mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 20:30:57 +07:00
142349f541
Tests show that the original large intervals can easily make the dirty limit exceeded on 100 concurrent dd's. So adapt to as large as the next check point selected by the dirty throttling algorithm. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
1889 lines
48 KiB
C
1889 lines
48 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/statfs.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/slab.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "ioctl.h"
|
|
#include "print-tree.h"
|
|
#include "tree-log.h"
|
|
#include "locking.h"
|
|
#include "compat.h"
|
|
|
|
/*
|
|
* when auto defrag is enabled we
|
|
* queue up these defrag structs to remember which
|
|
* inodes need defragging passes
|
|
*/
|
|
struct inode_defrag {
|
|
struct rb_node rb_node;
|
|
/* objectid */
|
|
u64 ino;
|
|
/*
|
|
* transid where the defrag was added, we search for
|
|
* extents newer than this
|
|
*/
|
|
u64 transid;
|
|
|
|
/* root objectid */
|
|
u64 root;
|
|
|
|
/* last offset we were able to defrag */
|
|
u64 last_offset;
|
|
|
|
/* if we've wrapped around back to zero once already */
|
|
int cycled;
|
|
};
|
|
|
|
/* pop a record for an inode into the defrag tree. The lock
|
|
* must be held already
|
|
*
|
|
* If you're inserting a record for an older transid than an
|
|
* existing record, the transid already in the tree is lowered
|
|
*
|
|
* If an existing record is found the defrag item you
|
|
* pass in is freed
|
|
*/
|
|
static void __btrfs_add_inode_defrag(struct inode *inode,
|
|
struct inode_defrag *defrag)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct inode_defrag *entry;
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
|
|
p = &root->fs_info->defrag_inodes.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
|
|
if (defrag->ino < entry->ino)
|
|
p = &parent->rb_left;
|
|
else if (defrag->ino > entry->ino)
|
|
p = &parent->rb_right;
|
|
else {
|
|
/* if we're reinserting an entry for
|
|
* an old defrag run, make sure to
|
|
* lower the transid of our existing record
|
|
*/
|
|
if (defrag->transid < entry->transid)
|
|
entry->transid = defrag->transid;
|
|
if (defrag->last_offset > entry->last_offset)
|
|
entry->last_offset = defrag->last_offset;
|
|
goto exists;
|
|
}
|
|
}
|
|
BTRFS_I(inode)->in_defrag = 1;
|
|
rb_link_node(&defrag->rb_node, parent, p);
|
|
rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
|
|
return;
|
|
|
|
exists:
|
|
kfree(defrag);
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
* insert a defrag record for this inode if auto defrag is
|
|
* enabled
|
|
*/
|
|
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct inode_defrag *defrag;
|
|
u64 transid;
|
|
|
|
if (!btrfs_test_opt(root, AUTO_DEFRAG))
|
|
return 0;
|
|
|
|
if (btrfs_fs_closing(root->fs_info))
|
|
return 0;
|
|
|
|
if (BTRFS_I(inode)->in_defrag)
|
|
return 0;
|
|
|
|
if (trans)
|
|
transid = trans->transid;
|
|
else
|
|
transid = BTRFS_I(inode)->root->last_trans;
|
|
|
|
defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
|
|
if (!defrag)
|
|
return -ENOMEM;
|
|
|
|
defrag->ino = btrfs_ino(inode);
|
|
defrag->transid = transid;
|
|
defrag->root = root->root_key.objectid;
|
|
|
|
spin_lock(&root->fs_info->defrag_inodes_lock);
|
|
if (!BTRFS_I(inode)->in_defrag)
|
|
__btrfs_add_inode_defrag(inode, defrag);
|
|
else
|
|
kfree(defrag);
|
|
spin_unlock(&root->fs_info->defrag_inodes_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* must be called with the defrag_inodes lock held
|
|
*/
|
|
struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
|
|
struct rb_node **next)
|
|
{
|
|
struct inode_defrag *entry = NULL;
|
|
struct rb_node *p;
|
|
struct rb_node *parent = NULL;
|
|
|
|
p = info->defrag_inodes.rb_node;
|
|
while (p) {
|
|
parent = p;
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
|
|
if (ino < entry->ino)
|
|
p = parent->rb_left;
|
|
else if (ino > entry->ino)
|
|
p = parent->rb_right;
|
|
else
|
|
return entry;
|
|
}
|
|
|
|
if (next) {
|
|
while (parent && ino > entry->ino) {
|
|
parent = rb_next(parent);
|
|
entry = rb_entry(parent, struct inode_defrag, rb_node);
|
|
}
|
|
*next = parent;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* run through the list of inodes in the FS that need
|
|
* defragging
|
|
*/
|
|
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct inode_defrag *defrag;
|
|
struct btrfs_root *inode_root;
|
|
struct inode *inode;
|
|
struct rb_node *n;
|
|
struct btrfs_key key;
|
|
struct btrfs_ioctl_defrag_range_args range;
|
|
u64 first_ino = 0;
|
|
int num_defrag;
|
|
int defrag_batch = 1024;
|
|
|
|
memset(&range, 0, sizeof(range));
|
|
range.len = (u64)-1;
|
|
|
|
atomic_inc(&fs_info->defrag_running);
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
while(1) {
|
|
n = NULL;
|
|
|
|
/* find an inode to defrag */
|
|
defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
|
|
if (!defrag) {
|
|
if (n)
|
|
defrag = rb_entry(n, struct inode_defrag, rb_node);
|
|
else if (first_ino) {
|
|
first_ino = 0;
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* remove it from the rbtree */
|
|
first_ino = defrag->ino + 1;
|
|
rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
|
|
|
|
if (btrfs_fs_closing(fs_info))
|
|
goto next_free;
|
|
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
|
|
/* get the inode */
|
|
key.objectid = defrag->root;
|
|
btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
|
|
key.offset = (u64)-1;
|
|
inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
|
|
if (IS_ERR(inode_root))
|
|
goto next;
|
|
|
|
key.objectid = defrag->ino;
|
|
btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
|
|
key.offset = 0;
|
|
|
|
inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
|
|
if (IS_ERR(inode))
|
|
goto next;
|
|
|
|
/* do a chunk of defrag */
|
|
BTRFS_I(inode)->in_defrag = 0;
|
|
range.start = defrag->last_offset;
|
|
num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
|
|
defrag_batch);
|
|
/*
|
|
* if we filled the whole defrag batch, there
|
|
* must be more work to do. Queue this defrag
|
|
* again
|
|
*/
|
|
if (num_defrag == defrag_batch) {
|
|
defrag->last_offset = range.start;
|
|
__btrfs_add_inode_defrag(inode, defrag);
|
|
/*
|
|
* we don't want to kfree defrag, we added it back to
|
|
* the rbtree
|
|
*/
|
|
defrag = NULL;
|
|
} else if (defrag->last_offset && !defrag->cycled) {
|
|
/*
|
|
* we didn't fill our defrag batch, but
|
|
* we didn't start at zero. Make sure we loop
|
|
* around to the start of the file.
|
|
*/
|
|
defrag->last_offset = 0;
|
|
defrag->cycled = 1;
|
|
__btrfs_add_inode_defrag(inode, defrag);
|
|
defrag = NULL;
|
|
}
|
|
|
|
iput(inode);
|
|
next:
|
|
spin_lock(&fs_info->defrag_inodes_lock);
|
|
next_free:
|
|
kfree(defrag);
|
|
}
|
|
spin_unlock(&fs_info->defrag_inodes_lock);
|
|
|
|
atomic_dec(&fs_info->defrag_running);
|
|
|
|
/*
|
|
* during unmount, we use the transaction_wait queue to
|
|
* wait for the defragger to stop
|
|
*/
|
|
wake_up(&fs_info->transaction_wait);
|
|
return 0;
|
|
}
|
|
|
|
/* simple helper to fault in pages and copy. This should go away
|
|
* and be replaced with calls into generic code.
|
|
*/
|
|
static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
|
|
size_t write_bytes,
|
|
struct page **prepared_pages,
|
|
struct iov_iter *i)
|
|
{
|
|
size_t copied = 0;
|
|
size_t total_copied = 0;
|
|
int pg = 0;
|
|
int offset = pos & (PAGE_CACHE_SIZE - 1);
|
|
|
|
while (write_bytes > 0) {
|
|
size_t count = min_t(size_t,
|
|
PAGE_CACHE_SIZE - offset, write_bytes);
|
|
struct page *page = prepared_pages[pg];
|
|
/*
|
|
* Copy data from userspace to the current page
|
|
*
|
|
* Disable pagefault to avoid recursive lock since
|
|
* the pages are already locked
|
|
*/
|
|
pagefault_disable();
|
|
copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
|
|
pagefault_enable();
|
|
|
|
/* Flush processor's dcache for this page */
|
|
flush_dcache_page(page);
|
|
|
|
/*
|
|
* if we get a partial write, we can end up with
|
|
* partially up to date pages. These add
|
|
* a lot of complexity, so make sure they don't
|
|
* happen by forcing this copy to be retried.
|
|
*
|
|
* The rest of the btrfs_file_write code will fall
|
|
* back to page at a time copies after we return 0.
|
|
*/
|
|
if (!PageUptodate(page) && copied < count)
|
|
copied = 0;
|
|
|
|
iov_iter_advance(i, copied);
|
|
write_bytes -= copied;
|
|
total_copied += copied;
|
|
|
|
/* Return to btrfs_file_aio_write to fault page */
|
|
if (unlikely(copied == 0))
|
|
break;
|
|
|
|
if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
|
|
offset += copied;
|
|
} else {
|
|
pg++;
|
|
offset = 0;
|
|
}
|
|
}
|
|
return total_copied;
|
|
}
|
|
|
|
/*
|
|
* unlocks pages after btrfs_file_write is done with them
|
|
*/
|
|
void btrfs_drop_pages(struct page **pages, size_t num_pages)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < num_pages; i++) {
|
|
/* page checked is some magic around finding pages that
|
|
* have been modified without going through btrfs_set_page_dirty
|
|
* clear it here
|
|
*/
|
|
ClearPageChecked(pages[i]);
|
|
unlock_page(pages[i]);
|
|
mark_page_accessed(pages[i]);
|
|
page_cache_release(pages[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* after copy_from_user, pages need to be dirtied and we need to make
|
|
* sure holes are created between the current EOF and the start of
|
|
* any next extents (if required).
|
|
*
|
|
* this also makes the decision about creating an inline extent vs
|
|
* doing real data extents, marking pages dirty and delalloc as required.
|
|
*/
|
|
int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
|
|
struct page **pages, size_t num_pages,
|
|
loff_t pos, size_t write_bytes,
|
|
struct extent_state **cached)
|
|
{
|
|
int err = 0;
|
|
int i;
|
|
u64 num_bytes;
|
|
u64 start_pos;
|
|
u64 end_of_last_block;
|
|
u64 end_pos = pos + write_bytes;
|
|
loff_t isize = i_size_read(inode);
|
|
|
|
start_pos = pos & ~((u64)root->sectorsize - 1);
|
|
num_bytes = (write_bytes + pos - start_pos +
|
|
root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
|
|
|
|
end_of_last_block = start_pos + num_bytes - 1;
|
|
err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
|
|
cached);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < num_pages; i++) {
|
|
struct page *p = pages[i];
|
|
SetPageUptodate(p);
|
|
ClearPageChecked(p);
|
|
set_page_dirty(p);
|
|
}
|
|
|
|
/*
|
|
* we've only changed i_size in ram, and we haven't updated
|
|
* the disk i_size. There is no need to log the inode
|
|
* at this time.
|
|
*/
|
|
if (end_pos > isize)
|
|
i_size_write(inode, end_pos);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this drops all the extents in the cache that intersect the range
|
|
* [start, end]. Existing extents are split as required.
|
|
*/
|
|
int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
|
|
int skip_pinned)
|
|
{
|
|
struct extent_map *em;
|
|
struct extent_map *split = NULL;
|
|
struct extent_map *split2 = NULL;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
u64 len = end - start + 1;
|
|
int ret;
|
|
int testend = 1;
|
|
unsigned long flags;
|
|
int compressed = 0;
|
|
|
|
WARN_ON(end < start);
|
|
if (end == (u64)-1) {
|
|
len = (u64)-1;
|
|
testend = 0;
|
|
}
|
|
while (1) {
|
|
if (!split)
|
|
split = alloc_extent_map();
|
|
if (!split2)
|
|
split2 = alloc_extent_map();
|
|
BUG_ON(!split || !split2);
|
|
|
|
write_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (!em) {
|
|
write_unlock(&em_tree->lock);
|
|
break;
|
|
}
|
|
flags = em->flags;
|
|
if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
|
|
if (testend && em->start + em->len >= start + len) {
|
|
free_extent_map(em);
|
|
write_unlock(&em_tree->lock);
|
|
break;
|
|
}
|
|
start = em->start + em->len;
|
|
if (testend)
|
|
len = start + len - (em->start + em->len);
|
|
free_extent_map(em);
|
|
write_unlock(&em_tree->lock);
|
|
continue;
|
|
}
|
|
compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
clear_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
remove_extent_mapping(em_tree, em);
|
|
|
|
if (em->block_start < EXTENT_MAP_LAST_BYTE &&
|
|
em->start < start) {
|
|
split->start = em->start;
|
|
split->len = start - em->start;
|
|
split->orig_start = em->orig_start;
|
|
split->block_start = em->block_start;
|
|
|
|
if (compressed)
|
|
split->block_len = em->block_len;
|
|
else
|
|
split->block_len = split->len;
|
|
|
|
split->bdev = em->bdev;
|
|
split->flags = flags;
|
|
split->compress_type = em->compress_type;
|
|
ret = add_extent_mapping(em_tree, split);
|
|
BUG_ON(ret);
|
|
free_extent_map(split);
|
|
split = split2;
|
|
split2 = NULL;
|
|
}
|
|
if (em->block_start < EXTENT_MAP_LAST_BYTE &&
|
|
testend && em->start + em->len > start + len) {
|
|
u64 diff = start + len - em->start;
|
|
|
|
split->start = start + len;
|
|
split->len = em->start + em->len - (start + len);
|
|
split->bdev = em->bdev;
|
|
split->flags = flags;
|
|
split->compress_type = em->compress_type;
|
|
|
|
if (compressed) {
|
|
split->block_len = em->block_len;
|
|
split->block_start = em->block_start;
|
|
split->orig_start = em->orig_start;
|
|
} else {
|
|
split->block_len = split->len;
|
|
split->block_start = em->block_start + diff;
|
|
split->orig_start = split->start;
|
|
}
|
|
|
|
ret = add_extent_mapping(em_tree, split);
|
|
BUG_ON(ret);
|
|
free_extent_map(split);
|
|
split = NULL;
|
|
}
|
|
write_unlock(&em_tree->lock);
|
|
|
|
/* once for us */
|
|
free_extent_map(em);
|
|
/* once for the tree*/
|
|
free_extent_map(em);
|
|
}
|
|
if (split)
|
|
free_extent_map(split);
|
|
if (split2)
|
|
free_extent_map(split2);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this is very complex, but the basic idea is to drop all extents
|
|
* in the range start - end. hint_block is filled in with a block number
|
|
* that would be a good hint to the block allocator for this file.
|
|
*
|
|
* If an extent intersects the range but is not entirely inside the range
|
|
* it is either truncated or split. Anything entirely inside the range
|
|
* is deleted from the tree.
|
|
*/
|
|
int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
|
|
u64 start, u64 end, u64 *hint_byte, int drop_cache)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_key new_key;
|
|
u64 ino = btrfs_ino(inode);
|
|
u64 search_start = start;
|
|
u64 disk_bytenr = 0;
|
|
u64 num_bytes = 0;
|
|
u64 extent_offset = 0;
|
|
u64 extent_end = 0;
|
|
int del_nr = 0;
|
|
int del_slot = 0;
|
|
int extent_type;
|
|
int recow;
|
|
int ret;
|
|
|
|
if (drop_cache)
|
|
btrfs_drop_extent_cache(inode, start, end - 1, 0);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
recow = 0;
|
|
ret = btrfs_lookup_file_extent(trans, root, path, ino,
|
|
search_start, -1);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret > 0 && path->slots[0] > 0 && search_start == start) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
|
|
if (key.objectid == ino &&
|
|
key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path->slots[0]--;
|
|
}
|
|
ret = 0;
|
|
next_slot:
|
|
leaf = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
BUG_ON(del_nr > 0);
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
leaf = path->nodes[0];
|
|
recow = 1;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid > ino ||
|
|
key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
|
|
break;
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG ||
|
|
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
extent_offset = btrfs_file_extent_offset(leaf, fi);
|
|
extent_end = key.offset +
|
|
btrfs_file_extent_num_bytes(leaf, fi);
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
extent_end = key.offset +
|
|
btrfs_file_extent_inline_len(leaf, fi);
|
|
} else {
|
|
WARN_ON(1);
|
|
extent_end = search_start;
|
|
}
|
|
|
|
if (extent_end <= search_start) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
search_start = max(key.offset, start);
|
|
if (recow) {
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* | - range to drop - |
|
|
* | -------- extent -------- |
|
|
*/
|
|
if (start > key.offset && end < extent_end) {
|
|
BUG_ON(del_nr > 0);
|
|
BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
|
|
|
|
memcpy(&new_key, &key, sizeof(new_key));
|
|
new_key.offset = start;
|
|
ret = btrfs_duplicate_item(trans, root, path,
|
|
&new_key);
|
|
if (ret == -EAGAIN) {
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
if (ret < 0)
|
|
break;
|
|
|
|
leaf = path->nodes[0];
|
|
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
start - key.offset);
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
|
|
extent_offset += start - key.offset;
|
|
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - start);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
if (disk_bytenr > 0) {
|
|
ret = btrfs_inc_extent_ref(trans, root,
|
|
disk_bytenr, num_bytes, 0,
|
|
root->root_key.objectid,
|
|
new_key.objectid,
|
|
start - extent_offset);
|
|
BUG_ON(ret);
|
|
*hint_byte = disk_bytenr;
|
|
}
|
|
key.offset = start;
|
|
}
|
|
/*
|
|
* | ---- range to drop ----- |
|
|
* | -------- extent -------- |
|
|
*/
|
|
if (start <= key.offset && end < extent_end) {
|
|
BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
|
|
|
|
memcpy(&new_key, &key, sizeof(new_key));
|
|
new_key.offset = end;
|
|
btrfs_set_item_key_safe(trans, root, path, &new_key);
|
|
|
|
extent_offset += end - key.offset;
|
|
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - end);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
if (disk_bytenr > 0) {
|
|
inode_sub_bytes(inode, end - key.offset);
|
|
*hint_byte = disk_bytenr;
|
|
}
|
|
break;
|
|
}
|
|
|
|
search_start = extent_end;
|
|
/*
|
|
* | ---- range to drop ----- |
|
|
* | -------- extent -------- |
|
|
*/
|
|
if (start > key.offset && end >= extent_end) {
|
|
BUG_ON(del_nr > 0);
|
|
BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
|
|
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
start - key.offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
if (disk_bytenr > 0) {
|
|
inode_sub_bytes(inode, extent_end - start);
|
|
*hint_byte = disk_bytenr;
|
|
}
|
|
if (end == extent_end)
|
|
break;
|
|
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
/*
|
|
* | ---- range to drop ----- |
|
|
* | ------ extent ------ |
|
|
*/
|
|
if (start <= key.offset && end >= extent_end) {
|
|
if (del_nr == 0) {
|
|
del_slot = path->slots[0];
|
|
del_nr = 1;
|
|
} else {
|
|
BUG_ON(del_slot + del_nr != path->slots[0]);
|
|
del_nr++;
|
|
}
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
inode_sub_bytes(inode,
|
|
extent_end - key.offset);
|
|
extent_end = ALIGN(extent_end,
|
|
root->sectorsize);
|
|
} else if (disk_bytenr > 0) {
|
|
ret = btrfs_free_extent(trans, root,
|
|
disk_bytenr, num_bytes, 0,
|
|
root->root_key.objectid,
|
|
key.objectid, key.offset -
|
|
extent_offset);
|
|
BUG_ON(ret);
|
|
inode_sub_bytes(inode,
|
|
extent_end - key.offset);
|
|
*hint_byte = disk_bytenr;
|
|
}
|
|
|
|
if (end == extent_end)
|
|
break;
|
|
|
|
if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
ret = btrfs_del_items(trans, root, path, del_slot,
|
|
del_nr);
|
|
BUG_ON(ret);
|
|
|
|
del_nr = 0;
|
|
del_slot = 0;
|
|
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
|
|
BUG_ON(1);
|
|
}
|
|
|
|
if (del_nr > 0) {
|
|
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int extent_mergeable(struct extent_buffer *leaf, int slot,
|
|
u64 objectid, u64 bytenr, u64 orig_offset,
|
|
u64 *start, u64 *end)
|
|
{
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
u64 extent_end;
|
|
|
|
if (slot < 0 || slot >= btrfs_header_nritems(leaf))
|
|
return 0;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
|
|
return 0;
|
|
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
|
|
btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
|
|
btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
|
|
btrfs_file_extent_compression(leaf, fi) ||
|
|
btrfs_file_extent_encryption(leaf, fi) ||
|
|
btrfs_file_extent_other_encoding(leaf, fi))
|
|
return 0;
|
|
|
|
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
|
|
if ((*start && *start != key.offset) || (*end && *end != extent_end))
|
|
return 0;
|
|
|
|
*start = key.offset;
|
|
*end = extent_end;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Mark extent in the range start - end as written.
|
|
*
|
|
* This changes extent type from 'pre-allocated' to 'regular'. If only
|
|
* part of extent is marked as written, the extent will be split into
|
|
* two or three.
|
|
*/
|
|
int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, u64 start, u64 end)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_path *path;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
struct btrfs_key new_key;
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u64 extent_end;
|
|
u64 orig_offset;
|
|
u64 other_start;
|
|
u64 other_end;
|
|
u64 split;
|
|
int del_nr = 0;
|
|
int del_slot = 0;
|
|
int recow;
|
|
int ret;
|
|
u64 ino = btrfs_ino(inode);
|
|
|
|
btrfs_drop_extent_cache(inode, start, end - 1, 0);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
again:
|
|
recow = 0;
|
|
split = start;
|
|
key.objectid = ino;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = split;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0 && path->slots[0] > 0)
|
|
path->slots[0]--;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
BUG_ON(btrfs_file_extent_type(leaf, fi) !=
|
|
BTRFS_FILE_EXTENT_PREALLOC);
|
|
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
|
|
BUG_ON(key.offset > start || extent_end < end);
|
|
|
|
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
|
|
memcpy(&new_key, &key, sizeof(new_key));
|
|
|
|
if (start == key.offset && end < extent_end) {
|
|
other_start = 0;
|
|
other_end = start;
|
|
if (extent_mergeable(leaf, path->slots[0] - 1,
|
|
ino, bytenr, orig_offset,
|
|
&other_start, &other_end)) {
|
|
new_key.offset = end;
|
|
btrfs_set_item_key_safe(trans, root, path, &new_key);
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - end);
|
|
btrfs_set_file_extent_offset(leaf, fi,
|
|
end - orig_offset);
|
|
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
end - other_start);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (start > key.offset && end == extent_end) {
|
|
other_start = end;
|
|
other_end = 0;
|
|
if (extent_mergeable(leaf, path->slots[0] + 1,
|
|
ino, bytenr, orig_offset,
|
|
&other_start, &other_end)) {
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
start - key.offset);
|
|
path->slots[0]++;
|
|
new_key.offset = start;
|
|
btrfs_set_item_key_safe(trans, root, path, &new_key);
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
other_end - start);
|
|
btrfs_set_file_extent_offset(leaf, fi,
|
|
start - orig_offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
while (start > key.offset || end < extent_end) {
|
|
if (key.offset == start)
|
|
split = end;
|
|
|
|
new_key.offset = split;
|
|
ret = btrfs_duplicate_item(trans, root, path, &new_key);
|
|
if (ret == -EAGAIN) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
BUG_ON(ret < 0);
|
|
|
|
leaf = path->nodes[0];
|
|
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
split - key.offset);
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
|
|
btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - split);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
|
|
root->root_key.objectid,
|
|
ino, orig_offset);
|
|
BUG_ON(ret);
|
|
|
|
if (split == start) {
|
|
key.offset = start;
|
|
} else {
|
|
BUG_ON(start != key.offset);
|
|
path->slots[0]--;
|
|
extent_end = end;
|
|
}
|
|
recow = 1;
|
|
}
|
|
|
|
other_start = end;
|
|
other_end = 0;
|
|
if (extent_mergeable(leaf, path->slots[0] + 1,
|
|
ino, bytenr, orig_offset,
|
|
&other_start, &other_end)) {
|
|
if (recow) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
extent_end = other_end;
|
|
del_slot = path->slots[0] + 1;
|
|
del_nr++;
|
|
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
|
|
0, root->root_key.objectid,
|
|
ino, orig_offset);
|
|
BUG_ON(ret);
|
|
}
|
|
other_start = 0;
|
|
other_end = start;
|
|
if (extent_mergeable(leaf, path->slots[0] - 1,
|
|
ino, bytenr, orig_offset,
|
|
&other_start, &other_end)) {
|
|
if (recow) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
key.offset = other_start;
|
|
del_slot = path->slots[0];
|
|
del_nr++;
|
|
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
|
|
0, root->root_key.objectid,
|
|
ino, orig_offset);
|
|
BUG_ON(ret);
|
|
}
|
|
if (del_nr == 0) {
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_type(leaf, fi,
|
|
BTRFS_FILE_EXTENT_REG);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
} else {
|
|
fi = btrfs_item_ptr(leaf, del_slot - 1,
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_type(leaf, fi,
|
|
BTRFS_FILE_EXTENT_REG);
|
|
btrfs_set_file_extent_num_bytes(leaf, fi,
|
|
extent_end - key.offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
|
|
BUG_ON(ret);
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* on error we return an unlocked page and the error value
|
|
* on success we return a locked page and 0
|
|
*/
|
|
static int prepare_uptodate_page(struct page *page, u64 pos,
|
|
bool force_uptodate)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
|
|
!PageUptodate(page)) {
|
|
ret = btrfs_readpage(NULL, page);
|
|
if (ret)
|
|
return ret;
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
return -EIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this gets pages into the page cache and locks them down, it also properly
|
|
* waits for data=ordered extents to finish before allowing the pages to be
|
|
* modified.
|
|
*/
|
|
static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
|
|
struct page **pages, size_t num_pages,
|
|
loff_t pos, unsigned long first_index,
|
|
size_t write_bytes, bool force_uptodate)
|
|
{
|
|
struct extent_state *cached_state = NULL;
|
|
int i;
|
|
unsigned long index = pos >> PAGE_CACHE_SHIFT;
|
|
struct inode *inode = fdentry(file)->d_inode;
|
|
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
|
|
int err = 0;
|
|
int faili = 0;
|
|
u64 start_pos;
|
|
u64 last_pos;
|
|
|
|
start_pos = pos & ~((u64)root->sectorsize - 1);
|
|
last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
|
|
|
|
again:
|
|
for (i = 0; i < num_pages; i++) {
|
|
pages[i] = find_or_create_page(inode->i_mapping, index + i,
|
|
mask);
|
|
if (!pages[i]) {
|
|
faili = i - 1;
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (i == 0)
|
|
err = prepare_uptodate_page(pages[i], pos,
|
|
force_uptodate);
|
|
if (i == num_pages - 1)
|
|
err = prepare_uptodate_page(pages[i],
|
|
pos + write_bytes, false);
|
|
if (err) {
|
|
page_cache_release(pages[i]);
|
|
faili = i - 1;
|
|
goto fail;
|
|
}
|
|
wait_on_page_writeback(pages[i]);
|
|
}
|
|
err = 0;
|
|
if (start_pos < inode->i_size) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree,
|
|
start_pos, last_pos - 1, 0, &cached_state,
|
|
GFP_NOFS);
|
|
ordered = btrfs_lookup_first_ordered_extent(inode,
|
|
last_pos - 1);
|
|
if (ordered &&
|
|
ordered->file_offset + ordered->len > start_pos &&
|
|
ordered->file_offset < last_pos) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
start_pos, last_pos - 1,
|
|
&cached_state, GFP_NOFS);
|
|
for (i = 0; i < num_pages; i++) {
|
|
unlock_page(pages[i]);
|
|
page_cache_release(pages[i]);
|
|
}
|
|
btrfs_wait_ordered_range(inode, start_pos,
|
|
last_pos - start_pos);
|
|
goto again;
|
|
}
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
|
|
last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
|
|
EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
|
|
GFP_NOFS);
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
start_pos, last_pos - 1, &cached_state,
|
|
GFP_NOFS);
|
|
}
|
|
for (i = 0; i < num_pages; i++) {
|
|
clear_page_dirty_for_io(pages[i]);
|
|
set_page_extent_mapped(pages[i]);
|
|
WARN_ON(!PageLocked(pages[i]));
|
|
}
|
|
return 0;
|
|
fail:
|
|
while (faili >= 0) {
|
|
unlock_page(pages[faili]);
|
|
page_cache_release(pages[faili]);
|
|
faili--;
|
|
}
|
|
return err;
|
|
|
|
}
|
|
|
|
static noinline ssize_t __btrfs_buffered_write(struct file *file,
|
|
struct iov_iter *i,
|
|
loff_t pos)
|
|
{
|
|
struct inode *inode = fdentry(file)->d_inode;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct page **pages = NULL;
|
|
unsigned long first_index;
|
|
size_t num_written = 0;
|
|
int nrptrs;
|
|
int ret = 0;
|
|
bool force_page_uptodate = false;
|
|
|
|
nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
|
|
PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
|
|
(sizeof(struct page *)));
|
|
nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
|
|
nrptrs = max(nrptrs, 8);
|
|
pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
|
|
first_index = pos >> PAGE_CACHE_SHIFT;
|
|
|
|
while (iov_iter_count(i) > 0) {
|
|
size_t offset = pos & (PAGE_CACHE_SIZE - 1);
|
|
size_t write_bytes = min(iov_iter_count(i),
|
|
nrptrs * (size_t)PAGE_CACHE_SIZE -
|
|
offset);
|
|
size_t num_pages = (write_bytes + offset +
|
|
PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
|
|
size_t dirty_pages;
|
|
size_t copied;
|
|
|
|
WARN_ON(num_pages > nrptrs);
|
|
|
|
/*
|
|
* Fault pages before locking them in prepare_pages
|
|
* to avoid recursive lock
|
|
*/
|
|
if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
ret = btrfs_delalloc_reserve_space(inode,
|
|
num_pages << PAGE_CACHE_SHIFT);
|
|
if (ret)
|
|
break;
|
|
|
|
/*
|
|
* This is going to setup the pages array with the number of
|
|
* pages we want, so we don't really need to worry about the
|
|
* contents of pages from loop to loop
|
|
*/
|
|
ret = prepare_pages(root, file, pages, num_pages,
|
|
pos, first_index, write_bytes,
|
|
force_page_uptodate);
|
|
if (ret) {
|
|
btrfs_delalloc_release_space(inode,
|
|
num_pages << PAGE_CACHE_SHIFT);
|
|
break;
|
|
}
|
|
|
|
copied = btrfs_copy_from_user(pos, num_pages,
|
|
write_bytes, pages, i);
|
|
|
|
/*
|
|
* if we have trouble faulting in the pages, fall
|
|
* back to one page at a time
|
|
*/
|
|
if (copied < write_bytes)
|
|
nrptrs = 1;
|
|
|
|
if (copied == 0) {
|
|
force_page_uptodate = true;
|
|
dirty_pages = 0;
|
|
} else {
|
|
force_page_uptodate = false;
|
|
dirty_pages = (copied + offset +
|
|
PAGE_CACHE_SIZE - 1) >>
|
|
PAGE_CACHE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* If we had a short copy we need to release the excess delaloc
|
|
* bytes we reserved. We need to increment outstanding_extents
|
|
* because btrfs_delalloc_release_space will decrement it, but
|
|
* we still have an outstanding extent for the chunk we actually
|
|
* managed to copy.
|
|
*/
|
|
if (num_pages > dirty_pages) {
|
|
if (copied > 0) {
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
BTRFS_I(inode)->outstanding_extents++;
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
btrfs_delalloc_release_space(inode,
|
|
(num_pages - dirty_pages) <<
|
|
PAGE_CACHE_SHIFT);
|
|
}
|
|
|
|
if (copied > 0) {
|
|
ret = btrfs_dirty_pages(root, inode, pages,
|
|
dirty_pages, pos, copied,
|
|
NULL);
|
|
if (ret) {
|
|
btrfs_delalloc_release_space(inode,
|
|
dirty_pages << PAGE_CACHE_SHIFT);
|
|
btrfs_drop_pages(pages, num_pages);
|
|
break;
|
|
}
|
|
}
|
|
|
|
btrfs_drop_pages(pages, num_pages);
|
|
|
|
cond_resched();
|
|
|
|
balance_dirty_pages_ratelimited_nr(inode->i_mapping,
|
|
dirty_pages);
|
|
if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
|
|
btrfs_btree_balance_dirty(root, 1);
|
|
btrfs_throttle(root);
|
|
|
|
pos += copied;
|
|
num_written += copied;
|
|
}
|
|
|
|
kfree(pages);
|
|
|
|
return num_written ? num_written : ret;
|
|
}
|
|
|
|
static ssize_t __btrfs_direct_write(struct kiocb *iocb,
|
|
const struct iovec *iov,
|
|
unsigned long nr_segs, loff_t pos,
|
|
loff_t *ppos, size_t count, size_t ocount)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = fdentry(file)->d_inode;
|
|
struct iov_iter i;
|
|
ssize_t written;
|
|
ssize_t written_buffered;
|
|
loff_t endbyte;
|
|
int err;
|
|
|
|
written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
|
|
count, ocount);
|
|
|
|
/*
|
|
* the generic O_DIRECT will update in-memory i_size after the
|
|
* DIOs are done. But our endio handlers that update the on
|
|
* disk i_size never update past the in memory i_size. So we
|
|
* need one more update here to catch any additions to the
|
|
* file
|
|
*/
|
|
if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
|
|
btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
|
|
mark_inode_dirty(inode);
|
|
}
|
|
|
|
if (written < 0 || written == count)
|
|
return written;
|
|
|
|
pos += written;
|
|
count -= written;
|
|
iov_iter_init(&i, iov, nr_segs, count, written);
|
|
written_buffered = __btrfs_buffered_write(file, &i, pos);
|
|
if (written_buffered < 0) {
|
|
err = written_buffered;
|
|
goto out;
|
|
}
|
|
endbyte = pos + written_buffered - 1;
|
|
err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
|
|
if (err)
|
|
goto out;
|
|
written += written_buffered;
|
|
*ppos = pos + written_buffered;
|
|
invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
|
|
endbyte >> PAGE_CACHE_SHIFT);
|
|
out:
|
|
return written ? written : err;
|
|
}
|
|
|
|
static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
|
|
const struct iovec *iov,
|
|
unsigned long nr_segs, loff_t pos)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = fdentry(file)->d_inode;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
loff_t *ppos = &iocb->ki_pos;
|
|
u64 start_pos;
|
|
ssize_t num_written = 0;
|
|
ssize_t err = 0;
|
|
size_t count, ocount;
|
|
|
|
vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
|
|
if (err) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
count = ocount;
|
|
|
|
current->backing_dev_info = inode->i_mapping->backing_dev_info;
|
|
err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
|
|
if (err) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
if (count == 0) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
err = file_remove_suid(file);
|
|
if (err) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If BTRFS flips readonly due to some impossible error
|
|
* (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
|
|
* although we have opened a file as writable, we have
|
|
* to stop this write operation to ensure FS consistency.
|
|
*/
|
|
if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
err = -EROFS;
|
|
goto out;
|
|
}
|
|
|
|
file_update_time(file);
|
|
BTRFS_I(inode)->sequence++;
|
|
|
|
start_pos = round_down(pos, root->sectorsize);
|
|
if (start_pos > i_size_read(inode)) {
|
|
err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
|
|
if (err) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (unlikely(file->f_flags & O_DIRECT)) {
|
|
num_written = __btrfs_direct_write(iocb, iov, nr_segs,
|
|
pos, ppos, count, ocount);
|
|
} else {
|
|
struct iov_iter i;
|
|
|
|
iov_iter_init(&i, iov, nr_segs, count, num_written);
|
|
|
|
num_written = __btrfs_buffered_write(file, &i, pos);
|
|
if (num_written > 0)
|
|
*ppos = pos + num_written;
|
|
}
|
|
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
/*
|
|
* we want to make sure fsync finds this change
|
|
* but we haven't joined a transaction running right now.
|
|
*
|
|
* Later on, someone is sure to update the inode and get the
|
|
* real transid recorded.
|
|
*
|
|
* We set last_trans now to the fs_info generation + 1,
|
|
* this will either be one more than the running transaction
|
|
* or the generation used for the next transaction if there isn't
|
|
* one running right now.
|
|
*/
|
|
BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
|
|
if (num_written > 0 || num_written == -EIOCBQUEUED) {
|
|
err = generic_write_sync(file, pos, num_written);
|
|
if (err < 0 && num_written > 0)
|
|
num_written = err;
|
|
}
|
|
out:
|
|
current->backing_dev_info = NULL;
|
|
return num_written ? num_written : err;
|
|
}
|
|
|
|
int btrfs_release_file(struct inode *inode, struct file *filp)
|
|
{
|
|
/*
|
|
* ordered_data_close is set by settattr when we are about to truncate
|
|
* a file from a non-zero size to a zero size. This tries to
|
|
* flush down new bytes that may have been written if the
|
|
* application were using truncate to replace a file in place.
|
|
*/
|
|
if (BTRFS_I(inode)->ordered_data_close) {
|
|
BTRFS_I(inode)->ordered_data_close = 0;
|
|
btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
|
|
if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
|
|
filemap_flush(inode->i_mapping);
|
|
}
|
|
if (filp->private_data)
|
|
btrfs_ioctl_trans_end(filp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fsync call for both files and directories. This logs the inode into
|
|
* the tree log instead of forcing full commits whenever possible.
|
|
*
|
|
* It needs to call filemap_fdatawait so that all ordered extent updates are
|
|
* in the metadata btree are up to date for copying to the log.
|
|
*
|
|
* It drops the inode mutex before doing the tree log commit. This is an
|
|
* important optimization for directories because holding the mutex prevents
|
|
* new operations on the dir while we write to disk.
|
|
*/
|
|
int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct dentry *dentry = file->f_path.dentry;
|
|
struct inode *inode = dentry->d_inode;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret = 0;
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
trace_btrfs_sync_file(file, datasync);
|
|
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
|
|
if (ret)
|
|
return ret;
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
/* we wait first, since the writeback may change the inode */
|
|
root->log_batch++;
|
|
btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
root->log_batch++;
|
|
|
|
/*
|
|
* check the transaction that last modified this inode
|
|
* and see if its already been committed
|
|
*/
|
|
if (!BTRFS_I(inode)->last_trans) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* if the last transaction that changed this file was before
|
|
* the current transaction, we can bail out now without any
|
|
* syncing
|
|
*/
|
|
smp_mb();
|
|
if (BTRFS_I(inode)->last_trans <=
|
|
root->fs_info->last_trans_committed) {
|
|
BTRFS_I(inode)->last_trans = 0;
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* ok we haven't committed the transaction yet, lets do a commit
|
|
*/
|
|
if (file->private_data)
|
|
btrfs_ioctl_trans_end(file);
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_log_dentry_safe(trans, root, dentry);
|
|
if (ret < 0) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
|
|
/* we've logged all the items and now have a consistent
|
|
* version of the file in the log. It is possible that
|
|
* someone will come in and modify the file, but that's
|
|
* fine because the log is consistent on disk, and we
|
|
* have references to all of the file's extents
|
|
*
|
|
* It is possible that someone will come in and log the
|
|
* file again, but that will end up using the synchronization
|
|
* inside btrfs_sync_log to keep things safe.
|
|
*/
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
if (ret != BTRFS_NO_LOG_SYNC) {
|
|
if (ret > 0) {
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
} else {
|
|
ret = btrfs_sync_log(trans, root);
|
|
if (ret == 0)
|
|
ret = btrfs_end_transaction(trans, root);
|
|
else
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
}
|
|
} else {
|
|
ret = btrfs_end_transaction(trans, root);
|
|
}
|
|
out:
|
|
return ret > 0 ? -EIO : ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct btrfs_file_vm_ops = {
|
|
.fault = filemap_fault,
|
|
.page_mkwrite = btrfs_page_mkwrite,
|
|
};
|
|
|
|
static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct address_space *mapping = filp->f_mapping;
|
|
|
|
if (!mapping->a_ops->readpage)
|
|
return -ENOEXEC;
|
|
|
|
file_accessed(filp);
|
|
vma->vm_ops = &btrfs_file_vm_ops;
|
|
vma->vm_flags |= VM_CAN_NONLINEAR;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long btrfs_fallocate(struct file *file, int mode,
|
|
loff_t offset, loff_t len)
|
|
{
|
|
struct inode *inode = file->f_path.dentry->d_inode;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 cur_offset;
|
|
u64 last_byte;
|
|
u64 alloc_start;
|
|
u64 alloc_end;
|
|
u64 alloc_hint = 0;
|
|
u64 locked_end;
|
|
u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
|
|
struct extent_map *em;
|
|
int ret;
|
|
|
|
alloc_start = offset & ~mask;
|
|
alloc_end = (offset + len + mask) & ~mask;
|
|
|
|
/* We only support the FALLOC_FL_KEEP_SIZE mode */
|
|
if (mode & ~FALLOC_FL_KEEP_SIZE)
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* wait for ordered IO before we have any locks. We'll loop again
|
|
* below with the locks held.
|
|
*/
|
|
btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
ret = inode_newsize_ok(inode, alloc_end);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (alloc_start > inode->i_size) {
|
|
ret = btrfs_cont_expand(inode, i_size_read(inode),
|
|
alloc_start);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
locked_end = alloc_end - 1;
|
|
while (1) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
/* the extent lock is ordered inside the running
|
|
* transaction
|
|
*/
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
|
|
locked_end, 0, &cached_state, GFP_NOFS);
|
|
ordered = btrfs_lookup_first_ordered_extent(inode,
|
|
alloc_end - 1);
|
|
if (ordered &&
|
|
ordered->file_offset + ordered->len > alloc_start &&
|
|
ordered->file_offset < alloc_end) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
alloc_start, locked_end,
|
|
&cached_state, GFP_NOFS);
|
|
/*
|
|
* we can't wait on the range with the transaction
|
|
* running or with the extent lock held
|
|
*/
|
|
btrfs_wait_ordered_range(inode, alloc_start,
|
|
alloc_end - alloc_start);
|
|
} else {
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cur_offset = alloc_start;
|
|
while (1) {
|
|
u64 actual_end;
|
|
|
|
em = btrfs_get_extent(inode, NULL, 0, cur_offset,
|
|
alloc_end - cur_offset, 0);
|
|
BUG_ON(IS_ERR_OR_NULL(em));
|
|
last_byte = min(extent_map_end(em), alloc_end);
|
|
actual_end = min_t(u64, extent_map_end(em), offset + len);
|
|
last_byte = (last_byte + mask) & ~mask;
|
|
|
|
if (em->block_start == EXTENT_MAP_HOLE ||
|
|
(cur_offset >= inode->i_size &&
|
|
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
|
|
|
|
/*
|
|
* Make sure we have enough space before we do the
|
|
* allocation.
|
|
*/
|
|
ret = btrfs_check_data_free_space(inode, last_byte -
|
|
cur_offset);
|
|
if (ret) {
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
|
|
ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
|
|
last_byte - cur_offset,
|
|
1 << inode->i_blkbits,
|
|
offset + len,
|
|
&alloc_hint);
|
|
|
|
/* Let go of our reservation. */
|
|
btrfs_free_reserved_data_space(inode, last_byte -
|
|
cur_offset);
|
|
if (ret < 0) {
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
} else if (actual_end > inode->i_size &&
|
|
!(mode & FALLOC_FL_KEEP_SIZE)) {
|
|
/*
|
|
* We didn't need to allocate any more space, but we
|
|
* still extended the size of the file so we need to
|
|
* update i_size.
|
|
*/
|
|
inode->i_ctime = CURRENT_TIME;
|
|
i_size_write(inode, actual_end);
|
|
btrfs_ordered_update_i_size(inode, actual_end, NULL);
|
|
}
|
|
free_extent_map(em);
|
|
|
|
cur_offset = last_byte;
|
|
if (cur_offset >= alloc_end) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
|
|
&cached_state, GFP_NOFS);
|
|
out:
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_map *em;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 lockstart = *offset;
|
|
u64 lockend = i_size_read(inode);
|
|
u64 start = *offset;
|
|
u64 orig_start = *offset;
|
|
u64 len = i_size_read(inode);
|
|
u64 last_end = 0;
|
|
int ret = 0;
|
|
|
|
lockend = max_t(u64, root->sectorsize, lockend);
|
|
if (lockend <= lockstart)
|
|
lockend = lockstart + root->sectorsize;
|
|
|
|
len = lockend - lockstart + 1;
|
|
|
|
len = max_t(u64, len, root->sectorsize);
|
|
if (inode->i_size == 0)
|
|
return -ENXIO;
|
|
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
|
|
&cached_state, GFP_NOFS);
|
|
|
|
/*
|
|
* Delalloc is such a pain. If we have a hole and we have pending
|
|
* delalloc for a portion of the hole we will get back a hole that
|
|
* exists for the entire range since it hasn't been actually written
|
|
* yet. So to take care of this case we need to look for an extent just
|
|
* before the position we want in case there is outstanding delalloc
|
|
* going on here.
|
|
*/
|
|
if (origin == SEEK_HOLE && start != 0) {
|
|
if (start <= root->sectorsize)
|
|
em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
|
|
root->sectorsize, 0);
|
|
else
|
|
em = btrfs_get_extent_fiemap(inode, NULL, 0,
|
|
start - root->sectorsize,
|
|
root->sectorsize, 0);
|
|
if (IS_ERR(em)) {
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
last_end = em->start + em->len;
|
|
if (em->block_start == EXTENT_MAP_DELALLOC)
|
|
last_end = min_t(u64, last_end, inode->i_size);
|
|
free_extent_map(em);
|
|
}
|
|
|
|
while (1) {
|
|
em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
|
|
if (IS_ERR(em)) {
|
|
ret = -ENXIO;
|
|
break;
|
|
}
|
|
|
|
if (em->block_start == EXTENT_MAP_HOLE) {
|
|
if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
|
|
if (last_end <= orig_start) {
|
|
free_extent_map(em);
|
|
ret = -ENXIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (origin == SEEK_HOLE) {
|
|
*offset = start;
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
} else {
|
|
if (origin == SEEK_DATA) {
|
|
if (em->block_start == EXTENT_MAP_DELALLOC) {
|
|
if (start >= inode->i_size) {
|
|
free_extent_map(em);
|
|
ret = -ENXIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
*offset = start;
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
}
|
|
|
|
start = em->start + em->len;
|
|
last_end = em->start + em->len;
|
|
|
|
if (em->block_start == EXTENT_MAP_DELALLOC)
|
|
last_end = min_t(u64, last_end, inode->i_size);
|
|
|
|
if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
|
|
free_extent_map(em);
|
|
ret = -ENXIO;
|
|
break;
|
|
}
|
|
free_extent_map(em);
|
|
cond_resched();
|
|
}
|
|
if (!ret)
|
|
*offset = min(*offset, inode->i_size);
|
|
out:
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
&cached_state, GFP_NOFS);
|
|
return ret;
|
|
}
|
|
|
|
static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
int ret;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
switch (origin) {
|
|
case SEEK_END:
|
|
case SEEK_CUR:
|
|
offset = generic_file_llseek(file, offset, origin);
|
|
goto out;
|
|
case SEEK_DATA:
|
|
case SEEK_HOLE:
|
|
if (offset >= i_size_read(inode)) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
return -ENXIO;
|
|
}
|
|
|
|
ret = find_desired_extent(inode, &offset, origin);
|
|
if (ret) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
|
|
offset = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (offset > inode->i_sb->s_maxbytes) {
|
|
offset = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Special lock needed here? */
|
|
if (offset != file->f_pos) {
|
|
file->f_pos = offset;
|
|
file->f_version = 0;
|
|
}
|
|
out:
|
|
mutex_unlock(&inode->i_mutex);
|
|
return offset;
|
|
}
|
|
|
|
const struct file_operations btrfs_file_operations = {
|
|
.llseek = btrfs_file_llseek,
|
|
.read = do_sync_read,
|
|
.write = do_sync_write,
|
|
.aio_read = generic_file_aio_read,
|
|
.splice_read = generic_file_splice_read,
|
|
.aio_write = btrfs_file_aio_write,
|
|
.mmap = btrfs_file_mmap,
|
|
.open = generic_file_open,
|
|
.release = btrfs_release_file,
|
|
.fsync = btrfs_sync_file,
|
|
.fallocate = btrfs_fallocate,
|
|
.unlocked_ioctl = btrfs_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = btrfs_ioctl,
|
|
#endif
|
|
};
|