linux_dsm_epyc7002/drivers/media/common/tuners/fc0013.c
Hans-Frieder Vogt b144c98ca0 [media] fc0013 ver. 0.2: introduction of get_rf_strength function
Changes compared to version 0.1 of driver (sent 6 May):
- Initial implementation of get_rf_strength function.
- Introduction of a warning message

Signed-off-by: Hans-Frieder Vogt <hfvogt@gmx.net>
Signed-off-by: Antti Palosaari <crope@iki.fi>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-05-20 10:22:17 -03:00

635 lines
14 KiB
C

/*
* Fitipower FC0013 tuner driver
*
* Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
* partially based on driver code from Fitipower
* Copyright (C) 2010 Fitipower Integrated Technology Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include "fc0013.h"
#include "fc0013-priv.h"
static int fc0013_writereg(struct fc0013_priv *priv, u8 reg, u8 val)
{
u8 buf[2] = {reg, val};
struct i2c_msg msg = {
.addr = priv->addr, .flags = 0, .buf = buf, .len = 2
};
if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
err("I2C write reg failed, reg: %02x, val: %02x", reg, val);
return -EREMOTEIO;
}
return 0;
}
static int fc0013_readreg(struct fc0013_priv *priv, u8 reg, u8 *val)
{
struct i2c_msg msg[2] = {
{ .addr = priv->addr, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = priv->addr, .flags = I2C_M_RD, .buf = val, .len = 1 },
};
if (i2c_transfer(priv->i2c, msg, 2) != 2) {
err("I2C read reg failed, reg: %02x", reg);
return -EREMOTEIO;
}
return 0;
}
static int fc0013_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static int fc0013_init(struct dvb_frontend *fe)
{
struct fc0013_priv *priv = fe->tuner_priv;
int i, ret = 0;
unsigned char reg[] = {
0x00, /* reg. 0x00: dummy */
0x09, /* reg. 0x01 */
0x16, /* reg. 0x02 */
0x00, /* reg. 0x03 */
0x00, /* reg. 0x04 */
0x17, /* reg. 0x05 */
0x02, /* reg. 0x06 */
0x0a, /* reg. 0x07: CHECK */
0xff, /* reg. 0x08: AGC Clock divide by 256, AGC gain 1/256,
Loop Bw 1/8 */
0x6f, /* reg. 0x09: enable LoopThrough */
0xb8, /* reg. 0x0a: Disable LO Test Buffer */
0x82, /* reg. 0x0b: CHECK */
0xfc, /* reg. 0x0c: depending on AGC Up-Down mode, may need 0xf8 */
0x01, /* reg. 0x0d: AGC Not Forcing & LNA Forcing, may need 0x02 */
0x00, /* reg. 0x0e */
0x00, /* reg. 0x0f */
0x00, /* reg. 0x10 */
0x00, /* reg. 0x11 */
0x00, /* reg. 0x12 */
0x00, /* reg. 0x13 */
0x50, /* reg. 0x14: DVB-t High Gain, UHF.
Middle Gain: 0x48, Low Gain: 0x40 */
0x01, /* reg. 0x15 */
};
switch (priv->xtal_freq) {
case FC_XTAL_27_MHZ:
case FC_XTAL_28_8_MHZ:
reg[0x07] |= 0x20;
break;
case FC_XTAL_36_MHZ:
default:
break;
}
if (priv->dual_master)
reg[0x0c] |= 0x02;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
for (i = 1; i < sizeof(reg); i++) {
ret = fc0013_writereg(priv, i, reg[i]);
if (ret)
break;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
if (ret)
err("fc0013_writereg failed: %d", ret);
return ret;
}
static int fc0013_sleep(struct dvb_frontend *fe)
{
/* nothing to do here */
return 0;
}
int fc0013_rc_cal_add(struct dvb_frontend *fe, int rc_val)
{
struct fc0013_priv *priv = fe->tuner_priv;
int ret;
u8 rc_cal;
int val;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
/* push rc_cal value, get rc_cal value */
ret = fc0013_writereg(priv, 0x10, 0x00);
if (ret)
goto error_out;
/* get rc_cal value */
ret = fc0013_readreg(priv, 0x10, &rc_cal);
if (ret)
goto error_out;
rc_cal &= 0x0f;
val = (int)rc_cal + rc_val;
/* forcing rc_cal */
ret = fc0013_writereg(priv, 0x0d, 0x11);
if (ret)
goto error_out;
/* modify rc_cal value */
if (val > 15)
ret = fc0013_writereg(priv, 0x10, 0x0f);
else if (val < 0)
ret = fc0013_writereg(priv, 0x10, 0x00);
else
ret = fc0013_writereg(priv, 0x10, (u8)val);
error_out:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
return ret;
}
EXPORT_SYMBOL(fc0013_rc_cal_add);
int fc0013_rc_cal_reset(struct dvb_frontend *fe)
{
struct fc0013_priv *priv = fe->tuner_priv;
int ret;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
ret = fc0013_writereg(priv, 0x0d, 0x01);
if (!ret)
ret = fc0013_writereg(priv, 0x10, 0x00);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
return ret;
}
EXPORT_SYMBOL(fc0013_rc_cal_reset);
static int fc0013_set_vhf_track(struct fc0013_priv *priv, u32 freq)
{
int ret;
u8 tmp;
ret = fc0013_readreg(priv, 0x1d, &tmp);
if (ret)
goto error_out;
tmp &= 0xe3;
if (freq <= 177500) { /* VHF Track: 7 */
ret = fc0013_writereg(priv, 0x1d, tmp | 0x1c);
} else if (freq <= 184500) { /* VHF Track: 6 */
ret = fc0013_writereg(priv, 0x1d, tmp | 0x18);
} else if (freq <= 191500) { /* VHF Track: 5 */
ret = fc0013_writereg(priv, 0x1d, tmp | 0x14);
} else if (freq <= 198500) { /* VHF Track: 4 */
ret = fc0013_writereg(priv, 0x1d, tmp | 0x10);
} else if (freq <= 205500) { /* VHF Track: 3 */
ret = fc0013_writereg(priv, 0x1d, tmp | 0x0c);
} else if (freq <= 219500) { /* VHF Track: 2 */
ret = fc0013_writereg(priv, 0x1d, tmp | 0x08);
} else if (freq < 300000) { /* VHF Track: 1 */
ret = fc0013_writereg(priv, 0x1d, tmp | 0x04);
} else { /* UHF and GPS */
ret = fc0013_writereg(priv, 0x1d, tmp | 0x1c);
}
if (ret)
goto error_out;
error_out:
return ret;
}
static int fc0013_set_params(struct dvb_frontend *fe)
{
struct fc0013_priv *priv = fe->tuner_priv;
int i, ret = 0;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 freq = p->frequency / 1000;
u32 delsys = p->delivery_system;
unsigned char reg[7], am, pm, multi, tmp;
unsigned long f_vco;
unsigned short xtal_freq_khz_2, xin, xdiv;
int vco_select = false;
if (fe->callback) {
ret = fe->callback(priv->i2c, DVB_FRONTEND_COMPONENT_TUNER,
FC_FE_CALLBACK_VHF_ENABLE, (freq > 300000 ? 0 : 1));
if (ret)
goto exit;
}
switch (priv->xtal_freq) {
case FC_XTAL_27_MHZ:
xtal_freq_khz_2 = 27000 / 2;
break;
case FC_XTAL_36_MHZ:
xtal_freq_khz_2 = 36000 / 2;
break;
case FC_XTAL_28_8_MHZ:
default:
xtal_freq_khz_2 = 28800 / 2;
break;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
/* set VHF track */
ret = fc0013_set_vhf_track(priv, freq);
if (ret)
goto exit;
if (freq < 300000) {
/* enable VHF filter */
ret = fc0013_readreg(priv, 0x07, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(priv, 0x07, tmp | 0x10);
if (ret)
goto exit;
/* disable UHF & disable GPS */
ret = fc0013_readreg(priv, 0x14, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(priv, 0x14, tmp & 0x1f);
if (ret)
goto exit;
} else if (freq <= 862000) {
/* disable VHF filter */
ret = fc0013_readreg(priv, 0x07, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(priv, 0x07, tmp & 0xef);
if (ret)
goto exit;
/* enable UHF & disable GPS */
ret = fc0013_readreg(priv, 0x14, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(priv, 0x14, (tmp & 0x1f) | 0x40);
if (ret)
goto exit;
} else {
/* disable VHF filter */
ret = fc0013_readreg(priv, 0x07, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(priv, 0x07, tmp & 0xef);
if (ret)
goto exit;
/* disable UHF & enable GPS */
ret = fc0013_readreg(priv, 0x14, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(priv, 0x14, (tmp & 0x1f) | 0x20);
if (ret)
goto exit;
}
/* select frequency divider and the frequency of VCO */
if (freq < 37084) { /* freq * 96 < 3560000 */
multi = 96;
reg[5] = 0x82;
reg[6] = 0x00;
} else if (freq < 55625) { /* freq * 64 < 3560000 */
multi = 64;
reg[5] = 0x02;
reg[6] = 0x02;
} else if (freq < 74167) { /* freq * 48 < 3560000 */
multi = 48;
reg[5] = 0x42;
reg[6] = 0x00;
} else if (freq < 111250) { /* freq * 32 < 3560000 */
multi = 32;
reg[5] = 0x82;
reg[6] = 0x02;
} else if (freq < 148334) { /* freq * 24 < 3560000 */
multi = 24;
reg[5] = 0x22;
reg[6] = 0x00;
} else if (freq < 222500) { /* freq * 16 < 3560000 */
multi = 16;
reg[5] = 0x42;
reg[6] = 0x02;
} else if (freq < 296667) { /* freq * 12 < 3560000 */
multi = 12;
reg[5] = 0x12;
reg[6] = 0x00;
} else if (freq < 445000) { /* freq * 8 < 3560000 */
multi = 8;
reg[5] = 0x22;
reg[6] = 0x02;
} else if (freq < 593334) { /* freq * 6 < 3560000 */
multi = 6;
reg[5] = 0x0a;
reg[6] = 0x00;
} else if (freq < 950000) { /* freq * 4 < 3800000 */
multi = 4;
reg[5] = 0x12;
reg[6] = 0x02;
} else {
multi = 2;
reg[5] = 0x0a;
reg[6] = 0x02;
}
f_vco = freq * multi;
if (f_vco >= 3060000) {
reg[6] |= 0x08;
vco_select = true;
}
if (freq >= 45000) {
/* From divided value (XDIV) determined the FA and FP value */
xdiv = (unsigned short)(f_vco / xtal_freq_khz_2);
if ((f_vco - xdiv * xtal_freq_khz_2) >= (xtal_freq_khz_2 / 2))
xdiv++;
pm = (unsigned char)(xdiv / 8);
am = (unsigned char)(xdiv - (8 * pm));
if (am < 2) {
reg[1] = am + 8;
reg[2] = pm - 1;
} else {
reg[1] = am;
reg[2] = pm;
}
} else {
/* fix for frequency less than 45 MHz */
reg[1] = 0x06;
reg[2] = 0x11;
}
/* fix clock out */
reg[6] |= 0x20;
/* From VCO frequency determines the XIN ( fractional part of Delta
Sigma PLL) and divided value (XDIV) */
xin = (unsigned short)(f_vco - (f_vco / xtal_freq_khz_2) * xtal_freq_khz_2);
xin = (xin << 15) / xtal_freq_khz_2;
if (xin >= 16384)
xin += 32768;
reg[3] = xin >> 8;
reg[4] = xin & 0xff;
if (delsys == SYS_DVBT) {
reg[6] &= 0x3f; /* bits 6 and 7 describe the bandwidth */
switch (p->bandwidth_hz) {
case 6000000:
reg[6] |= 0x80;
break;
case 7000000:
reg[6] |= 0x40;
break;
case 8000000:
default:
break;
}
} else {
err("%s: modulation type not supported!", __func__);
return -EINVAL;
}
/* modified for Realtek demod */
reg[5] |= 0x07;
for (i = 1; i <= 6; i++) {
ret = fc0013_writereg(priv, i, reg[i]);
if (ret)
goto exit;
}
ret = fc0013_readreg(priv, 0x11, &tmp);
if (ret)
goto exit;
if (multi == 64)
ret = fc0013_writereg(priv, 0x11, tmp | 0x04);
else
ret = fc0013_writereg(priv, 0x11, tmp & 0xfb);
if (ret)
goto exit;
/* VCO Calibration */
ret = fc0013_writereg(priv, 0x0e, 0x80);
if (!ret)
ret = fc0013_writereg(priv, 0x0e, 0x00);
/* VCO Re-Calibration if needed */
if (!ret)
ret = fc0013_writereg(priv, 0x0e, 0x00);
if (!ret) {
msleep(10);
ret = fc0013_readreg(priv, 0x0e, &tmp);
}
if (ret)
goto exit;
/* vco selection */
tmp &= 0x3f;
if (vco_select) {
if (tmp > 0x3c) {
reg[6] &= ~0x08;
ret = fc0013_writereg(priv, 0x06, reg[6]);
if (!ret)
ret = fc0013_writereg(priv, 0x0e, 0x80);
if (!ret)
ret = fc0013_writereg(priv, 0x0e, 0x00);
}
} else {
if (tmp < 0x02) {
reg[6] |= 0x08;
ret = fc0013_writereg(priv, 0x06, reg[6]);
if (!ret)
ret = fc0013_writereg(priv, 0x0e, 0x80);
if (!ret)
ret = fc0013_writereg(priv, 0x0e, 0x00);
}
}
priv->frequency = p->frequency;
priv->bandwidth = p->bandwidth_hz;
exit:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
if (ret)
warn("%s: failed: %d", __func__, ret);
return ret;
}
static int fc0013_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct fc0013_priv *priv = fe->tuner_priv;
*frequency = priv->frequency;
return 0;
}
static int fc0013_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
/* always ? */
*frequency = 0;
return 0;
}
static int fc0013_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
struct fc0013_priv *priv = fe->tuner_priv;
*bandwidth = priv->bandwidth;
return 0;
}
#define INPUT_ADC_LEVEL -8
static int fc0013_get_rf_strength(struct dvb_frontend *fe, u16 *strength)
{
struct fc0013_priv *priv = fe->tuner_priv;
int ret;
unsigned char tmp;
int int_temp, lna_gain, int_lna, tot_agc_gain, power;
const int fc0013_lna_gain_table[] = {
/* low gain */
-63, -58, -99, -73,
-63, -65, -54, -60,
/* middle gain */
71, 70, 68, 67,
65, 63, 61, 58,
/* high gain */
197, 191, 188, 186,
184, 182, 181, 179,
};
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */
ret = fc0013_writereg(priv, 0x13, 0x00);
if (ret)
goto err;
ret = fc0013_readreg(priv, 0x13, &tmp);
if (ret)
goto err;
int_temp = tmp;
ret = fc0013_readreg(priv, 0x14, &tmp);
if (ret)
goto err;
lna_gain = tmp & 0x1f;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
if (lna_gain < ARRAY_SIZE(fc0013_lna_gain_table)) {
int_lna = fc0013_lna_gain_table[lna_gain];
tot_agc_gain = (abs((int_temp >> 5) - 7) - 2 +
(int_temp & 0x1f)) * 2;
power = INPUT_ADC_LEVEL - tot_agc_gain - int_lna / 10;
if (power >= 45)
*strength = 255; /* 100% */
else if (power < -95)
*strength = 0;
else
*strength = (power + 95) * 255 / 140;
*strength |= *strength << 8;
} else {
ret = -1;
}
goto exit;
err:
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */
exit:
if (ret)
warn("%s: failed: %d", __func__, ret);
return ret;
}
static const struct dvb_tuner_ops fc0013_tuner_ops = {
.info = {
.name = "Fitipower FC0013",
.frequency_min = 37000000, /* estimate */
.frequency_max = 1680000000, /* CHECK */
.frequency_step = 0,
},
.release = fc0013_release,
.init = fc0013_init,
.sleep = fc0013_sleep,
.set_params = fc0013_set_params,
.get_frequency = fc0013_get_frequency,
.get_if_frequency = fc0013_get_if_frequency,
.get_bandwidth = fc0013_get_bandwidth,
.get_rf_strength = fc0013_get_rf_strength,
};
struct dvb_frontend *fc0013_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c, u8 i2c_address, int dual_master,
enum fc001x_xtal_freq xtal_freq)
{
struct fc0013_priv *priv = NULL;
priv = kzalloc(sizeof(struct fc0013_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
priv->i2c = i2c;
priv->dual_master = dual_master;
priv->addr = i2c_address;
priv->xtal_freq = xtal_freq;
info("Fitipower FC0013 successfully attached.");
fe->tuner_priv = priv;
memcpy(&fe->ops.tuner_ops, &fc0013_tuner_ops,
sizeof(struct dvb_tuner_ops));
return fe;
}
EXPORT_SYMBOL(fc0013_attach);
MODULE_DESCRIPTION("Fitipower FC0013 silicon tuner driver");
MODULE_AUTHOR("Hans-Frieder Vogt <hfvogt@gmx.net>");
MODULE_LICENSE("GPL");
MODULE_VERSION("0.2");