is broken or dying or dead. The
* host may still be completing some other events, so we have to be careful to
* let the event ring handler and the URB dequeueing/enqueueing functions know
* through xhci->state.
*
* The timer may also fire if the host takes a very long time to respond to the
* command, and the stop endpoint command completion handler cannot delete the
* timer before the timer function is called. Another endpoint cancellation may
* sneak in before the timer function can grab the lock, and that may queue
* another stop endpoint command and add the timer back. So we cannot use a
* simple flag to say whether there is a pending stop endpoint command for a
* particular endpoint.
*
* Instead we use a combination of that flag and a counter for the number of
* pending stop endpoint commands. If the timer is the tail end of the last
* stop endpoint command, and the endpoint's command is still pending, we assume
* the host is dying.
*/
void xhci_stop_endpoint_command_watchdog(unsigned long arg)
{
struct xhci_hcd *xhci;
struct xhci_virt_ep *ep;
struct xhci_virt_ep *temp_ep;
struct xhci_ring *ring;
struct xhci_td *cur_td;
int ret, i, j;
unsigned long flags;
ep = (struct xhci_virt_ep *) arg;
xhci = ep->xhci;
spin_lock_irqsave(&xhci->lock, flags);
ep->stop_cmds_pending--;
if (xhci->xhc_state & XHCI_STATE_DYING) {
xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
"xHCI as DYING, exiting.\n");
spin_unlock_irqrestore(&xhci->lock, flags);
return;
}
if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
"exiting.\n");
spin_unlock_irqrestore(&xhci->lock, flags);
return;
}
xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
xhci_warn(xhci, "Assuming host is dying, halting host.\n");
/* Oops, HC is dead or dying or at least not responding to the stop
* endpoint command.
*/
xhci->xhc_state |= XHCI_STATE_DYING;
/* Disable interrupts from the host controller and start halting it */
xhci_quiesce(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
ret = xhci_halt(xhci);
spin_lock_irqsave(&xhci->lock, flags);
if (ret < 0) {
/* This is bad; the host is not responding to commands and it's
* not allowing itself to be halted. At least interrupts are
* disabled. If we call usb_hc_died(), it will attempt to
* disconnect all device drivers under this host. Those
* disconnect() methods will wait for all URBs to be unlinked,
* so we must complete them.
*/
xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
xhci_warn(xhci, "Completing active URBs anyway.\n");
/* We could turn all TDs on the rings to no-ops. This won't
* help if the host has cached part of the ring, and is slow if
* we want to preserve the cycle bit. Skip it and hope the host
* doesn't touch the memory.
*/
}
for (i = 0; i < MAX_HC_SLOTS; i++) {
if (!xhci->devs[i])
continue;
for (j = 0; j < 31; j++) {
temp_ep = &xhci->devs[i]->eps[j];
ring = temp_ep->ring;
if (!ring)
continue;
xhci_dbg(xhci, "Killing URBs for slot ID %u, "
"ep index %u\n", i, j);
while (!list_empty(&ring->td_list)) {
cur_td = list_first_entry(&ring->td_list,
struct xhci_td,
td_list);
list_del_init(&cur_td->td_list);
if (!list_empty(&cur_td->cancelled_td_list))
list_del_init(&cur_td->cancelled_td_list);
xhci_giveback_urb_in_irq(xhci, cur_td,
-ESHUTDOWN, "killed");
}
while (!list_empty(&temp_ep->cancelled_td_list)) {
cur_td = list_first_entry(
&temp_ep->cancelled_td_list,
struct xhci_td,
cancelled_td_list);
list_del_init(&cur_td->cancelled_td_list);
xhci_giveback_urb_in_irq(xhci, cur_td,
-ESHUTDOWN, "killed");
}
}
}
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "Calling usb_hc_died()\n");
usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
xhci_dbg(xhci, "xHCI host controller is dead.\n");
}
static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
struct xhci_virt_device *dev,
struct xhci_ring *ep_ring,
unsigned int ep_index)
{
union xhci_trb *dequeue_temp;
int num_trbs_free_temp;
bool revert = false;
num_trbs_free_temp = ep_ring->num_trbs_free;
dequeue_temp = ep_ring->dequeue;
/* If we get two back-to-back stalls, and the first stalled transfer
* ends just before a link TRB, the dequeue pointer will be left on
* the link TRB by the code in the while loop. So we have to update
* the dequeue pointer one segment further, or we'll jump off
* the segment into la-la-land.
*/
if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
ep_ring->deq_seg = ep_ring->deq_seg->next;
ep_ring->dequeue = ep_ring->deq_seg->trbs;
}
while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
/* We have more usable TRBs */
ep_ring->num_trbs_free++;
ep_ring->dequeue++;
if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
ep_ring->dequeue)) {
if (ep_ring->dequeue ==
dev->eps[ep_index].queued_deq_ptr)
break;
ep_ring->deq_seg = ep_ring->deq_seg->next;
ep_ring->dequeue = ep_ring->deq_seg->trbs;
}
if (ep_ring->dequeue == dequeue_temp) {
revert = true;
break;
}
}
if (revert) {
xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
ep_ring->num_trbs_free = num_trbs_free_temp;
}
}
/*
* When we get a completion for a Set Transfer Ring Dequeue Pointer command,
* we need to clear the set deq pending flag in the endpoint ring state, so that
* the TD queueing code can ring the doorbell again. We also need to ring the
* endpoint doorbell to restart the ring, but only if there aren't more
* cancellations pending.
*/
static void handle_set_deq_completion(struct xhci_hcd *xhci,
struct xhci_event_cmd *event,
union xhci_trb *trb)
{
unsigned int slot_id;
unsigned int ep_index;
unsigned int stream_id;
struct xhci_ring *ep_ring;
struct xhci_virt_device *dev;
struct xhci_ep_ctx *ep_ctx;
struct xhci_slot_ctx *slot_ctx;
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
dev = xhci->devs[slot_id];
ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
if (!ep_ring) {
xhci_warn(xhci, "WARN Set TR deq ptr command for "
"freed stream ID %u\n",
stream_id);
/* XXX: Harmless??? */
dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
return;
}
ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
unsigned int ep_state;
unsigned int slot_state;
switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
case COMP_TRB_ERR:
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
"of stream ID configuration\n");
break;
case COMP_CTX_STATE:
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
"to incorrect slot or ep state.\n");
ep_state = le32_to_cpu(ep_ctx->ep_info);
ep_state &= EP_STATE_MASK;
slot_state = le32_to_cpu(slot_ctx->dev_state);
slot_state = GET_SLOT_STATE(slot_state);
xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
slot_state, ep_state);
break;
case COMP_EBADSLT:
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
"slot %u was not enabled.\n", slot_id);
break;
default:
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
"completion code of %u.\n",
GET_COMP_CODE(le32_to_cpu(event->status)));
break;
}
/* OK what do we do now? The endpoint state is hosed, and we
* should never get to this point if the synchronization between
* queueing, and endpoint state are correct. This might happen
* if the device gets disconnected after we've finished
* cancelling URBs, which might not be an error...
*/
} else {
xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
le64_to_cpu(ep_ctx->deq));
if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
dev->eps[ep_index].queued_deq_ptr) ==
(le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
/* Update the ring's dequeue segment and dequeue pointer
* to reflect the new position.
*/
update_ring_for_set_deq_completion(xhci, dev,
ep_ring, ep_index);
} else {
xhci_warn(xhci, "Mismatch between completed Set TR Deq "
"Ptr command & xHCI internal state.\n");
xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
dev->eps[ep_index].queued_deq_seg,
dev->eps[ep_index].queued_deq_ptr);
}
}
dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
dev->eps[ep_index].queued_deq_seg = NULL;
dev->eps[ep_index].queued_deq_ptr = NULL;
/* Restart any rings with pending URBs */
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
}
static void handle_reset_ep_completion(struct xhci_hcd *xhci,
struct xhci_event_cmd *event,
union xhci_trb *trb)
{
int slot_id;
unsigned int ep_index;
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
/* This command will only fail if the endpoint wasn't halted,
* but we don't care.
*/
xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
GET_COMP_CODE(le32_to_cpu(event->status)));
/* HW with the reset endpoint quirk needs to have a configure endpoint
* command complete before the endpoint can be used. Queue that here
* because the HW can't handle two commands being queued in a row.
*/
if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
xhci_dbg(xhci, "Queueing configure endpoint command\n");
xhci_queue_configure_endpoint(xhci,
xhci->devs[slot_id]->in_ctx->dma, slot_id,
false);
xhci_ring_cmd_db(xhci);
} else {
/* Clear our internal halted state and restart the ring(s) */
xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
}
}
/* Check to see if a command in the device's command queue matches this one.
* Signal the completion or free the command, and return 1. Return 0 if the
* completed command isn't at the head of the command list.
*/
static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct xhci_event_cmd *event)
{
struct xhci_command *command;
if (list_empty(&virt_dev->cmd_list))
return 0;
command = list_entry(virt_dev->cmd_list.next,
struct xhci_command, cmd_list);
if (xhci->cmd_ring->dequeue != command->command_trb)
return 0;
command->status = GET_COMP_CODE(le32_to_cpu(event->status));
list_del(&command->cmd_list);
if (command->completion)
complete(command->completion);
else
xhci_free_command(xhci, command);
return 1;
}
static void handle_cmd_completion(struct xhci_hcd *xhci,
struct xhci_event_cmd *event)
{
int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
u64 cmd_dma;
dma_addr_t cmd_dequeue_dma;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_virt_device *virt_dev;
unsigned int ep_index;
struct xhci_ring *ep_ring;
unsigned int ep_state;
cmd_dma = le64_to_cpu(event->cmd_trb);
cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
xhci->cmd_ring->dequeue);
/* Is the command ring deq ptr out of sync with the deq seg ptr? */
if (cmd_dequeue_dma == 0) {
xhci->error_bitmask |= 1 << 4;
return;
}
/* Does the DMA address match our internal dequeue pointer address? */
if (cmd_dma != (u64) cmd_dequeue_dma) {
xhci->error_bitmask |= 1 << 5;
return;
}
switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
& TRB_TYPE_BITMASK) {
case TRB_TYPE(TRB_ENABLE_SLOT):
if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
xhci->slot_id = slot_id;
else
xhci->slot_id = 0;
complete(&xhci->addr_dev);
break;
case TRB_TYPE(TRB_DISABLE_SLOT):
if (xhci->devs[slot_id]) {
if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
/* Delete default control endpoint resources */
xhci_free_device_endpoint_resources(xhci,
xhci->devs[slot_id], true);
xhci_free_virt_device(xhci, slot_id);
}
break;
case TRB_TYPE(TRB_CONFIG_EP):
virt_dev = xhci->devs[slot_id];
if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
break;
/*
* Configure endpoint commands can come from the USB core
* configuration or alt setting changes, or because the HW
* needed an extra configure endpoint command after a reset
* endpoint command or streams were being configured.
* If the command was for a halted endpoint, the xHCI driver
* is not waiting on the configure endpoint command.
*/
ctrl_ctx = xhci_get_input_control_ctx(xhci,
virt_dev->in_ctx);
/* Input ctx add_flags are the endpoint index plus one */
ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
/* A usb_set_interface() call directly after clearing a halted
* condition may race on this quirky hardware. Not worth
* worrying about, since this is prototype hardware. Not sure
* if this will work for streams, but streams support was
* untested on this prototype.
*/
if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
ep_index != (unsigned int) -1 &&
le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
le32_to_cpu(ctrl_ctx->drop_flags)) {
ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
if (!(ep_state & EP_HALTED))
goto bandwidth_change;
xhci_dbg(xhci, "Completed config ep cmd - "
"last ep index = %d, state = %d\n",
ep_index, ep_state);
/* Clear internal halted state and restart ring(s) */
xhci->devs[slot_id]->eps[ep_index].ep_state &=
~EP_HALTED;
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
break;
}
bandwidth_change:
xhci_dbg(xhci, "Completed config ep cmd\n");
xhci->devs[slot_id]->cmd_status =
GET_COMP_CODE(le32_to_cpu(event->status));
complete(&xhci->devs[slot_id]->cmd_completion);
break;
case TRB_TYPE(TRB_EVAL_CONTEXT):
virt_dev = xhci->devs[slot_id];
if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
break;
xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
complete(&xhci->devs[slot_id]->cmd_completion);
break;
case TRB_TYPE(TRB_ADDR_DEV):
xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
complete(&xhci->addr_dev);
break;
case TRB_TYPE(TRB_STOP_RING):
handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
break;
case TRB_TYPE(TRB_SET_DEQ):
handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
break;
case TRB_TYPE(TRB_CMD_NOOP):
break;
case TRB_TYPE(TRB_RESET_EP):
handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
break;
case TRB_TYPE(TRB_RESET_DEV):
xhci_dbg(xhci, "Completed reset device command.\n");
slot_id = TRB_TO_SLOT_ID(
le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
virt_dev = xhci->devs[slot_id];
if (virt_dev)
handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
else
xhci_warn(xhci, "Reset device command completion "
"for disabled slot %u\n", slot_id);
break;
case TRB_TYPE(TRB_NEC_GET_FW):
if (!(xhci->quirks & XHCI_NEC_HOST)) {
xhci->error_bitmask |= 1 << 6;
break;
}
xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
NEC_FW_MAJOR(le32_to_cpu(event->status)),
NEC_FW_MINOR(le32_to_cpu(event->status)));
break;
default:
/* Skip over unknown commands on the event ring */
xhci->error_bitmask |= 1 << 6;
break;
}
inc_deq(xhci, xhci->cmd_ring);
}
static void handle_vendor_event(struct xhci_hcd *xhci,
union xhci_trb *event)
{
u32 trb_type;
trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
handle_cmd_completion(xhci, &event->event_cmd);
}
/* @port_id: the one-based port ID from the hardware (indexed from array of all
* port registers -- USB 3.0 and USB 2.0).
*
* Returns a zero-based port number, which is suitable for indexing into each of
* the split roothubs' port arrays and bus state arrays.
* Add one to it in order to call xhci_find_slot_id_by_port.
*/
static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
struct xhci_hcd *xhci, u32 port_id)
{
unsigned int i;
unsigned int num_similar_speed_ports = 0;
/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
* and usb2_ports are 0-based indexes. Count the number of similar
* speed ports, up to 1 port before this port.
*/
for (i = 0; i < (port_id - 1); i++) {
u8 port_speed = xhci->port_array[i];
/*
* Skip ports that don't have known speeds, or have duplicate
* Extended Capabilities port speed entries.
*/
if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
continue;
/*
* USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
* 1.1 ports are under the USB 2.0 hub. If the port speed
* matches the device speed, it's a similar speed port.
*/
if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
num_similar_speed_ports++;
}
return num_similar_speed_ports;
}
static void handle_device_notification(struct xhci_hcd *xhci,
union xhci_trb *event)
{
u32 slot_id;
struct usb_device *udev;
slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
if (!xhci->devs[slot_id]) {
xhci_warn(xhci, "Device Notification event for "
"unused slot %u\n", slot_id);
return;
}
xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
slot_id);
udev = xhci->devs[slot_id]->udev;
if (udev && udev->parent)
usb_wakeup_notification(udev->parent, udev->portnum);
}
static void handle_port_status(struct xhci_hcd *xhci,
union xhci_trb *event)
{
struct usb_hcd *hcd;
u32 port_id;
u32 temp, temp1;
int max_ports;
int slot_id;
unsigned int faked_port_index;
u8 major_revision;
struct xhci_bus_state *bus_state;
__le32 __iomem **port_array;
bool bogus_port_status = false;
/* Port status change events always have a successful completion code */
if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
xhci->error_bitmask |= 1 << 8;
}
port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
if ((port_id <= 0) || (port_id > max_ports)) {
xhci_warn(xhci, "Invalid port id %d\n", port_id);
bogus_port_status = true;
goto cleanup;
}
/* Figure out which usb_hcd this port is attached to:
* is it a USB 3.0 port or a USB 2.0/1.1 port?
*/
major_revision = xhci->port_array[port_id - 1];
if (major_revision == 0) {
xhci_warn(xhci, "Event for port %u not in "
"Extended Capabilities, ignoring.\n",
port_id);
bogus_port_status = true;
goto cleanup;
}
if (major_revision == DUPLICATE_ENTRY) {
xhci_warn(xhci, "Event for port %u duplicated in"
"Extended Capabilities, ignoring.\n",
port_id);
bogus_port_status = true;
goto cleanup;
}
/*
* Hardware port IDs reported by a Port Status Change Event include USB
* 3.0 and USB 2.0 ports. We want to check if the port has reported a
* resume event, but we first need to translate the hardware port ID
* into the index into the ports on the correct split roothub, and the
* correct bus_state structure.
*/
/* Find the right roothub. */
hcd = xhci_to_hcd(xhci);
if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
hcd = xhci->shared_hcd;
bus_state = &xhci->bus_state[hcd_index(hcd)];
if (hcd->speed == HCD_USB3)
port_array = xhci->usb3_ports;
else
port_array = xhci->usb2_ports;
/* Find the faked port hub number */
faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
port_id);
temp = xhci_readl(xhci, port_array[faked_port_index]);
if (hcd->state == HC_STATE_SUSPENDED) {
xhci_dbg(xhci, "resume root hub\n");
usb_hcd_resume_root_hub(hcd);
}
if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
xhci_dbg(xhci, "port resume event for port %d\n", port_id);
temp1 = xhci_readl(xhci, &xhci->op_regs->command);
if (!(temp1 & CMD_RUN)) {
xhci_warn(xhci, "xHC is not running.\n");
goto cleanup;
}
if (DEV_SUPERSPEED(temp)) {
xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
/* Set a flag to say the port signaled remote wakeup,
* so we can tell the difference between the end of
* device and host initiated resume.
*/
bus_state->port_remote_wakeup |= 1 << faked_port_index;
xhci_test_and_clear_bit(xhci, port_array,
faked_port_index, PORT_PLC);
xhci_set_link_state(xhci, port_array, faked_port_index,
XDEV_U0);
/* Need to wait until the next link state change
* indicates the device is actually in U0.
*/
bogus_port_status = true;
goto cleanup;
} else {
xhci_dbg(xhci, "resume HS port %d\n", port_id);
bus_state->resume_done[faked_port_index] = jiffies +
msecs_to_jiffies(20);
set_bit(faked_port_index, &bus_state->resuming_ports);
mod_timer(&hcd->rh_timer,
bus_state->resume_done[faked_port_index]);
/* Do the rest in GetPortStatus */
}
}
if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
DEV_SUPERSPEED(temp)) {
xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
/* We've just brought the device into U0 through either the
* Resume state after a device remote wakeup, or through the
* U3Exit state after a host-initiated resume. If it's a device
* initiated remote wake, don't pass up the link state change,
* so the roothub behavior is consistent with external
* USB 3.0 hub behavior.
*/
slot_id = xhci_find_slot_id_by_port(hcd, xhci,
faked_port_index + 1);
if (slot_id && xhci->devs[slot_id])
xhci_ring_device(xhci, slot_id);
if (bus_state->port_remote_wakeup && (1 << faked_port_index)) {
bus_state->port_remote_wakeup &=
~(1 << faked_port_index);
xhci_test_and_clear_bit(xhci, port_array,
faked_port_index, PORT_PLC);
usb_wakeup_notification(hcd->self.root_hub,
faked_port_index + 1);
bogus_port_status = true;
goto cleanup;
}
}
if (hcd->speed != HCD_USB3)
xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
PORT_PLC);
cleanup:
/* Update event ring dequeue pointer before dropping the lock */
inc_deq(xhci, xhci->event_ring);
/* Don't make the USB core poll the roothub if we got a bad port status
* change event. Besides, at that point we can't tell which roothub
* (USB 2.0 or USB 3.0) to kick.
*/
if (bogus_port_status)
return;
spin_unlock(&xhci->lock);
/* Pass this up to the core */
usb_hcd_poll_rh_status(hcd);
spin_lock(&xhci->lock);
}
/*
* This TD is defined by the TRBs starting at start_trb in start_seg and ending
* at end_trb, which may be in another segment. If the suspect DMA address is a
* TRB in this TD, this function returns that TRB's segment. Otherwise it
* returns 0.
*/
struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
union xhci_trb *start_trb,
union xhci_trb *end_trb,
dma_addr_t suspect_dma)
{
dma_addr_t start_dma;
dma_addr_t end_seg_dma;
dma_addr_t end_trb_dma;
struct xhci_segment *cur_seg;
start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
cur_seg = start_seg;
do {
if (start_dma == 0)
return NULL;
/* We may get an event for a Link TRB in the middle of a TD */
end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
/* If the end TRB isn't in this segment, this is set to 0 */
end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
if (end_trb_dma > 0) {
/* The end TRB is in this segment, so suspect should be here */
if (start_dma <= end_trb_dma) {
if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
return cur_seg;
} else {
/* Case for one segment with
* a TD wrapped around to the top
*/
if ((suspect_dma >= start_dma &&
suspect_dma <= end_seg_dma) ||
(suspect_dma >= cur_seg->dma &&
suspect_dma <= end_trb_dma))
return cur_seg;
}
return NULL;
} else {
/* Might still be somewhere in this segment */
if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
return cur_seg;
}
cur_seg = cur_seg->next;
start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
} while (cur_seg != start_seg);
return NULL;
}
static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
unsigned int stream_id,
struct xhci_td *td, union xhci_trb *event_trb)
{
struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
ep->ep_state |= EP_HALTED;
ep->stopped_td = td;
ep->stopped_trb = event_trb;
ep->stopped_stream = stream_id;
xhci_queue_reset_ep(xhci, slot_id, ep_index);
xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
ep->stopped_td = NULL;
ep->stopped_trb = NULL;
ep->stopped_stream = 0;
xhci_ring_cmd_db(xhci);
}
/* Check if an error has halted the endpoint ring. The class driver will
* cleanup the halt for a non-default control endpoint if we indicate a stall.
* However, a babble and other errors also halt the endpoint ring, and the class
* driver won't clear the halt in that case, so we need to issue a Set Transfer
* Ring Dequeue Pointer command manually.
*/
static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
struct xhci_ep_ctx *ep_ctx,
unsigned int trb_comp_code)
{
/* TRB completion codes that may require a manual halt cleanup */
if (trb_comp_code == COMP_TX_ERR ||
trb_comp_code == COMP_BABBLE ||
trb_comp_code == COMP_SPLIT_ERR)
/* The 0.96 spec says a babbling control endpoint
* is not halted. The 0.96 spec says it is. Some HW
* claims to be 0.95 compliant, but it halts the control
* endpoint anyway. Check if a babble halted the
* endpoint.
*/
if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
cpu_to_le32(EP_STATE_HALTED))
return 1;
return 0;
}
int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
{
if (trb_comp_code >= 224 && trb_comp_code <= 255) {
/* Vendor defined "informational" completion code,
* treat as not-an-error.
*/
xhci_dbg(xhci, "Vendor defined info completion code %u\n",
trb_comp_code);
xhci_dbg(xhci, "Treating code as success.\n");
return 1;
}
return 0;
}
/*
* Finish the td processing, remove the td from td list;
* Return 1 if the urb can be given back.
*/
static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
union xhci_trb *event_trb, struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status, bool skip)
{
struct xhci_virt_device *xdev;
struct xhci_ring *ep_ring;
unsigned int slot_id;
int ep_index;
struct urb *urb = NULL;
struct xhci_ep_ctx *ep_ctx;
int ret = 0;
struct urb_priv *urb_priv;
u32 trb_comp_code;
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
xdev = xhci->devs[slot_id];
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
if (skip)
goto td_cleanup;
if (trb_comp_code == COMP_STOP_INVAL ||
trb_comp_code == COMP_STOP) {
/* The Endpoint Stop Command completion will take care of any
* stopped TDs. A stopped TD may be restarted, so don't update
* the ring dequeue pointer or take this TD off any lists yet.
*/
ep->stopped_td = td;
ep->stopped_trb = event_trb;
return 0;
} else {
if (trb_comp_code == COMP_STALL) {
/* The transfer is completed from the driver's
* perspective, but we need to issue a set dequeue
* command for this stalled endpoint to move the dequeue
* pointer past the TD. We can't do that here because
* the halt condition must be cleared first. Let the
* USB class driver clear the stall later.
*/
ep->stopped_td = td;
ep->stopped_trb = event_trb;
ep->stopped_stream = ep_ring->stream_id;
} else if (xhci_requires_manual_halt_cleanup(xhci,
ep_ctx, trb_comp_code)) {
/* Other types of errors halt the endpoint, but the
* class driver doesn't call usb_reset_endpoint() unless
* the error is -EPIPE. Clear the halted status in the
* xHCI hardware manually.
*/
xhci_cleanup_halted_endpoint(xhci,
slot_id, ep_index, ep_ring->stream_id,
td, event_trb);
} else {
/* Update ring dequeue pointer */
while (ep_ring->dequeue != td->last_trb)
inc_deq(xhci, ep_ring);
inc_deq(xhci, ep_ring);
}
td_cleanup:
/* Clean up the endpoint's TD list */
urb = td->urb;
urb_priv = urb->hcpriv;
/* Do one last check of the actual transfer length.
* If the host controller said we transferred more data than
* the buffer length, urb->actual_length will be a very big
* number (since it's unsigned). Play it safe and say we didn't
* transfer anything.
*/
if (urb->actual_length > urb->transfer_buffer_length) {
xhci_warn(xhci, "URB transfer length is wrong, "
"xHC issue? req. len = %u, "
"act. len = %u\n",
urb->transfer_buffer_length,
urb->actual_length);
urb->actual_length = 0;
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
*status = -EREMOTEIO;
else
*status = 0;
}
list_del_init(&td->td_list);
/* Was this TD slated to be cancelled but completed anyway? */
if (!list_empty(&td->cancelled_td_list))
list_del_init(&td->cancelled_td_list);
urb_priv->td_cnt++;
/* Giveback the urb when all the tds are completed */
if (urb_priv->td_cnt == urb_priv->length) {
ret = 1;
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
== 0) {
if (xhci->quirks & XHCI_AMD_PLL_FIX)
usb_amd_quirk_pll_enable();
}
}
}
}
return ret;
}
/*
* Process control tds, update urb status and actual_length.
*/
static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
union xhci_trb *event_trb, struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status)
{
struct xhci_virt_device *xdev;
struct xhci_ring *ep_ring;
unsigned int slot_id;
int ep_index;
struct xhci_ep_ctx *ep_ctx;
u32 trb_comp_code;
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
xdev = xhci->devs[slot_id];
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
switch (trb_comp_code) {
case COMP_SUCCESS:
if (event_trb == ep_ring->dequeue) {
xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
"without IOC set??\n");
*status = -ESHUTDOWN;
} else if (event_trb != td->last_trb) {
xhci_warn(xhci, "WARN: Success on ctrl data TRB "
"without IOC set??\n");
*status = -ESHUTDOWN;
} else {
*status = 0;
}
break;
case COMP_SHORT_TX:
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
*status = -EREMOTEIO;
else
*status = 0;
break;
case COMP_STOP_INVAL:
case COMP_STOP:
return finish_td(xhci, td, event_trb, event, ep, status, false);
default:
if (!xhci_requires_manual_halt_cleanup(xhci,
ep_ctx, trb_comp_code))
break;
xhci_dbg(xhci, "TRB error code %u, "
"halted endpoint index = %u\n",
trb_comp_code, ep_index);
/* else fall through */
case COMP_STALL:
/* Did we transfer part of the data (middle) phase? */
if (event_trb != ep_ring->dequeue &&
event_trb != td->last_trb)
td->urb->actual_length =
td->urb->transfer_buffer_length
- TRB_LEN(le32_to_cpu(event->transfer_len));
else
td->urb->actual_length = 0;
xhci_cleanup_halted_endpoint(xhci,
slot_id, ep_index, 0, td, event_trb);
return finish_td(xhci, td, event_trb, event, ep, status, true);
}
/*
* Did we transfer any data, despite the errors that might have
* happened? I.e. did we get past the setup stage?
*/
if (event_trb != ep_ring->dequeue) {
/* The event was for the status stage */
if (event_trb == td->last_trb) {
if (td->urb->actual_length != 0) {
/* Don't overwrite a previously set error code
*/
if ((*status == -EINPROGRESS || *status == 0) &&
(td->urb->transfer_flags
& URB_SHORT_NOT_OK))
/* Did we already see a short data
* stage? */
*status = -EREMOTEIO;
} else {
td->urb->actual_length =
td->urb->transfer_buffer_length;
}
} else {
/* Maybe the event was for the data stage? */
td->urb->actual_length =
td->urb->transfer_buffer_length -
TRB_LEN(le32_to_cpu(event->transfer_len));
xhci_dbg(xhci, "Waiting for status "
"stage event\n");
return 0;
}
}
return finish_td(xhci, td, event_trb, event, ep, status, false);
}
/*
* Process isochronous tds, update urb packet status and actual_length.
*/
static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
union xhci_trb *event_trb, struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status)
{
struct xhci_ring *ep_ring;
struct urb_priv *urb_priv;
int idx;
int len = 0;
union xhci_trb *cur_trb;
struct xhci_segment *cur_seg;
struct usb_iso_packet_descriptor *frame;
u32 trb_comp_code;
bool skip_td = false;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
urb_priv = td->urb->hcpriv;
idx = urb_priv->td_cnt;
frame = &td->urb->iso_frame_desc[idx];
/* handle completion code */
switch (trb_comp_code) {
case COMP_SUCCESS:
if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
frame->status = 0;
break;
}
if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
trb_comp_code = COMP_SHORT_TX;
case COMP_SHORT_TX:
frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
-EREMOTEIO : 0;
break;
case COMP_BW_OVER:
frame->status = -ECOMM;
skip_td = true;
break;
case COMP_BUFF_OVER:
case COMP_BABBLE:
frame->status = -EOVERFLOW;
skip_td = true;
break;
case COMP_DEV_ERR:
case COMP_STALL:
case COMP_TX_ERR:
frame->status = -EPROTO;
skip_td = true;
break;
case COMP_STOP:
case COMP_STOP_INVAL:
break;
default:
frame->status = -1;
break;
}
if (trb_comp_code == COMP_SUCCESS || skip_td) {
frame->actual_length = frame->length;
td->urb->actual_length += frame->length;
} else {
for (cur_trb = ep_ring->dequeue,
cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
!TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
}
len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
TRB_LEN(le32_to_cpu(event->transfer_len));
if (trb_comp_code != COMP_STOP_INVAL) {
frame->actual_length = len;
td->urb->actual_length += len;
}
}
return finish_td(xhci, td, event_trb, event, ep, status, false);
}
static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status)
{
struct xhci_ring *ep_ring;
struct urb_priv *urb_priv;
struct usb_iso_packet_descriptor *frame;
int idx;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
urb_priv = td->urb->hcpriv;
idx = urb_priv->td_cnt;
frame = &td->urb->iso_frame_desc[idx];
/* The transfer is partly done. */
frame->status = -EXDEV;
/* calc actual length */
frame->actual_length = 0;
/* Update ring dequeue pointer */
while (ep_ring->dequeue != td->last_trb)
inc_deq(xhci, ep_ring);
inc_deq(xhci, ep_ring);
return finish_td(xhci, td, NULL, event, ep, status, true);
}
/*
* Process bulk and interrupt tds, update urb status and actual_length.
*/
static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
union xhci_trb *event_trb, struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status)
{
struct xhci_ring *ep_ring;
union xhci_trb *cur_trb;
struct xhci_segment *cur_seg;
u32 trb_comp_code;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
switch (trb_comp_code) {
case COMP_SUCCESS:
/* Double check that the HW transferred everything. */
if (event_trb != td->last_trb ||
TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
xhci_warn(xhci, "WARN Successful completion "
"on short TX\n");
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
*status = -EREMOTEIO;
else
*status = 0;
if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
trb_comp_code = COMP_SHORT_TX;
} else {
*status = 0;
}
break;
case COMP_SHORT_TX:
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
*status = -EREMOTEIO;
else
*status = 0;
break;
default:
/* Others already handled above */
break;
}
if (trb_comp_code == COMP_SHORT_TX)
xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
"%d bytes untransferred\n",
td->urb->ep->desc.bEndpointAddress,
td->urb->transfer_buffer_length,
TRB_LEN(le32_to_cpu(event->transfer_len)));
/* Fast path - was this the last TRB in the TD for this URB? */
if (event_trb == td->last_trb) {
if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
td->urb->actual_length =
td->urb->transfer_buffer_length -
TRB_LEN(le32_to_cpu(event->transfer_len));
if (td->urb->transfer_buffer_length <
td->urb->actual_length) {
xhci_warn(xhci, "HC gave bad length "
"of %d bytes left\n",
TRB_LEN(le32_to_cpu(event->transfer_len)));
td->urb->actual_length = 0;
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
*status = -EREMOTEIO;
else
*status = 0;
}
/* Don't overwrite a previously set error code */
if (*status == -EINPROGRESS) {
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
*status = -EREMOTEIO;
else
*status = 0;
}
} else {
td->urb->actual_length =
td->urb->transfer_buffer_length;
/* Ignore a short packet completion if the
* untransferred length was zero.
*/
if (*status == -EREMOTEIO)
*status = 0;
}
} else {
/* Slow path - walk the list, starting from the dequeue
* pointer, to get the actual length transferred.
*/
td->urb->actual_length = 0;
for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
cur_trb != event_trb;
next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
!TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
td->urb->actual_length +=
TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
}
/* If the ring didn't stop on a Link or No-op TRB, add
* in the actual bytes transferred from the Normal TRB
*/
if (trb_comp_code != COMP_STOP_INVAL)
td->urb->actual_length +=
TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
TRB_LEN(le32_to_cpu(event->transfer_len));
}
return finish_td(xhci, td, event_trb, event, ep, status, false);
}
/*
* If this function returns an error condition, it means it got a Transfer
* event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
* At this point, the host controller is probably hosed and should be reset.
*/
static int handle_tx_event(struct xhci_hcd *xhci,
struct xhci_transfer_event *event)
{
struct xhci_virt_device *xdev;
struct xhci_virt_ep *ep;
struct xhci_ring *ep_ring;
unsigned int slot_id;
int ep_index;
struct xhci_td *td = NULL;
dma_addr_t event_dma;
struct xhci_segment *event_seg;
union xhci_trb *event_trb;
struct urb *urb = NULL;
int status = -EINPROGRESS;
struct urb_priv *urb_priv;
struct xhci_ep_ctx *ep_ctx;
struct list_head *tmp;
u32 trb_comp_code;
int ret = 0;
int td_num = 0;
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
xdev = xhci->devs[slot_id];
if (!xdev) {
xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
(unsigned long long) xhci_trb_virt_to_dma(
xhci->event_ring->deq_seg,
xhci->event_ring->dequeue),
lower_32_bits(le64_to_cpu(event->buffer)),
upper_32_bits(le64_to_cpu(event->buffer)),
le32_to_cpu(event->transfer_len),
le32_to_cpu(event->flags));
xhci_dbg(xhci, "Event ring:\n");
xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
return -ENODEV;
}
/* Endpoint ID is 1 based, our index is zero based */
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
ep = &xdev->eps[ep_index];
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
if (!ep_ring ||
(le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
EP_STATE_DISABLED) {
xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
"or incorrect stream ring\n");
xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
(unsigned long long) xhci_trb_virt_to_dma(
xhci->event_ring->deq_seg,
xhci->event_ring->dequeue),
lower_32_bits(le64_to_cpu(event->buffer)),
upper_32_bits(le64_to_cpu(event->buffer)),
le32_to_cpu(event->transfer_len),
le32_to_cpu(event->flags));
xhci_dbg(xhci, "Event ring:\n");
xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
return -ENODEV;
}
/* Count current td numbers if ep->skip is set */
if (ep->skip) {
list_for_each(tmp, &ep_ring->td_list)
td_num++;
}
event_dma = le64_to_cpu(event->buffer);
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
/* Look for common error cases */
switch (trb_comp_code) {
/* Skip codes that require special handling depending on
* transfer type
*/
case COMP_SUCCESS:
if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
break;
if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
trb_comp_code = COMP_SHORT_TX;
else
xhci_warn_ratelimited(xhci,
"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
case COMP_SHORT_TX:
break;
case COMP_STOP:
xhci_dbg(xhci, "Stopped on Transfer TRB\n");
break;
case COMP_STOP_INVAL:
xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
break;
case COMP_STALL:
xhci_dbg(xhci, "Stalled endpoint\n");
ep->ep_state |= EP_HALTED;
status = -EPIPE;
break;
case COMP_TRB_ERR:
xhci_warn(xhci, "WARN: TRB error on endpoint\n");
status = -EILSEQ;
break;
case COMP_SPLIT_ERR:
case COMP_TX_ERR:
xhci_dbg(xhci, "Transfer error on endpoint\n");
status = -EPROTO;
break;
case COMP_BABBLE:
xhci_dbg(xhci, "Babble error on endpoint\n");
status = -EOVERFLOW;
break;
case COMP_DB_ERR:
xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
status = -ENOSR;
break;
case COMP_BW_OVER:
xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
break;
case COMP_BUFF_OVER:
xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
break;
case COMP_UNDERRUN:
/*
* When the Isoch ring is empty, the xHC will generate
* a Ring Overrun Event for IN Isoch endpoint or Ring
* Underrun Event for OUT Isoch endpoint.
*/
xhci_dbg(xhci, "underrun event on endpoint\n");
if (!list_empty(&ep_ring->td_list))
xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
"still with TDs queued?\n",
TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
ep_index);
goto cleanup;
case COMP_OVERRUN:
xhci_dbg(xhci, "overrun event on endpoint\n");
if (!list_empty(&ep_ring->td_list))
xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
"still with TDs queued?\n",
TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
ep_index);
goto cleanup;
case COMP_DEV_ERR:
xhci_warn(xhci, "WARN: detect an incompatible device");
status = -EPROTO;
break;
case COMP_MISSED_INT:
/*
* When encounter missed service error, one or more isoc tds
* may be missed by xHC.
* Set skip flag of the ep_ring; Complete the missed tds as
* short transfer when process the ep_ring next time.
*/
ep->skip = true;
xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
goto cleanup;
default:
if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
status = 0;
break;
}
xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
"busted\n");
goto cleanup;
}
do {
/* This TRB should be in the TD at the head of this ring's
* TD list.
*/
if (list_empty(&ep_ring->td_list)) {
xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
"with no TDs queued?\n",
TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
ep_index);
xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
(le32_to_cpu(event->flags) &
TRB_TYPE_BITMASK)>>10);
xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
if (ep->skip) {
ep->skip = false;
xhci_dbg(xhci, "td_list is empty while skip "
"flag set. Clear skip flag.\n");
}
ret = 0;
goto cleanup;
}
/* We've skipped all the TDs on the ep ring when ep->skip set */
if (ep->skip && td_num == 0) {
ep->skip = false;
xhci_dbg(xhci, "All tds on the ep_ring skipped. "
"Clear skip flag.\n");
ret = 0;
goto cleanup;
}
td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
if (ep->skip)
td_num--;
/* Is this a TRB in the currently executing TD? */
event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
td->last_trb, event_dma);
/*
* Skip the Force Stopped Event. The event_trb(event_dma) of FSE
* is not in the current TD pointed by ep_ring->dequeue because
* that the hardware dequeue pointer still at the previous TRB
* of the current TD. The previous TRB maybe a Link TD or the
* last TRB of the previous TD. The command completion handle
* will take care the rest.
*/
if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
ret = 0;
goto cleanup;
}
if (!event_seg) {
if (!ep->skip ||
!usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
/* Some host controllers give a spurious
* successful event after a short transfer.
* Ignore it.
*/
if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
ep_ring->last_td_was_short) {
ep_ring->last_td_was_short = false;
ret = 0;
goto cleanup;
}
/* HC is busted, give up! */
xhci_err(xhci,
"ERROR Transfer event TRB DMA ptr not "
"part of current TD\n");
return -ESHUTDOWN;
}
ret = skip_isoc_td(xhci, td, event, ep, &status);
goto cleanup;
}
if (trb_comp_code == COMP_SHORT_TX)
ep_ring->last_td_was_short = true;
else
ep_ring->last_td_was_short = false;
if (ep->skip) {
xhci_dbg(xhci, "Found td. Clear skip flag.\n");
ep->skip = false;
}
event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
sizeof(*event_trb)];
/*
* No-op TRB should not trigger interrupts.
* If event_trb is a no-op TRB, it means the
* corresponding TD has been cancelled. Just ignore
* the TD.
*/
if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
xhci_dbg(xhci,
"event_trb is a no-op TRB. Skip it\n");
goto cleanup;
}
/* Now update the urb's actual_length and give back to
* the core
*/
if (usb_endpoint_xfer_control(&td->urb->ep->desc))
ret = process_ctrl_td(xhci, td, event_trb, event, ep,
&status);
else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
ret = process_isoc_td(xhci, td, event_trb, event, ep,
&status);
else
ret = process_bulk_intr_td(xhci, td, event_trb, event,
ep, &status);
cleanup:
/*
* Do not update event ring dequeue pointer if ep->skip is set.
* Will roll back to continue process missed tds.
*/
if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
inc_deq(xhci, xhci->event_ring);
}
if (ret) {
urb = td->urb;
urb_priv = urb->hcpriv;
/* Leave the TD around for the reset endpoint function
* to use(but only if it's not a control endpoint,
* since we already queued the Set TR dequeue pointer
* command for stalled control endpoints).
*/
if (usb_endpoint_xfer_control(&urb->ep->desc) ||
(trb_comp_code != COMP_STALL &&
trb_comp_code != COMP_BABBLE))
xhci_urb_free_priv(xhci, urb_priv);
usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
if ((urb->actual_length != urb->transfer_buffer_length &&
(urb->transfer_flags &
URB_SHORT_NOT_OK)) ||
(status != 0 &&
!usb_endpoint_xfer_isoc(&urb->ep->desc)))
xhci_dbg(xhci, "Giveback URB %p, len = %d, "
"expected = %d, status = %d\n",
urb, urb->actual_length,
urb->transfer_buffer_length,
status);
spin_unlock(&xhci->lock);
/* EHCI, UHCI, and OHCI always unconditionally set the
* urb->status of an isochronous endpoint to 0.
*/
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
status = 0;
usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
spin_lock(&xhci->lock);
}
/*
* If ep->skip is set, it means there are missed tds on the
* endpoint ring need to take care of.
* Process them as short transfer until reach the td pointed by
* the event.
*/
} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
return 0;
}
/*
* This function handles all OS-owned events on the event ring. It may drop
* xhci->lock between event processing (e.g. to pass up port status changes).
* Returns >0 for "possibly more events to process" (caller should call again),
* otherwise 0 if done. In future, <0 returns should indicate error code.
*/
static int xhci_handle_event(struct xhci_hcd *xhci)
{
union xhci_trb *event;
int update_ptrs = 1;
int ret;
if (!xhci->event_ring || !xhci->event_ring->dequeue) {
xhci->error_bitmask |= 1 << 1;
return 0;
}
event = xhci->event_ring->dequeue;
/* Does the HC or OS own the TRB? */
if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
xhci->event_ring->cycle_state) {
xhci->error_bitmask |= 1 << 2;
return 0;
}
/*
* Barrier between reading the TRB_CYCLE (valid) flag above and any
* speculative reads of the event's flags/data below.
*/
rmb();
/* FIXME: Handle more event types. */
switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
case TRB_TYPE(TRB_COMPLETION):
handle_cmd_completion(xhci, &event->event_cmd);
break;
case TRB_TYPE(TRB_PORT_STATUS):
handle_port_status(xhci, event);
update_ptrs = 0;
break;
case TRB_TYPE(TRB_TRANSFER):
ret = handle_tx_event(xhci, &event->trans_event);
if (ret < 0)
xhci->error_bitmask |= 1 << 9;
else
update_ptrs = 0;
break;
case TRB_TYPE(TRB_DEV_NOTE):
handle_device_notification(xhci, event);
break;
default:
if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
TRB_TYPE(48))
handle_vendor_event(xhci, event);
else
xhci->error_bitmask |= 1 << 3;
}
/* Any of the above functions may drop and re-acquire the lock, so check
* to make sure a watchdog timer didn't mark the host as non-responsive.
*/
if (xhci->xhc_state & XHCI_STATE_DYING) {
xhci_dbg(xhci, "xHCI host dying, returning from "
"event handler.\n");
return 0;
}
if (update_ptrs)
/* Update SW event ring dequeue pointer */
inc_deq(xhci, xhci->event_ring);
/* Are there more items on the event ring? Caller will call us again to
* check.
*/
return 1;
}
/*
* xHCI spec says we can get an interrupt, and if the HC has an error condition,
* we might get bad data out of the event ring. Section 4.10.2.7 has a list of
* indicators of an event TRB error, but we check the status *first* to be safe.
*/
irqreturn_t xhci_irq(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
u32 status;
union xhci_trb *trb;
u64 temp_64;
union xhci_trb *event_ring_deq;
dma_addr_t deq;
spin_lock(&xhci->lock);
trb = xhci->event_ring->dequeue;
/* Check if the xHC generated the interrupt, or the irq is shared */
status = xhci_readl(xhci, &xhci->op_regs->status);
if (status == 0xffffffff)
goto hw_died;
if (!(status & STS_EINT)) {
spin_unlock(&xhci->lock);
return IRQ_NONE;
}
if (status & STS_FATAL) {
xhci_warn(xhci, "WARNING: Host System Error\n");
xhci_halt(xhci);
hw_died:
spin_unlock(&xhci->lock);
return -ESHUTDOWN;
}
/*
* Clear the op reg interrupt status first,
* so we can receive interrupts from other MSI-X interrupters.
* Write 1 to clear the interrupt status.
*/
status |= STS_EINT;
xhci_writel(xhci, status, &xhci->op_regs->status);
/* FIXME when MSI-X is supported and there are multiple vectors */
/* Clear the MSI-X event interrupt status */
if (hcd->irq) {
u32 irq_pending;
/* Acknowledge the PCI interrupt */
irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
irq_pending |= IMAN_IP;
xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
}
if (xhci->xhc_state & XHCI_STATE_DYING) {
xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
"Shouldn't IRQs be disabled?\n");
/* Clear the event handler busy flag (RW1C);
* the event ring should be empty.
*/
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
xhci_write_64(xhci, temp_64 | ERST_EHB,
&xhci->ir_set->erst_dequeue);
spin_unlock(&xhci->lock);
return IRQ_HANDLED;
}
event_ring_deq = xhci->event_ring->dequeue;
/* FIXME this should be a delayed service routine
* that clears the EHB.
*/
while (xhci_handle_event(xhci) > 0) {}
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
/* If necessary, update the HW's version of the event ring deq ptr. */
if (event_ring_deq != xhci->event_ring->dequeue) {
deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
xhci->event_ring->dequeue);
if (deq == 0)
xhci_warn(xhci, "WARN something wrong with SW event "
"ring dequeue ptr.\n");
/* Update HC event ring dequeue pointer */
temp_64 &= ERST_PTR_MASK;
temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
}
/* Clear the event handler busy flag (RW1C); event ring is empty. */
temp_64 |= ERST_EHB;
xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
spin_unlock(&xhci->lock);
return IRQ_HANDLED;
}
irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
{
return xhci_irq(hcd);
}
/**** Endpoint Ring Operations ****/
/*
* Generic function for queueing a TRB on a ring.
* The caller must have checked to make sure there's room on the ring.
*
* @more_trbs_coming: Will you enqueue more TRBs before calling
* prepare_transfer()?
*/
static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
bool more_trbs_coming,
u32 field1, u32 field2, u32 field3, u32 field4)
{
struct xhci_generic_trb *trb;
trb = &ring->enqueue->generic;
trb->field[0] = cpu_to_le32(field1);
trb->field[1] = cpu_to_le32(field2);
trb->field[2] = cpu_to_le32(field3);
trb->field[3] = cpu_to_le32(field4);
inc_enq(xhci, ring, more_trbs_coming);
}
/*
* Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
* FIXME allocate segments if the ring is full.
*/
static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
{
unsigned int num_trbs_needed;
/* Make sure the endpoint has been added to xHC schedule */
switch (ep_state) {
case EP_STATE_DISABLED:
/*
* USB core changed config/interfaces without notifying us,
* or hardware is reporting the wrong state.
*/
xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
return -ENOENT;
case EP_STATE_ERROR:
xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
/* FIXME event handling code for error needs to clear it */
/* XXX not sure if this should be -ENOENT or not */
return -EINVAL;
case EP_STATE_HALTED:
xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
case EP_STATE_STOPPED:
case EP_STATE_RUNNING:
break;
default:
xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
/*
* FIXME issue Configure Endpoint command to try to get the HC
* back into a known state.
*/
return -EINVAL;
}
while (1) {
if (room_on_ring(xhci, ep_ring, num_trbs))
break;
if (ep_ring == xhci->cmd_ring) {
xhci_err(xhci, "Do not support expand command ring\n");
return -ENOMEM;
}
xhci_dbg(xhci, "ERROR no room on ep ring, "
"try ring expansion\n");
num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
mem_flags)) {
xhci_err(xhci, "Ring expansion failed\n");
return -ENOMEM;
}
};
if (enqueue_is_link_trb(ep_ring)) {
struct xhci_ring *ring = ep_ring;
union xhci_trb *next;
next = ring->enqueue;
while (last_trb(xhci, ring, ring->enq_seg, next)) {
/* If we're not dealing with 0.95 hardware or isoc rings
* on AMD 0.96 host, clear the chain bit.
*/
if (!xhci_link_trb_quirk(xhci) &&
!(ring->type == TYPE_ISOC &&
(xhci->quirks & XHCI_AMD_0x96_HOST)))
next->link.control &= cpu_to_le32(~TRB_CHAIN);
else
next->link.control |= cpu_to_le32(TRB_CHAIN);
wmb();
next->link.control ^= cpu_to_le32(TRB_CYCLE);
/* Toggle the cycle bit after the last ring segment. */
if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
ring->cycle_state = (ring->cycle_state ? 0 : 1);
}
ring->enq_seg = ring->enq_seg->next;
ring->enqueue = ring->enq_seg->trbs;
next = ring->enqueue;
}
}
return 0;
}
static int prepare_transfer(struct xhci_hcd *xhci,
struct xhci_virt_device *xdev,
unsigned int ep_index,
unsigned int stream_id,
unsigned int num_trbs,
struct urb *urb,
unsigned int td_index,
gfp_t mem_flags)
{
int ret;
struct urb_priv *urb_priv;
struct xhci_td *td;
struct xhci_ring *ep_ring;
struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
if (!ep_ring) {
xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
stream_id);
return -EINVAL;
}
ret = prepare_ring(xhci, ep_ring,
le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
num_trbs, mem_flags);
if (ret)
return ret;
urb_priv = urb->hcpriv;
td = urb_priv->td[td_index];
INIT_LIST_HEAD(&td->td_list);
INIT_LIST_HEAD(&td->cancelled_td_list);
if (td_index == 0) {
ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
if (unlikely(ret))
return ret;
}
td->urb = urb;
/* Add this TD to the tail of the endpoint ring's TD list */
list_add_tail(&td->td_list, &ep_ring->td_list);
td->start_seg = ep_ring->enq_seg;
td->first_trb = ep_ring->enqueue;
urb_priv->td[td_index] = td;
return 0;
}
static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
{
int num_sgs, num_trbs, running_total, temp, i;
struct scatterlist *sg;
sg = NULL;
num_sgs = urb->num_mapped_sgs;
temp = urb->transfer_buffer_length;
num_trbs = 0;
for_each_sg(urb->sg, sg, num_sgs, i) {
unsigned int len = sg_dma_len(sg);
/* Scatter gather list entries may cross 64KB boundaries */
running_total = TRB_MAX_BUFF_SIZE -
(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
running_total &= TRB_MAX_BUFF_SIZE - 1;
if (running_total != 0)
num_trbs++;
/* How many more 64KB chunks to transfer, how many more TRBs? */
while (running_total < sg_dma_len(sg) && running_total < temp) {
num_trbs++;
running_total += TRB_MAX_BUFF_SIZE;
}
len = min_t(int, len, temp);
temp -= len;
if (temp == 0)
break;
}
return num_trbs;
}
static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
{
if (num_trbs != 0)
dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
"TRBs, %d left\n", __func__,
urb->ep->desc.bEndpointAddress, num_trbs);
if (running_total != urb->transfer_buffer_length)
dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
"queued %#x (%d), asked for %#x (%d)\n",
__func__,
urb->ep->desc.bEndpointAddress,
running_total, running_total,
urb->transfer_buffer_length,
urb->transfer_buffer_length);
}
static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
unsigned int ep_index, unsigned int stream_id, int start_cycle,
struct xhci_generic_trb *start_trb)
{
/*
* Pass all the TRBs to the hardware at once and make sure this write
* isn't reordered.
*/
wmb();
if (start_cycle)
start_trb->field[3] |= cpu_to_le32(start_cycle);
else
start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
}
/*
* xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
* endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
* (comprised of sg list entries) can take several service intervals to
* transmit.
*/
int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
xhci->devs[slot_id]->out_ctx, ep_index);
int xhci_interval;
int ep_interval;
xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
ep_interval = urb->interval;
/* Convert to microframes */
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL)
ep_interval *= 8;
/* FIXME change this to a warning and a suggestion to use the new API
* to set the polling interval (once the API is added).
*/
if (xhci_interval != ep_interval) {
if (printk_ratelimit())
dev_dbg(&urb->dev->dev, "Driver uses different interval"
" (%d microframe%s) than xHCI "
"(%d microframe%s)\n",
ep_interval,
ep_interval == 1 ? "" : "s",
xhci_interval,
xhci_interval == 1 ? "" : "s");
urb->interval = xhci_interval;
/* Convert back to frames for LS/FS devices */
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL)
urb->interval /= 8;
}
return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
}
/*
* The TD size is the number of bytes remaining in the TD (including this TRB),
* right shifted by 10.
* It must fit in bits 21:17, so it can't be bigger than 31.
*/
static u32 xhci_td_remainder(unsigned int remainder)
{
u32 max = (1 << (21 - 17 + 1)) - 1;
if ((remainder >> 10) >= max)
return max << 17;
else
return (remainder >> 10) << 17;
}
/*
* For xHCI 1.0 host controllers, TD size is the number of packets remaining in
* the TD (*not* including this TRB).
*
* Total TD packet count = total_packet_count =
* roundup(TD size in bytes / wMaxPacketSize)
*
* Packets transferred up to and including this TRB = packets_transferred =
* rounddown(total bytes transferred including this TRB / wMaxPacketSize)
*
* TD size = total_packet_count - packets_transferred
*
* It must fit in bits 21:17, so it can't be bigger than 31.
*/
static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
unsigned int total_packet_count, struct urb *urb)
{
int packets_transferred;
/* One TRB with a zero-length data packet. */
if (running_total == 0 && trb_buff_len == 0)
return 0;
/* All the TRB queueing functions don't count the current TRB in
* running_total.
*/
packets_transferred = (running_total + trb_buff_len) /
usb_endpoint_maxp(&urb->ep->desc);
return xhci_td_remainder(total_packet_count - packets_transferred);
}
static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_ring *ep_ring;
unsigned int num_trbs;
struct urb_priv *urb_priv;
struct xhci_td *td;
struct scatterlist *sg;
int num_sgs;
int trb_buff_len, this_sg_len, running_total;
unsigned int total_packet_count;
bool first_trb;
u64 addr;
bool more_trbs_coming;
struct xhci_generic_trb *start_trb;
int start_cycle;
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
if (!ep_ring)
return -EINVAL;
num_trbs = count_sg_trbs_needed(xhci, urb);
num_sgs = urb->num_mapped_sgs;
total_packet_count = roundup(urb->transfer_buffer_length,
usb_endpoint_maxp(&urb->ep->desc));
trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
ep_index, urb->stream_id,
num_trbs, urb, 0, mem_flags);
if (trb_buff_len < 0)
return trb_buff_len;
urb_priv = urb->hcpriv;
td = urb_priv->td[0];
/*
* Don't give the first TRB to the hardware (by toggling the cycle bit)
* until we've finished creating all the other TRBs. The ring's cycle
* state may change as we enqueue the other TRBs, so save it too.
*/
start_trb = &ep_ring->enqueue->generic;
start_cycle = ep_ring->cycle_state;
running_total = 0;
/*
* How much data is in the first TRB?
*
* There are three forces at work for TRB buffer pointers and lengths:
* 1. We don't want to walk off the end of this sg-list entry buffer.
* 2. The transfer length that the driver requested may be smaller than
* the amount of memory allocated for this scatter-gather list.
* 3. TRBs buffers can't cross 64KB boundaries.
*/
sg = urb->sg;
addr = (u64) sg_dma_address(sg);
this_sg_len = sg_dma_len(sg);
trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
if (trb_buff_len > urb->transfer_buffer_length)
trb_buff_len = urb->transfer_buffer_length;
first_trb = true;
/* Queue the first TRB, even if it's zero-length */
do {
u32 field = 0;
u32 length_field = 0;
u32 remainder = 0;
/* Don't change the cycle bit of the first TRB until later */
if (first_trb) {
first_trb = false;
if (start_cycle == 0)
field |= 0x1;
} else
field |= ep_ring->cycle_state;
/* Chain all the TRBs together; clear the chain bit in the last
* TRB to indicate it's the last TRB in the chain.
*/
if (num_trbs > 1) {
field |= TRB_CHAIN;
} else {
/* FIXME - add check for ZERO_PACKET flag before this */
td->last_trb = ep_ring->enqueue;
field |= TRB_IOC;
}
/* Only set interrupt on short packet for IN endpoints */
if (usb_urb_dir_in(urb))
field |= TRB_ISP;
if (TRB_MAX_BUFF_SIZE -
(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
(unsigned int) addr + trb_buff_len);
}
/* Set the TRB length, TD size, and interrupter fields. */
if (xhci->hci_version < 0x100) {
remainder = xhci_td_remainder(
urb->transfer_buffer_length -
running_total);
} else {
remainder = xhci_v1_0_td_remainder(running_total,
trb_buff_len, total_packet_count, urb);
}
length_field = TRB_LEN(trb_buff_len) |
remainder |
TRB_INTR_TARGET(0);
if (num_trbs > 1)
more_trbs_coming = true;
else
more_trbs_coming = false;
queue_trb(xhci, ep_ring, more_trbs_coming,
lower_32_bits(addr),
upper_32_bits(addr),
length_field,
field | TRB_TYPE(TRB_NORMAL));
--num_trbs;
running_total += trb_buff_len;
/* Calculate length for next transfer --
* Are we done queueing all the TRBs for this sg entry?
*/
this_sg_len -= trb_buff_len;
if (this_sg_len == 0) {
--num_sgs;
if (num_sgs == 0)
break;
sg = sg_next(sg);
addr = (u64) sg_dma_address(sg);
this_sg_len = sg_dma_len(sg);
} else {
addr += trb_buff_len;
}
trb_buff_len = TRB_MAX_BUFF_SIZE -
(addr & (TRB_MAX_BUFF_SIZE - 1));
trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
if (running_total + trb_buff_len > urb->transfer_buffer_length)
trb_buff_len =
urb->transfer_buffer_length - running_total;
} while (running_total < urb->transfer_buffer_length);
check_trb_math(urb, num_trbs, running_total);
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
start_cycle, start_trb);
return 0;
}
/* This is very similar to what ehci-q.c qtd_fill() does */
int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_ring *ep_ring;
struct urb_priv *urb_priv;
struct xhci_td *td;
int num_trbs;
struct xhci_generic_trb *start_trb;
bool first_trb;
bool more_trbs_coming;
int start_cycle;
u32 field, length_field;
int running_total, trb_buff_len, ret;
unsigned int total_packet_count;
u64 addr;
if (urb->num_sgs)
return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
if (!ep_ring)
return -EINVAL;
num_trbs = 0;
/* How much data is (potentially) left before the 64KB boundary? */
running_total = TRB_MAX_BUFF_SIZE -
(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
running_total &= TRB_MAX_BUFF_SIZE - 1;
/* If there's some data on this 64KB chunk, or we have to send a
* zero-length transfer, we need at least one TRB
*/
if (running_total != 0 || urb->transfer_buffer_length == 0)
num_trbs++;
/* How many more 64KB chunks to transfer, how many more TRBs? */
while (running_total < urb->transfer_buffer_length) {
num_trbs++;
running_total += TRB_MAX_BUFF_SIZE;
}
/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
ret = prepare_transfer(xhci, xhci->devs[slot_id],
ep_index, urb->stream_id,
num_trbs, urb, 0, mem_flags);
if (ret < 0)
return ret;
urb_priv = urb->hcpriv;
td = urb_priv->td[0];
/*
* Don't give the first TRB to the hardware (by toggling the cycle bit)
* until we've finished creating all the other TRBs. The ring's cycle
* state may change as we enqueue the other TRBs, so save it too.
*/
start_trb = &ep_ring->enqueue->generic;
start_cycle = ep_ring->cycle_state;
running_total = 0;
total_packet_count = roundup(urb->transfer_buffer_length,
usb_endpoint_maxp(&urb->ep->desc));
/* How much data is in the first TRB? */
addr = (u64) urb->transfer_dma;
trb_buff_len = TRB_MAX_BUFF_SIZE -
(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
if (trb_buff_len > urb->transfer_buffer_length)
trb_buff_len = urb->transfer_buffer_length;
first_trb = true;
/* Queue the first TRB, even if it's zero-length */
do {
u32 remainder = 0;
field = 0;
/* Don't change the cycle bit of the first TRB until later */
if (first_trb) {
first_trb = false;
if (start_cycle == 0)
field |= 0x1;
} else
field |= ep_ring->cycle_state;
/* Chain all the TRBs together; clear the chain bit in the last
* TRB to indicate it's the last TRB in the chain.
*/
if (num_trbs > 1) {
field |= TRB_CHAIN;
} else {
/* FIXME - add check for ZERO_PACKET flag before this */
td->last_trb = ep_ring->enqueue;
field |= TRB_IOC;
}
/* Only set interrupt on short packet for IN endpoints */
if (usb_urb_dir_in(urb))
field |= TRB_ISP;
/* Set the TRB length, TD size, and interrupter fields. */
if (xhci->hci_version < 0x100) {
remainder = xhci_td_remainder(
urb->transfer_buffer_length -
running_total);
} else {
remainder = xhci_v1_0_td_remainder(running_total,
trb_buff_len, total_packet_count, urb);
}
length_field = TRB_LEN(trb_buff_len) |
remainder |
TRB_INTR_TARGET(0);
if (num_trbs > 1)
more_trbs_coming = true;
else
more_trbs_coming = false;
queue_trb(xhci, ep_ring, more_trbs_coming,
lower_32_bits(addr),
upper_32_bits(addr),
length_field,
field | TRB_TYPE(TRB_NORMAL));
--num_trbs;
running_total += trb_buff_len;
/* Calculate length for next transfer */
addr += trb_buff_len;
trb_buff_len = urb->transfer_buffer_length - running_total;
if (trb_buff_len > TRB_MAX_BUFF_SIZE)
trb_buff_len = TRB_MAX_BUFF_SIZE;
} while (running_total < urb->transfer_buffer_length);
check_trb_math(urb, num_trbs, running_total);
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
start_cycle, start_trb);
return 0;
}
/* Caller must have locked xhci->lock */
int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_ring *ep_ring;
int num_trbs;
int ret;
struct usb_ctrlrequest *setup;
struct xhci_generic_trb *start_trb;
int start_cycle;
u32 field, length_field;
struct urb_priv *urb_priv;
struct xhci_td *td;
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
if (!ep_ring)
return -EINVAL;
/*
* Need to copy setup packet into setup TRB, so we can't use the setup
* DMA address.
*/
if (!urb->setup_packet)
return -EINVAL;
/* 1 TRB for setup, 1 for status */
num_trbs = 2;
/*
* Don't need to check if we need additional event data and normal TRBs,
* since data in control transfers will never get bigger than 16MB
* XXX: can we get a buffer that crosses 64KB boundaries?
*/
if (urb->transfer_buffer_length > 0)
num_trbs++;
ret = prepare_transfer(xhci, xhci->devs[slot_id],
ep_index, urb->stream_id,
num_trbs, urb, 0, mem_flags);
if (ret < 0)
return ret;
urb_priv = urb->hcpriv;
td = urb_priv->td[0];
/*
* Don't give the first TRB to the hardware (by toggling the cycle bit)
* until we've finished creating all the other TRBs. The ring's cycle
* state may change as we enqueue the other TRBs, so save it too.
*/
start_trb = &ep_ring->enqueue->generic;
start_cycle = ep_ring->cycle_state;
/* Queue setup TRB - see section 6.4.1.2.1 */
/* FIXME better way to translate setup_packet into two u32 fields? */
setup = (struct usb_ctrlrequest *) urb->setup_packet;
field = 0;
field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
if (start_cycle == 0)
field |= 0x1;
/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
if (xhci->hci_version == 0x100) {
if (urb->transfer_buffer_length > 0) {
if (setup->bRequestType & USB_DIR_IN)
field |= TRB_TX_TYPE(TRB_DATA_IN);
else
field |= TRB_TX_TYPE(TRB_DATA_OUT);
}
}
queue_trb(xhci, ep_ring, true,
setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
TRB_LEN(8) | TRB_INTR_TARGET(0),
/* Immediate data in pointer */
field);
/* If there's data, queue data TRBs */
/* Only set interrupt on short packet for IN endpoints */
if (usb_urb_dir_in(urb))
field = TRB_ISP | TRB_TYPE(TRB_DATA);
else
field = TRB_TYPE(TRB_DATA);
length_field = TRB_LEN(urb->transfer_buffer_length) |
xhci_td_remainder(urb->transfer_buffer_length) |
TRB_INTR_TARGET(0);
if (urb->transfer_buffer_length > 0) {
if (setup->bRequestType & USB_DIR_IN)
field |= TRB_DIR_IN;
queue_trb(xhci, ep_ring, true,
lower_32_bits(urb->transfer_dma),
upper_32_bits(urb->transfer_dma),
length_field,
field | ep_ring->cycle_state);
}
/* Save the DMA address of the last TRB in the TD */
td->last_trb = ep_ring->enqueue;
/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
/* If the device sent data, the status stage is an OUT transfer */
if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
field = 0;
else
field = TRB_DIR_IN;
queue_trb(xhci, ep_ring, false,
0,
0,
TRB_INTR_TARGET(0),
/* Event on completion */
field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
giveback_first_trb(xhci, slot_id, ep_index, 0,
start_cycle, start_trb);
return 0;
}
static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
struct urb *urb, int i)
{
int num_trbs = 0;
u64 addr, td_len;
addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
td_len = urb->iso_frame_desc[i].length;
num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
TRB_MAX_BUFF_SIZE);
if (num_trbs == 0)
num_trbs++;
return num_trbs;
}
/*
* The transfer burst count field of the isochronous TRB defines the number of
* bursts that are required to move all packets in this TD. Only SuperSpeed
* devices can burst up to bMaxBurst number of packets per service interval.
* This field is zero based, meaning a value of zero in the field means one
* burst. Basically, for everything but SuperSpeed devices, this field will be
* zero. Only xHCI 1.0 host controllers support this field.
*/
static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
struct usb_device *udev,
struct urb *urb, unsigned int total_packet_count)
{
unsigned int max_burst;
if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
return 0;
max_burst = urb->ep->ss_ep_comp.bMaxBurst;
return roundup(total_packet_count, max_burst + 1) - 1;
}
/*
* Returns the number of packets in the last "burst" of packets. This field is
* valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
* the last burst packet count is equal to the total number of packets in the
* TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
* must contain (bMaxBurst + 1) number of packets, but the last burst can
* contain 1 to (bMaxBurst + 1) packets.
*/
static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
struct usb_device *udev,
struct urb *urb, unsigned int total_packet_count)
{
unsigned int max_burst;
unsigned int residue;
if (xhci->hci_version < 0x100)
return 0;
switch (udev->speed) {
case USB_SPEED_SUPER:
/* bMaxBurst is zero based: 0 means 1 packet per burst */
max_burst = urb->ep->ss_ep_comp.bMaxBurst;
residue = total_packet_count % (max_burst + 1);
/* If residue is zero, the last burst contains (max_burst + 1)
* number of packets, but the TLBPC field is zero-based.
*/
if (residue == 0)
return max_burst;
return residue - 1;
default:
if (total_packet_count == 0)
return 0;
return total_packet_count - 1;
}
}
/* This is for isoc transfer */
static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_ring *ep_ring;
struct urb_priv *urb_priv;
struct xhci_td *td;
int num_tds, trbs_per_td;
struct xhci_generic_trb *start_trb;
bool first_trb;
int start_cycle;
u32 field, length_field;
int running_total, trb_buff_len, td_len, td_remain_len, ret;
u64 start_addr, addr;
int i, j;
bool more_trbs_coming;
ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
num_tds = urb->number_of_packets;
if (num_tds < 1) {
xhci_dbg(xhci, "Isoc URB with zero packets?\n");
return -EINVAL;
}
start_addr = (u64) urb->transfer_dma;
start_trb = &ep_ring->enqueue->generic;
start_cycle = ep_ring->cycle_state;
urb_priv = urb->hcpriv;
/* Queue the first TRB, even if it's zero-length */
for (i = 0; i < num_tds; i++) {
unsigned int total_packet_count;
unsigned int burst_count;
unsigned int residue;
first_trb = true;
running_total = 0;
addr = start_addr + urb->iso_frame_desc[i].offset;
td_len = urb->iso_frame_desc[i].length;
td_remain_len = td_len;
total_packet_count = roundup(td_len,
usb_endpoint_maxp(&urb->ep->desc));
/* A zero-length transfer still involves at least one packet. */
if (total_packet_count == 0)
total_packet_count++;
burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
total_packet_count);
residue = xhci_get_last_burst_packet_count(xhci,
urb->dev, urb, total_packet_count);
trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
urb->stream_id, trbs_per_td, urb, i, mem_flags);
if (ret < 0) {
if (i == 0)
return ret;
goto cleanup;
}
td = urb_priv->td[i];
for (j = 0; j < trbs_per_td; j++) {
u32 remainder = 0;
field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
if (first_trb) {
/* Queue the isoc TRB */
field |= TRB_TYPE(TRB_ISOC);
/* Assume URB_ISO_ASAP is set */
field |= TRB_SIA;
if (i == 0) {
if (start_cycle == 0)
field |= 0x1;
} else
field |= ep_ring->cycle_state;
first_trb = false;
} else {
/* Queue other normal TRBs */
field |= TRB_TYPE(TRB_NORMAL);
field |= ep_ring->cycle_state;
}
/* Only set interrupt on short packet for IN EPs */
if (usb_urb_dir_in(urb))
field |= TRB_ISP;
/* Chain all the TRBs together; clear the chain bit in
* the last TRB to indicate it's the last TRB in the
* chain.
*/
if (j < trbs_per_td - 1) {
field |= TRB_CHAIN;
more_trbs_coming = true;
} else {
td->last_trb = ep_ring->enqueue;
field |= TRB_IOC;
if (xhci->hci_version == 0x100) {
/* Set BEI bit except for the last td */
if (i < num_tds - 1)
field |= TRB_BEI;
}
more_trbs_coming = false;
}
/* Calculate TRB length */
trb_buff_len = TRB_MAX_BUFF_SIZE -
(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
if (trb_buff_len > td_remain_len)
trb_buff_len = td_remain_len;
/* Set the TRB length, TD size, & interrupter fields. */
if (xhci->hci_version < 0x100) {
remainder = xhci_td_remainder(
td_len - running_total);
} else {
remainder = xhci_v1_0_td_remainder(
running_total, trb_buff_len,
total_packet_count, urb);
}
length_field = TRB_LEN(trb_buff_len) |
remainder |
TRB_INTR_TARGET(0);
queue_trb(xhci, ep_ring, more_trbs_coming,
lower_32_bits(addr),
upper_32_bits(addr),
length_field,
field);
running_total += trb_buff_len;
addr += trb_buff_len;
td_remain_len -= trb_buff_len;
}
/* Check TD length */
if (running_total != td_len) {
xhci_err(xhci, "ISOC TD length unmatch\n");
ret = -EINVAL;
goto cleanup;
}
}
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
if (xhci->quirks & XHCI_AMD_PLL_FIX)
usb_amd_quirk_pll_disable();
}
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
start_cycle, start_trb);
return 0;
cleanup:
/* Clean up a partially enqueued isoc transfer. */
for (i--; i >= 0; i--)
list_del_init(&urb_priv->td[i]->td_list);
/* Use the first TD as a temporary variable to turn the TDs we've queued
* into No-ops with a software-owned cycle bit. That way the hardware
* won't accidentally start executing bogus TDs when we partially
* overwrite them. td->first_trb and td->start_seg are already set.
*/
urb_priv->td[0]->last_trb = ep_ring->enqueue;
/* Every TRB except the first & last will have its cycle bit flipped. */
td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
/* Reset the ring enqueue back to the first TRB and its cycle bit. */
ep_ring->enqueue = urb_priv->td[0]->first_trb;
ep_ring->enq_seg = urb_priv->td[0]->start_seg;
ep_ring->cycle_state = start_cycle;
ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
return ret;
}
/*
* Check transfer ring to guarantee there is enough room for the urb.
* Update ISO URB start_frame and interval.
* Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
* update the urb->start_frame by now.
* Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
*/
int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_virt_device *xdev;
struct xhci_ring *ep_ring;
struct xhci_ep_ctx *ep_ctx;
int start_frame;
int xhci_interval;
int ep_interval;
int num_tds, num_trbs, i;
int ret;
xdev = xhci->devs[slot_id];
ep_ring = xdev->eps[ep_index].ring;
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
num_trbs = 0;
num_tds = urb->number_of_packets;
for (i = 0; i < num_tds; i++)
num_trbs += count_isoc_trbs_needed(xhci, urb, i);
/* Check the ring to guarantee there is enough room for the whole urb.
* Do not insert any td of the urb to the ring if the check failed.
*/
ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
num_trbs, mem_flags);
if (ret)
return ret;
start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
start_frame &= 0x3fff;
urb->start_frame = start_frame;
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL)
urb->start_frame >>= 3;
xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
ep_interval = urb->interval;
/* Convert to microframes */
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL)
ep_interval *= 8;
/* FIXME change this to a warning and a suggestion to use the new API
* to set the polling interval (once the API is added).
*/
if (xhci_interval != ep_interval) {
if (printk_ratelimit())
dev_dbg(&urb->dev->dev, "Driver uses different interval"
" (%d microframe%s) than xHCI "
"(%d microframe%s)\n",
ep_interval,
ep_interval == 1 ? "" : "s",
xhci_interval,
xhci_interval == 1 ? "" : "s");
urb->interval = xhci_interval;
/* Convert back to frames for LS/FS devices */
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL)
urb->interval /= 8;
}
ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
}
/**** Command Ring Operations ****/
/* Generic function for queueing a command TRB on the command ring.
* Check to make sure there's room on the command ring for one command TRB.
* Also check that there's room reserved for commands that must not fail.
* If this is a command that must not fail, meaning command_must_succeed = TRUE,
* then only check for the number of reserved spots.
* Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
* because the command event handler may want to resubmit a failed command.
*/
static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
u32 field3, u32 field4, bool command_must_succeed)
{
int reserved_trbs = xhci->cmd_ring_reserved_trbs;
int ret;
if (!command_must_succeed)
reserved_trbs++;
ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
reserved_trbs, GFP_ATOMIC);
if (ret < 0) {
xhci_err(xhci, "ERR: No room for command on command ring\n");
if (command_must_succeed)
xhci_err(xhci, "ERR: Reserved TRB counting for "
"unfailable commands failed.\n");
return ret;
}
queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
field4 | xhci->cmd_ring->cycle_state);
return 0;
}
/* Queue a slot enable or disable request on the command ring */
int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
{
return queue_command(xhci, 0, 0, 0,
TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
}
/* Queue an address device command TRB */
int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
u32 slot_id)
{
return queue_command(xhci, lower_32_bits(in_ctx_ptr),
upper_32_bits(in_ctx_ptr), 0,
TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
false);
}
int xhci_queue_vendor_command(struct xhci_hcd *xhci,
u32 field1, u32 field2, u32 field3, u32 field4)
{
return queue_command(xhci, field1, field2, field3, field4, false);
}
/* Queue a reset device command TRB */
int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
{
return queue_command(xhci, 0, 0, 0,
TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
false);
}
/* Queue a configure endpoint command TRB */
int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
u32 slot_id, bool command_must_succeed)
{
return queue_command(xhci, lower_32_bits(in_ctx_ptr),
upper_32_bits(in_ctx_ptr), 0,
TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
command_must_succeed);
}
/* Queue an evaluate context command TRB */
int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
u32 slot_id, bool command_must_succeed)
{
return queue_command(xhci, lower_32_bits(in_ctx_ptr),
upper_32_bits(in_ctx_ptr), 0,
TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
command_must_succeed);
}
/*
* Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
* activity on an endpoint that is about to be suspended.
*/
int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
unsigned int ep_index, int suspend)
{
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
u32 type = TRB_TYPE(TRB_STOP_RING);
u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
return queue_command(xhci, 0, 0, 0,
trb_slot_id | trb_ep_index | type | trb_suspend, false);
}
/* Set Transfer Ring Dequeue Pointer command.
* This should not be used for endpoints that have streams enabled.
*/
static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
unsigned int ep_index, unsigned int stream_id,
struct xhci_segment *deq_seg,
union xhci_trb *deq_ptr, u32 cycle_state)
{
dma_addr_t addr;
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
u32 type = TRB_TYPE(TRB_SET_DEQ);
struct xhci_virt_ep *ep;
addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
if (addr == 0) {
xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
deq_seg, deq_ptr);
return 0;
}
ep = &xhci->devs[slot_id]->eps[ep_index];
if ((ep->ep_state & SET_DEQ_PENDING)) {
xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
return 0;
}
ep->queued_deq_seg = deq_seg;
ep->queued_deq_ptr = deq_ptr;
return queue_command(xhci, lower_32_bits(addr) | cycle_state,
upper_32_bits(addr), trb_stream_id,
trb_slot_id | trb_ep_index | type, false);
}
int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
unsigned int ep_index)
{
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
u32 type = TRB_TYPE(TRB_RESET_EP);
return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
false);
}