linux_dsm_epyc7002/drivers/gpu/drm/nouveau/dispnv50/disp.c
Ville Syrjälä 13d0add333 drm/edid: Pass connector to AVI infoframe functions
Make life easier for drivers by simply passing the connector
to drm_hdmi_avi_infoframe_from_display_mode() and
drm_hdmi_avi_infoframe_quant_range(). That way drivers don't
need to worry about is_hdmi2_sink mess.

v2: Make is_hdmi2_sink() return true for sil-sii8620
    Adapt to omap/vc4 changes

Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "Christian König" <christian.koenig@amd.com>
Cc: "David (ChunMing) Zhou" <David1.Zhou@amd.com>
Cc: Archit Taneja <architt@codeaurora.org>
Cc: Andrzej Hajda <a.hajda@samsung.com>
Cc: Laurent Pinchart <Laurent.pinchart@ideasonboard.com>
Cc: Inki Dae <inki.dae@samsung.com>
Cc: Joonyoung Shim <jy0922.shim@samsung.com>
Cc: Seung-Woo Kim <sw0312.kim@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: CK Hu <ck.hu@mediatek.com>
Cc: Philipp Zabel <p.zabel@pengutronix.de>
Cc: Rob Clark <robdclark@gmail.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Sandy Huang <hjc@rock-chips.com>
Cc: "Heiko Stübner" <heiko@sntech.de>
Cc: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Cc: Vincent Abriou <vincent.abriou@st.com>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Eric Anholt <eric@anholt.net>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Ilia Mirkin <imirkin@alum.mit.edu>
Cc: amd-gfx@lists.freedesktop.org
Cc: linux-arm-msm@vger.kernel.org
Cc: freedreno@lists.freedesktop.org
Cc: nouveau@lists.freedesktop.org
Cc: linux-tegra@vger.kernel.org
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190108172828.15184-1-ville.syrjala@linux.intel.com
2019-01-10 19:01:06 +02:00

2335 lines
61 KiB
C

/*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "disp.h"
#include "atom.h"
#include "core.h"
#include "head.h"
#include "wndw.h"
#include <linux/dma-mapping.h>
#include <linux/hdmi.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_scdc_helper.h>
#include <drm/drm_edid.h>
#include <nvif/class.h>
#include <nvif/cl0002.h>
#include <nvif/cl5070.h>
#include <nvif/cl507d.h>
#include <nvif/event.h>
#include "nouveau_drv.h"
#include "nouveau_dma.h"
#include "nouveau_gem.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_fence.h"
#include "nouveau_fbcon.h"
#include <subdev/bios/dp.h>
/******************************************************************************
* Atomic state
*****************************************************************************/
struct nv50_outp_atom {
struct list_head head;
struct drm_encoder *encoder;
bool flush_disable;
union nv50_outp_atom_mask {
struct {
bool ctrl:1;
};
u8 mask;
} set, clr;
};
/******************************************************************************
* EVO channel
*****************************************************************************/
static int
nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
const s32 *oclass, u8 head, void *data, u32 size,
struct nv50_chan *chan)
{
struct nvif_sclass *sclass;
int ret, i, n;
chan->device = device;
ret = n = nvif_object_sclass_get(disp, &sclass);
if (ret < 0)
return ret;
while (oclass[0]) {
for (i = 0; i < n; i++) {
if (sclass[i].oclass == oclass[0]) {
ret = nvif_object_init(disp, 0, oclass[0],
data, size, &chan->user);
if (ret == 0)
nvif_object_map(&chan->user, NULL, 0);
nvif_object_sclass_put(&sclass);
return ret;
}
}
oclass++;
}
nvif_object_sclass_put(&sclass);
return -ENOSYS;
}
static void
nv50_chan_destroy(struct nv50_chan *chan)
{
nvif_object_fini(&chan->user);
}
/******************************************************************************
* DMA EVO channel
*****************************************************************************/
void
nv50_dmac_destroy(struct nv50_dmac *dmac)
{
nvif_object_fini(&dmac->vram);
nvif_object_fini(&dmac->sync);
nv50_chan_destroy(&dmac->base);
nvif_mem_fini(&dmac->push);
}
int
nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf,
struct nv50_dmac *dmac)
{
struct nouveau_cli *cli = (void *)device->object.client;
struct nv50_disp_core_channel_dma_v0 *args = data;
u8 type = NVIF_MEM_COHERENT;
int ret;
mutex_init(&dmac->lock);
/* Pascal added support for 47-bit physical addresses, but some
* parts of EVO still only accept 40-bit PAs.
*
* To avoid issues on systems with large amounts of RAM, and on
* systems where an IOMMU maps pages at a high address, we need
* to allocate push buffers in VRAM instead.
*
* This appears to match NVIDIA's behaviour on Pascal.
*/
if (device->info.family == NV_DEVICE_INFO_V0_PASCAL)
type |= NVIF_MEM_VRAM;
ret = nvif_mem_init_map(&cli->mmu, type, 0x1000, &dmac->push);
if (ret)
return ret;
dmac->ptr = dmac->push.object.map.ptr;
args->pushbuf = nvif_handle(&dmac->push.object);
ret = nv50_chan_create(device, disp, oclass, head, data, size,
&dmac->base);
if (ret)
return ret;
if (!syncbuf)
return 0;
ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = syncbuf + 0x0000,
.limit = syncbuf + 0x0fff,
}, sizeof(struct nv_dma_v0),
&dmac->sync);
if (ret)
return ret;
ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = 0,
.limit = device->info.ram_user - 1,
}, sizeof(struct nv_dma_v0),
&dmac->vram);
if (ret)
return ret;
return ret;
}
/******************************************************************************
* EVO channel helpers
*****************************************************************************/
u32 *
evo_wait(struct nv50_dmac *evoc, int nr)
{
struct nv50_dmac *dmac = evoc;
struct nvif_device *device = dmac->base.device;
u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4;
mutex_lock(&dmac->lock);
if (put + nr >= (PAGE_SIZE / 4) - 8) {
dmac->ptr[put] = 0x20000000;
nvif_wr32(&dmac->base.user, 0x0000, 0x00000000);
if (nvif_msec(device, 2000,
if (!nvif_rd32(&dmac->base.user, 0x0004))
break;
) < 0) {
mutex_unlock(&dmac->lock);
pr_err("nouveau: evo channel stalled\n");
return NULL;
}
put = 0;
}
return dmac->ptr + put;
}
void
evo_kick(u32 *push, struct nv50_dmac *evoc)
{
struct nv50_dmac *dmac = evoc;
/* Push buffer fetches are not coherent with BAR1, we need to ensure
* writes have been flushed right through to VRAM before writing PUT.
*/
if (dmac->push.type & NVIF_MEM_VRAM) {
struct nvif_device *device = dmac->base.device;
nvif_wr32(&device->object, 0x070000, 0x00000001);
nvif_msec(device, 2000,
if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
break;
);
}
nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
mutex_unlock(&dmac->lock);
}
/******************************************************************************
* Output path helpers
*****************************************************************************/
static void
nv50_outp_release(struct nouveau_encoder *nv_encoder)
{
struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
struct {
struct nv50_disp_mthd_v1 base;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_RELEASE,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
nv_encoder->or = -1;
nv_encoder->link = 0;
}
static int
nv50_outp_acquire(struct nouveau_encoder *nv_encoder)
{
struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
struct nv50_disp *disp = nv50_disp(drm->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_acquire_v0 info;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_ACQUIRE,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
int ret;
ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
if (ret) {
NV_ERROR(drm, "error acquiring output path: %d\n", ret);
return ret;
}
nv_encoder->or = args.info.or;
nv_encoder->link = args.info.link;
return 0;
}
static int
nv50_outp_atomic_check_view(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
struct drm_display_mode *native_mode)
{
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct drm_display_mode *mode = &crtc_state->mode;
struct drm_connector *connector = conn_state->connector;
struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
asyc->scaler.full = false;
if (!native_mode)
return 0;
if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_LVDS:
case DRM_MODE_CONNECTOR_eDP:
/* Force use of scaler for non-EDID modes. */
if (adjusted_mode->type & DRM_MODE_TYPE_DRIVER)
break;
mode = native_mode;
asyc->scaler.full = true;
break;
default:
break;
}
} else {
mode = native_mode;
}
if (!drm_mode_equal(adjusted_mode, mode)) {
drm_mode_copy(adjusted_mode, mode);
crtc_state->mode_changed = true;
}
return 0;
}
static int
nv50_outp_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct nouveau_connector *nv_connector =
nouveau_connector(conn_state->connector);
return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
nv_connector->native_mode);
}
/******************************************************************************
* DAC
*****************************************************************************/
static void
nv50_dac_disable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_core *core = nv50_disp(encoder->dev)->core;
if (nv_encoder->crtc)
core->func->dac->ctrl(core, nv_encoder->or, 0x00000000, NULL);
nv_encoder->crtc = NULL;
nv50_outp_release(nv_encoder);
}
static void
nv50_dac_enable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
struct nv50_core *core = nv50_disp(encoder->dev)->core;
nv50_outp_acquire(nv_encoder);
core->func->dac->ctrl(core, nv_encoder->or, 1 << nv_crtc->index, asyh);
asyh->or.depth = 0;
nv_encoder->crtc = encoder->crtc;
}
static enum drm_connector_status
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_dac_load_v0 load;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
int ret;
args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
if (args.load.data == 0)
args.load.data = 340;
ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
if (ret || !args.load.load)
return connector_status_disconnected;
return connector_status_connected;
}
static const struct drm_encoder_helper_funcs
nv50_dac_help = {
.atomic_check = nv50_outp_atomic_check,
.enable = nv50_dac_enable,
.disable = nv50_dac_disable,
.detect = nv50_dac_detect
};
static void
nv50_dac_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_dac_func = {
.destroy = nv50_dac_destroy,
};
static int
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nvkm_i2c_bus *bus;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type = DRM_MODE_ENCODER_DAC;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
if (bus)
nv_encoder->i2c = &bus->i2c;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
"dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_dac_help);
drm_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Audio
*****************************************************************************/
static void
nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hda_eld_v0 eld;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
}
static void
nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct __packed {
struct {
struct nv50_disp_mthd_v1 mthd;
struct nv50_disp_sor_hda_eld_v0 eld;
} base;
u8 data[sizeof(nv_connector->base.eld)];
} args = {
.base.mthd.version = 1,
.base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.mthd.hasht = nv_encoder->dcb->hasht,
.base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_monitor_audio(nv_connector->edid))
return;
memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
nvif_mthd(&disp->disp->object, 0, &args,
sizeof(args.base) + drm_eld_size(args.data));
}
/******************************************************************************
* HDMI
*****************************************************************************/
static void
nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
}
static void
nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
.pwr.state = 1,
.pwr.rekey = 56, /* binary driver, and tegra, constant */
};
struct nouveau_connector *nv_connector;
struct drm_hdmi_info *hdmi;
u32 max_ac_packet;
union hdmi_infoframe avi_frame;
union hdmi_infoframe vendor_frame;
bool high_tmds_clock_ratio = false, scrambling = false;
u8 config;
int ret;
int size;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_hdmi_monitor(nv_connector->edid))
return;
hdmi = &nv_connector->base.display_info.hdmi;
ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
&nv_connector->base, mode);
if (!ret) {
/* We have an AVI InfoFrame, populate it to the display */
args.pwr.avi_infoframe_length
= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
}
ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
&nv_connector->base, mode);
if (!ret) {
/* We have a Vendor InfoFrame, populate it to the display */
args.pwr.vendor_infoframe_length
= hdmi_infoframe_pack(&vendor_frame,
args.infoframes
+ args.pwr.avi_infoframe_length,
17);
}
max_ac_packet = mode->htotal - mode->hdisplay;
max_ac_packet -= args.pwr.rekey;
max_ac_packet -= 18; /* constant from tegra */
args.pwr.max_ac_packet = max_ac_packet / 32;
if (hdmi->scdc.scrambling.supported) {
high_tmds_clock_ratio = mode->clock > 340000;
scrambling = high_tmds_clock_ratio ||
hdmi->scdc.scrambling.low_rates;
}
args.pwr.scdc =
NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
size = sizeof(args.base)
+ sizeof(args.pwr)
+ args.pwr.avi_infoframe_length
+ args.pwr.vendor_infoframe_length;
nvif_mthd(&disp->disp->object, 0, &args, size);
nv50_audio_enable(encoder, mode);
/* If SCDC is supported by the downstream monitor, update
* divider / scrambling settings to what we programmed above.
*/
if (!hdmi->scdc.scrambling.supported)
return;
ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
if (ret < 0) {
NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
return;
}
config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
config |= SCDC_SCRAMBLING_ENABLE * scrambling;
ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
if (ret < 0)
NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
config, ret);
}
/******************************************************************************
* MST
*****************************************************************************/
#define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
#define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
#define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
struct nv50_mstm {
struct nouveau_encoder *outp;
struct drm_dp_mst_topology_mgr mgr;
struct nv50_msto *msto[4];
bool modified;
bool disabled;
int links;
};
struct nv50_mstc {
struct nv50_mstm *mstm;
struct drm_dp_mst_port *port;
struct drm_connector connector;
struct drm_display_mode *native;
struct edid *edid;
int pbn;
};
struct nv50_msto {
struct drm_encoder encoder;
struct nv50_head *head;
struct nv50_mstc *mstc;
bool disabled;
};
static struct drm_dp_payload *
nv50_msto_payload(struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
int vcpi = mstc->port->vcpi.vcpi, i;
NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
for (i = 0; i < mstm->mgr.max_payloads; i++) {
struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
mstm->outp->base.base.name, i, payload->vcpi,
payload->start_slot, payload->num_slots);
}
for (i = 0; i < mstm->mgr.max_payloads; i++) {
struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
if (payload->vcpi == vcpi)
return payload;
}
return NULL;
}
static void
nv50_msto_cleanup(struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
if (mstc->port && mstc->port->vcpi.vcpi > 0 && !nv50_msto_payload(msto))
drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
if (msto->disabled) {
msto->mstc = NULL;
msto->head = NULL;
msto->disabled = false;
}
}
static void
nv50_msto_prepare(struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
.base.hasht = mstm->outp->dcb->hasht,
.base.hashm = (0xf0ff & mstm->outp->dcb->hashm) |
(0x0100 << msto->head->base.index),
};
NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
if (mstc->port && mstc->port->vcpi.vcpi > 0) {
struct drm_dp_payload *payload = nv50_msto_payload(msto);
if (payload) {
args.vcpi.start_slot = payload->start_slot;
args.vcpi.num_slots = payload->num_slots;
args.vcpi.pbn = mstc->port->vcpi.pbn;
args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
}
}
NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
msto->encoder.name, msto->head->base.base.name,
args.vcpi.start_slot, args.vcpi.num_slots,
args.vcpi.pbn, args.vcpi.aligned_pbn);
nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
}
static int
nv50_msto_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct nv50_mstc *mstc = nv50_mstc(conn_state->connector);
struct nv50_mstm *mstm = mstc->mstm;
int bpp = conn_state->connector->display_info.bpc * 3;
int slots;
mstc->pbn = drm_dp_calc_pbn_mode(crtc_state->adjusted_mode.clock, bpp);
slots = drm_dp_find_vcpi_slots(&mstm->mgr, mstc->pbn);
if (slots < 0)
return slots;
return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
mstc->native);
}
static void
nv50_msto_enable(struct drm_encoder *encoder)
{
struct nv50_head *head = nv50_head(encoder->crtc);
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = NULL;
struct nv50_mstm *mstm = NULL;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
u8 proto, depth;
int slots;
bool r;
drm_connector_list_iter_begin(encoder->dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->state->best_encoder == &msto->encoder) {
mstc = nv50_mstc(connector);
mstm = mstc->mstm;
break;
}
}
drm_connector_list_iter_end(&conn_iter);
if (WARN_ON(!mstc))
return;
slots = drm_dp_find_vcpi_slots(&mstm->mgr, mstc->pbn);
r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, mstc->pbn, slots);
WARN_ON(!r);
if (!mstm->links++)
nv50_outp_acquire(mstm->outp);
if (mstm->outp->link & 1)
proto = 0x8;
else
proto = 0x9;
switch (mstc->connector.display_info.bpc) {
case 6: depth = 0x2; break;
case 8: depth = 0x5; break;
case 10:
default: depth = 0x6; break;
}
mstm->outp->update(mstm->outp, head->base.index,
nv50_head_atom(head->base.base.state), proto, depth);
msto->head = head;
msto->mstc = mstc;
mstm->modified = true;
}
static void
nv50_msto_disable(struct drm_encoder *encoder)
{
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
if (mstc->port)
drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
mstm->modified = true;
if (!--mstm->links)
mstm->disabled = true;
msto->disabled = true;
}
static const struct drm_encoder_helper_funcs
nv50_msto_help = {
.disable = nv50_msto_disable,
.enable = nv50_msto_enable,
.atomic_check = nv50_msto_atomic_check,
};
static void
nv50_msto_destroy(struct drm_encoder *encoder)
{
struct nv50_msto *msto = nv50_msto(encoder);
drm_encoder_cleanup(&msto->encoder);
kfree(msto);
}
static const struct drm_encoder_funcs
nv50_msto = {
.destroy = nv50_msto_destroy,
};
static int
nv50_msto_new(struct drm_device *dev, u32 heads, const char *name, int id,
struct nv50_msto **pmsto)
{
struct nv50_msto *msto;
int ret;
if (!(msto = *pmsto = kzalloc(sizeof(*msto), GFP_KERNEL)))
return -ENOMEM;
ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
DRM_MODE_ENCODER_DPMST, "%s-mst-%d", name, id);
if (ret) {
kfree(*pmsto);
*pmsto = NULL;
return ret;
}
drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
msto->encoder.possible_crtcs = heads;
return 0;
}
static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
struct drm_connector_state *connector_state)
{
struct nv50_head *head = nv50_head(connector_state->crtc);
struct nv50_mstc *mstc = nv50_mstc(connector);
return &mstc->mstm->msto[head->base.index]->encoder;
}
static struct drm_encoder *
nv50_mstc_best_encoder(struct drm_connector *connector)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
return &mstc->mstm->msto[0]->encoder;
}
static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
return MODE_OK;
}
static int
nv50_mstc_get_modes(struct drm_connector *connector)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
int ret = 0;
mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
drm_connector_update_edid_property(&mstc->connector, mstc->edid);
if (mstc->edid)
ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
if (!mstc->connector.display_info.bpc)
mstc->connector.display_info.bpc = 8;
if (mstc->native)
drm_mode_destroy(mstc->connector.dev, mstc->native);
mstc->native = nouveau_conn_native_mode(&mstc->connector);
return ret;
}
static const struct drm_connector_helper_funcs
nv50_mstc_help = {
.get_modes = nv50_mstc_get_modes,
.mode_valid = nv50_mstc_mode_valid,
.best_encoder = nv50_mstc_best_encoder,
.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
};
static enum drm_connector_status
nv50_mstc_detect(struct drm_connector *connector, bool force)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
enum drm_connector_status conn_status;
int ret;
if (!mstc->port)
return connector_status_disconnected;
ret = pm_runtime_get_sync(connector->dev->dev);
if (ret < 0 && ret != -EACCES)
return connector_status_disconnected;
conn_status = drm_dp_mst_detect_port(connector, mstc->port->mgr,
mstc->port);
pm_runtime_mark_last_busy(connector->dev->dev);
pm_runtime_put_autosuspend(connector->dev->dev);
return conn_status;
}
static void
nv50_mstc_destroy(struct drm_connector *connector)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
drm_connector_cleanup(&mstc->connector);
kfree(mstc);
}
static const struct drm_connector_funcs
nv50_mstc = {
.reset = nouveau_conn_reset,
.detect = nv50_mstc_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = nv50_mstc_destroy,
.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
.atomic_set_property = nouveau_conn_atomic_set_property,
.atomic_get_property = nouveau_conn_atomic_get_property,
};
static int
nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
const char *path, struct nv50_mstc **pmstc)
{
struct drm_device *dev = mstm->outp->base.base.dev;
struct nv50_mstc *mstc;
int ret, i;
if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
return -ENOMEM;
mstc->mstm = mstm;
mstc->port = port;
ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
DRM_MODE_CONNECTOR_DisplayPort);
if (ret) {
kfree(*pmstc);
*pmstc = NULL;
return ret;
}
drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
mstc->connector.funcs->reset(&mstc->connector);
nouveau_conn_attach_properties(&mstc->connector);
for (i = 0; i < ARRAY_SIZE(mstm->msto) && mstm->msto[i]; i++)
drm_connector_attach_encoder(&mstc->connector, &mstm->msto[i]->encoder);
drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
drm_connector_set_path_property(&mstc->connector, path);
return 0;
}
static void
nv50_mstm_cleanup(struct nv50_mstm *mstm)
{
struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
struct drm_encoder *encoder;
int ret;
NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
ret = drm_dp_check_act_status(&mstm->mgr);
ret = drm_dp_update_payload_part2(&mstm->mgr);
drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
if (mstc && mstc->mstm == mstm)
nv50_msto_cleanup(msto);
}
}
mstm->modified = false;
}
static void
nv50_mstm_prepare(struct nv50_mstm *mstm)
{
struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
struct drm_encoder *encoder;
int ret;
NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
ret = drm_dp_update_payload_part1(&mstm->mgr);
drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
if (mstc && mstc->mstm == mstm)
nv50_msto_prepare(msto);
}
}
if (mstm->disabled) {
if (!mstm->links)
nv50_outp_release(mstm->outp);
mstm->disabled = false;
}
}
static void
nv50_mstm_destroy_connector(struct drm_dp_mst_topology_mgr *mgr,
struct drm_connector *connector)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nv50_mstc *mstc = nv50_mstc(connector);
drm_connector_unregister(&mstc->connector);
drm_fb_helper_remove_one_connector(&drm->fbcon->helper, &mstc->connector);
drm_modeset_lock(&drm->dev->mode_config.connection_mutex, NULL);
mstc->port = NULL;
drm_modeset_unlock(&drm->dev->mode_config.connection_mutex);
drm_connector_put(&mstc->connector);
}
static void
nv50_mstm_register_connector(struct drm_connector *connector)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
drm_fb_helper_add_one_connector(&drm->fbcon->helper, connector);
drm_connector_register(connector);
}
static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port, const char *path)
{
struct nv50_mstm *mstm = nv50_mstm(mgr);
struct nv50_mstc *mstc;
int ret;
ret = nv50_mstc_new(mstm, port, path, &mstc);
if (ret) {
if (mstc)
mstc->connector.funcs->destroy(&mstc->connector);
return NULL;
}
return &mstc->connector;
}
static const struct drm_dp_mst_topology_cbs
nv50_mstm = {
.add_connector = nv50_mstm_add_connector,
.register_connector = nv50_mstm_register_connector,
.destroy_connector = nv50_mstm_destroy_connector,
};
void
nv50_mstm_service(struct nv50_mstm *mstm)
{
struct drm_dp_aux *aux = mstm ? mstm->mgr.aux : NULL;
bool handled = true;
int ret;
u8 esi[8] = {};
if (!aux)
return;
while (handled) {
ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
if (ret != 8) {
drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
return;
}
drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
if (!handled)
break;
drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3);
}
}
void
nv50_mstm_remove(struct nv50_mstm *mstm)
{
if (mstm)
drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
}
static int
nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state)
{
struct nouveau_encoder *outp = mstm->outp;
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_dp_mst_link_v0 mst;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
.base.hasht = outp->dcb->hasht,
.base.hashm = outp->dcb->hashm,
.mst.state = state,
};
struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
struct nvif_object *disp = &drm->display->disp.object;
int ret;
if (dpcd >= 0x12) {
/* Even if we're enabling MST, start with disabling the
* branching unit to clear any sink-side MST topology state
* that wasn't set by us
*/
ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 0);
if (ret < 0)
return ret;
if (state) {
/* Now, start initializing */
ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL,
DP_MST_EN);
if (ret < 0)
return ret;
}
}
return nvif_mthd(disp, 0, &args, sizeof(args));
}
int
nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow)
{
struct drm_dp_aux *aux;
int ret;
bool old_state, new_state;
u8 mstm_ctrl;
if (!mstm)
return 0;
mutex_lock(&mstm->mgr.lock);
old_state = mstm->mgr.mst_state;
new_state = old_state;
aux = mstm->mgr.aux;
if (old_state) {
/* Just check that the MST hub is still as we expect it */
ret = drm_dp_dpcd_readb(aux, DP_MSTM_CTRL, &mstm_ctrl);
if (ret < 0 || !(mstm_ctrl & DP_MST_EN)) {
DRM_DEBUG_KMS("Hub gone, disabling MST topology\n");
new_state = false;
}
} else if (dpcd[0] >= 0x12) {
ret = drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &dpcd[1]);
if (ret < 0)
goto probe_error;
if (!(dpcd[1] & DP_MST_CAP))
dpcd[0] = 0x11;
else
new_state = allow;
}
if (new_state == old_state) {
mutex_unlock(&mstm->mgr.lock);
return new_state;
}
ret = nv50_mstm_enable(mstm, dpcd[0], new_state);
if (ret)
goto probe_error;
mutex_unlock(&mstm->mgr.lock);
ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, new_state);
if (ret)
return nv50_mstm_enable(mstm, dpcd[0], 0);
return new_state;
probe_error:
mutex_unlock(&mstm->mgr.lock);
return ret;
}
static void
nv50_mstm_fini(struct nv50_mstm *mstm)
{
if (mstm && mstm->mgr.mst_state)
drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
}
static void
nv50_mstm_init(struct nv50_mstm *mstm)
{
if (mstm && mstm->mgr.mst_state)
drm_dp_mst_topology_mgr_resume(&mstm->mgr);
}
static void
nv50_mstm_del(struct nv50_mstm **pmstm)
{
struct nv50_mstm *mstm = *pmstm;
if (mstm) {
kfree(*pmstm);
*pmstm = NULL;
}
}
static int
nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
int conn_base_id, struct nv50_mstm **pmstm)
{
const int max_payloads = hweight8(outp->dcb->heads);
struct drm_device *dev = outp->base.base.dev;
struct nv50_mstm *mstm;
int ret, i;
u8 dpcd;
/* This is a workaround for some monitors not functioning
* correctly in MST mode on initial module load. I think
* some bad interaction with the VBIOS may be responsible.
*
* A good ol' off and on again seems to work here ;)
*/
ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd);
if (ret >= 0 && dpcd >= 0x12)
drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
return -ENOMEM;
mstm->outp = outp;
mstm->mgr.cbs = &nv50_mstm;
ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
max_payloads, conn_base_id);
if (ret)
return ret;
for (i = 0; i < max_payloads; i++) {
ret = nv50_msto_new(dev, outp->dcb->heads, outp->base.base.name,
i, &mstm->msto[i]);
if (ret)
return ret;
}
return 0;
}
/******************************************************************************
* SOR
*****************************************************************************/
static void
nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
struct nv50_head_atom *asyh, u8 proto, u8 depth)
{
struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
struct nv50_core *core = disp->core;
if (!asyh) {
nv_encoder->ctrl &= ~BIT(head);
if (!(nv_encoder->ctrl & 0x0000000f))
nv_encoder->ctrl = 0;
} else {
nv_encoder->ctrl |= proto << 8;
nv_encoder->ctrl |= BIT(head);
asyh->or.depth = depth;
}
core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
}
static void
nv50_sor_disable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
nv_encoder->crtc = NULL;
if (nv_crtc) {
struct nvkm_i2c_aux *aux = nv_encoder->aux;
u8 pwr;
if (aux) {
int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1);
if (ret == 0) {
pwr &= ~DP_SET_POWER_MASK;
pwr |= DP_SET_POWER_D3;
nvkm_wraux(aux, DP_SET_POWER, &pwr, 1);
}
}
nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
nv50_audio_disable(encoder, nv_crtc);
nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
nv50_outp_release(nv_encoder);
}
}
static void
nv50_sor_enable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
struct drm_display_mode *mode = &asyh->state.adjusted_mode;
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_lvds_script_v0 lvds;
} lvds = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct drm_device *dev = encoder->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_connector *nv_connector;
struct nvbios *bios = &drm->vbios;
u8 proto = 0xf;
u8 depth = 0x0;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
nv_encoder->crtc = encoder->crtc;
nv50_outp_acquire(nv_encoder);
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
if (nv_encoder->link & 1) {
proto = 0x1;
/* Only enable dual-link if:
* - Need to (i.e. rate > 165MHz)
* - DCB says we can
* - Not an HDMI monitor, since there's no dual-link
* on HDMI.
*/
if (mode->clock >= 165000 &&
nv_encoder->dcb->duallink_possible &&
!drm_detect_hdmi_monitor(nv_connector->edid))
proto |= 0x4;
} else {
proto = 0x2;
}
nv50_hdmi_enable(&nv_encoder->base.base, mode);
break;
case DCB_OUTPUT_LVDS:
proto = 0x0;
if (bios->fp_no_ddc) {
if (bios->fp.dual_link)
lvds.lvds.script |= 0x0100;
if (bios->fp.if_is_24bit)
lvds.lvds.script |= 0x0200;
} else {
if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
if (((u8 *)nv_connector->edid)[121] == 2)
lvds.lvds.script |= 0x0100;
} else
if (mode->clock >= bios->fp.duallink_transition_clk) {
lvds.lvds.script |= 0x0100;
}
if (lvds.lvds.script & 0x0100) {
if (bios->fp.strapless_is_24bit & 2)
lvds.lvds.script |= 0x0200;
} else {
if (bios->fp.strapless_is_24bit & 1)
lvds.lvds.script |= 0x0200;
}
if (nv_connector->base.display_info.bpc == 8)
lvds.lvds.script |= 0x0200;
}
nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
break;
case DCB_OUTPUT_DP:
if (nv_connector->base.display_info.bpc == 6)
depth = 0x2;
else
if (nv_connector->base.display_info.bpc == 8)
depth = 0x5;
else
depth = 0x6;
if (nv_encoder->link & 1)
proto = 0x8;
else
proto = 0x9;
nv50_audio_enable(encoder, mode);
break;
default:
BUG();
break;
}
nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
}
static const struct drm_encoder_helper_funcs
nv50_sor_help = {
.atomic_check = nv50_outp_atomic_check,
.enable = nv50_sor_enable,
.disable = nv50_sor_disable,
};
static void
nv50_sor_destroy(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
nv50_mstm_del(&nv_encoder->dp.mstm);
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_sor_func = {
.destroy = nv50_sor_destroy,
};
static int
nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
u8 ver, hdr, cnt, len;
u32 data;
int type, ret;
switch (dcbe->type) {
case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_DP:
default:
type = DRM_MODE_ENCODER_TMDS;
break;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->update = nv50_sor_update;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
"sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_sor_help);
drm_connector_attach_encoder(connector, encoder);
if (dcbe->type == DCB_OUTPUT_DP) {
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct nvkm_i2c_aux *aux =
nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
if (aux) {
if (disp->disp->object.oclass < GF110_DISP) {
/* HW has no support for address-only
* transactions, so we're required to
* use custom I2C-over-AUX code.
*/
nv_encoder->i2c = &aux->i2c;
} else {
nv_encoder->i2c = &nv_connector->aux.ddc;
}
nv_encoder->aux = aux;
}
if ((data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len)) &&
ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04)) {
ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16,
nv_connector->base.base.id,
&nv_encoder->dp.mstm);
if (ret)
return ret;
}
} else {
struct nvkm_i2c_bus *bus =
nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
if (bus)
nv_encoder->i2c = &bus->i2c;
}
return 0;
}
/******************************************************************************
* PIOR
*****************************************************************************/
static int
nv50_pior_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
if (ret)
return ret;
crtc_state->adjusted_mode.clock *= 2;
return 0;
}
static void
nv50_pior_disable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_core *core = nv50_disp(encoder->dev)->core;
if (nv_encoder->crtc)
core->func->pior->ctrl(core, nv_encoder->or, 0x00000000, NULL);
nv_encoder->crtc = NULL;
nv50_outp_release(nv_encoder);
}
static void
nv50_pior_enable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
struct nv50_core *core = nv50_disp(encoder->dev)->core;
u8 owner = 1 << nv_crtc->index;
u8 proto;
nv50_outp_acquire(nv_encoder);
nv_connector = nouveau_encoder_connector_get(nv_encoder);
switch (nv_connector->base.display_info.bpc) {
case 10: asyh->or.depth = 0x6; break;
case 8: asyh->or.depth = 0x5; break;
case 6: asyh->or.depth = 0x2; break;
default: asyh->or.depth = 0x0; break;
}
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_DP:
proto = 0x0;
break;
default:
BUG();
break;
}
core->func->pior->ctrl(core, nv_encoder->or, (proto << 8) | owner, asyh);
nv_encoder->crtc = encoder->crtc;
}
static const struct drm_encoder_helper_funcs
nv50_pior_help = {
.atomic_check = nv50_pior_atomic_check,
.enable = nv50_pior_enable,
.disable = nv50_pior_disable,
};
static void
nv50_pior_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_pior_func = {
.destroy = nv50_pior_destroy,
};
static int
nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nvkm_i2c_bus *bus = NULL;
struct nvkm_i2c_aux *aux = NULL;
struct i2c_adapter *ddc;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type;
switch (dcbe->type) {
case DCB_OUTPUT_TMDS:
bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
ddc = bus ? &bus->i2c : NULL;
type = DRM_MODE_ENCODER_TMDS;
break;
case DCB_OUTPUT_DP:
aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
ddc = aux ? &aux->i2c : NULL;
type = DRM_MODE_ENCODER_TMDS;
break;
default:
return -ENODEV;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->i2c = ddc;
nv_encoder->aux = aux;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
"pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_pior_help);
drm_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Atomic
*****************************************************************************/
static void
nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
{
struct nouveau_drm *drm = nouveau_drm(state->dev);
struct nv50_disp *disp = nv50_disp(drm->dev);
struct nv50_core *core = disp->core;
struct nv50_mstm *mstm;
struct drm_encoder *encoder;
NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
drm_for_each_encoder(encoder, drm->dev) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
mstm = nouveau_encoder(encoder)->dp.mstm;
if (mstm && mstm->modified)
nv50_mstm_prepare(mstm);
}
}
core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
core->func->update(core, interlock, true);
if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
disp->core->chan.base.device))
NV_ERROR(drm, "core notifier timeout\n");
drm_for_each_encoder(encoder, drm->dev) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
mstm = nouveau_encoder(encoder)->dp.mstm;
if (mstm && mstm->modified)
nv50_mstm_cleanup(mstm);
}
}
}
static void
nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
{
struct drm_plane_state *new_plane_state;
struct drm_plane *plane;
int i;
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw *wndw = nv50_wndw(plane);
if (interlock[wndw->interlock.type] & wndw->interlock.data) {
if (wndw->func->update)
wndw->func->update(wndw, interlock);
}
}
}
static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_crtc_state *new_crtc_state, *old_crtc_state;
struct drm_crtc *crtc;
struct drm_plane_state *new_plane_state;
struct drm_plane *plane;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_atom *atom = nv50_atom(state);
struct nv50_outp_atom *outp, *outt;
u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
int i;
NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
drm_atomic_helper_wait_for_fences(dev, state, false);
drm_atomic_helper_wait_for_dependencies(state);
drm_atomic_helper_update_legacy_modeset_state(dev, state);
if (atom->lock_core)
mutex_lock(&disp->mutex);
/* Disable head(s). */
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
struct nv50_head *head = nv50_head(crtc);
NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
asyh->clr.mask, asyh->set.mask);
if (old_crtc_state->active && !new_crtc_state->active)
drm_crtc_vblank_off(crtc);
if (asyh->clr.mask) {
nv50_head_flush_clr(head, asyh, atom->flush_disable);
interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
}
}
/* Disable plane(s). */
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
asyw->clr.mask, asyw->set.mask);
if (!asyw->clr.mask)
continue;
nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
}
/* Disable output path(s). */
list_for_each_entry(outp, &atom->outp, head) {
const struct drm_encoder_helper_funcs *help;
struct drm_encoder *encoder;
encoder = outp->encoder;
help = encoder->helper_private;
NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
outp->clr.mask, outp->set.mask);
if (outp->clr.mask) {
help->disable(encoder);
interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
if (outp->flush_disable) {
nv50_disp_atomic_commit_wndw(state, interlock);
nv50_disp_atomic_commit_core(state, interlock);
memset(interlock, 0x00, sizeof(interlock));
}
}
}
/* Flush disable. */
if (interlock[NV50_DISP_INTERLOCK_CORE]) {
if (atom->flush_disable) {
nv50_disp_atomic_commit_wndw(state, interlock);
nv50_disp_atomic_commit_core(state, interlock);
memset(interlock, 0x00, sizeof(interlock));
}
}
/* Update output path(s). */
list_for_each_entry_safe(outp, outt, &atom->outp, head) {
const struct drm_encoder_helper_funcs *help;
struct drm_encoder *encoder;
encoder = outp->encoder;
help = encoder->helper_private;
NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
outp->set.mask, outp->clr.mask);
if (outp->set.mask) {
help->enable(encoder);
interlock[NV50_DISP_INTERLOCK_CORE] = 1;
}
list_del(&outp->head);
kfree(outp);
}
/* Update head(s). */
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
struct nv50_head *head = nv50_head(crtc);
NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
asyh->set.mask, asyh->clr.mask);
if (asyh->set.mask) {
nv50_head_flush_set(head, asyh);
interlock[NV50_DISP_INTERLOCK_CORE] = 1;
}
if (new_crtc_state->active) {
if (!old_crtc_state->active)
drm_crtc_vblank_on(crtc);
if (new_crtc_state->event)
drm_crtc_vblank_get(crtc);
}
}
/* Update plane(s). */
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
asyw->set.mask, asyw->clr.mask);
if ( !asyw->set.mask &&
(!asyw->clr.mask || atom->flush_disable))
continue;
nv50_wndw_flush_set(wndw, interlock, asyw);
}
/* Flush update. */
nv50_disp_atomic_commit_wndw(state, interlock);
if (interlock[NV50_DISP_INTERLOCK_CORE]) {
if (interlock[NV50_DISP_INTERLOCK_BASE] ||
interlock[NV50_DISP_INTERLOCK_OVLY] ||
interlock[NV50_DISP_INTERLOCK_WNDW] ||
!atom->state.legacy_cursor_update)
nv50_disp_atomic_commit_core(state, interlock);
else
disp->core->func->update(disp->core, interlock, false);
}
if (atom->lock_core)
mutex_unlock(&disp->mutex);
/* Wait for HW to signal completion. */
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
int ret = nv50_wndw_wait_armed(wndw, asyw);
if (ret)
NV_ERROR(drm, "%s: timeout\n", plane->name);
}
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->event) {
unsigned long flags;
/* Get correct count/ts if racing with vblank irq */
if (new_crtc_state->active)
drm_crtc_accurate_vblank_count(crtc);
spin_lock_irqsave(&crtc->dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
new_crtc_state->event = NULL;
if (new_crtc_state->active)
drm_crtc_vblank_put(crtc);
}
}
drm_atomic_helper_commit_hw_done(state);
drm_atomic_helper_cleanup_planes(dev, state);
drm_atomic_helper_commit_cleanup_done(state);
drm_atomic_state_put(state);
}
static void
nv50_disp_atomic_commit_work(struct work_struct *work)
{
struct drm_atomic_state *state =
container_of(work, typeof(*state), commit_work);
nv50_disp_atomic_commit_tail(state);
}
static int
nv50_disp_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *state, bool nonblock)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct drm_plane_state *new_plane_state;
struct drm_plane *plane;
struct drm_crtc *crtc;
bool active = false;
int ret, i;
ret = pm_runtime_get_sync(dev->dev);
if (ret < 0 && ret != -EACCES)
return ret;
ret = drm_atomic_helper_setup_commit(state, nonblock);
if (ret)
goto done;
INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
ret = drm_atomic_helper_prepare_planes(dev, state);
if (ret)
goto done;
if (!nonblock) {
ret = drm_atomic_helper_wait_for_fences(dev, state, true);
if (ret)
goto err_cleanup;
}
ret = drm_atomic_helper_swap_state(state, true);
if (ret)
goto err_cleanup;
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
if (asyw->set.image)
nv50_wndw_ntfy_enable(wndw, asyw);
}
drm_atomic_state_get(state);
if (nonblock)
queue_work(system_unbound_wq, &state->commit_work);
else
nv50_disp_atomic_commit_tail(state);
drm_for_each_crtc(crtc, dev) {
if (crtc->state->active) {
if (!drm->have_disp_power_ref) {
drm->have_disp_power_ref = true;
return 0;
}
active = true;
break;
}
}
if (!active && drm->have_disp_power_ref) {
pm_runtime_put_autosuspend(dev->dev);
drm->have_disp_power_ref = false;
}
err_cleanup:
if (ret)
drm_atomic_helper_cleanup_planes(dev, state);
done:
pm_runtime_put_autosuspend(dev->dev);
return ret;
}
static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
{
struct nv50_outp_atom *outp;
list_for_each_entry(outp, &atom->outp, head) {
if (outp->encoder == encoder)
return outp;
}
outp = kzalloc(sizeof(*outp), GFP_KERNEL);
if (!outp)
return ERR_PTR(-ENOMEM);
list_add(&outp->head, &atom->outp);
outp->encoder = encoder;
return outp;
}
static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
struct drm_connector_state *old_connector_state)
{
struct drm_encoder *encoder = old_connector_state->best_encoder;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct drm_crtc *crtc;
struct nv50_outp_atom *outp;
if (!(crtc = old_connector_state->crtc))
return 0;
old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
outp = nv50_disp_outp_atomic_add(atom, encoder);
if (IS_ERR(outp))
return PTR_ERR(outp);
if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
outp->flush_disable = true;
atom->flush_disable = true;
}
outp->clr.ctrl = true;
atom->lock_core = true;
}
return 0;
}
static int
nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
struct drm_connector_state *connector_state)
{
struct drm_encoder *encoder = connector_state->best_encoder;
struct drm_crtc_state *new_crtc_state;
struct drm_crtc *crtc;
struct nv50_outp_atom *outp;
if (!(crtc = connector_state->crtc))
return 0;
new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
outp = nv50_disp_outp_atomic_add(atom, encoder);
if (IS_ERR(outp))
return PTR_ERR(outp);
outp->set.ctrl = true;
atom->lock_core = true;
}
return 0;
}
static int
nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
struct drm_connector_state *old_connector_state, *new_connector_state;
struct drm_connector *connector;
struct drm_crtc_state *new_crtc_state;
struct drm_crtc *crtc;
int ret, i;
/* We need to handle colour management on a per-plane basis. */
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->color_mgmt_changed) {
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
}
}
ret = drm_atomic_helper_check(dev, state);
if (ret)
return ret;
for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
if (ret)
return ret;
ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
if (ret)
return ret;
}
return 0;
}
static void
nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
struct nv50_outp_atom *outp, *outt;
list_for_each_entry_safe(outp, outt, &atom->outp, head) {
list_del(&outp->head);
kfree(outp);
}
drm_atomic_state_default_clear(state);
}
static void
nv50_disp_atomic_state_free(struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
drm_atomic_state_default_release(&atom->state);
kfree(atom);
}
static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device *dev)
{
struct nv50_atom *atom;
if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
drm_atomic_state_init(dev, &atom->state) < 0) {
kfree(atom);
return NULL;
}
INIT_LIST_HEAD(&atom->outp);
return &atom->state;
}
static const struct drm_mode_config_funcs
nv50_disp_func = {
.fb_create = nouveau_user_framebuffer_create,
.output_poll_changed = nouveau_fbcon_output_poll_changed,
.atomic_check = nv50_disp_atomic_check,
.atomic_commit = nv50_disp_atomic_commit,
.atomic_state_alloc = nv50_disp_atomic_state_alloc,
.atomic_state_clear = nv50_disp_atomic_state_clear,
.atomic_state_free = nv50_disp_atomic_state_free,
};
/******************************************************************************
* Init
*****************************************************************************/
void
nv50_display_fini(struct drm_device *dev)
{
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
struct drm_plane *plane;
drm_for_each_plane(plane, dev) {
struct nv50_wndw *wndw = nv50_wndw(plane);
if (plane->funcs != &nv50_wndw)
continue;
nv50_wndw_fini(wndw);
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
nv_encoder = nouveau_encoder(encoder);
nv50_mstm_fini(nv_encoder->dp.mstm);
}
}
}
int
nv50_display_init(struct drm_device *dev)
{
struct nv50_core *core = nv50_disp(dev)->core;
struct drm_encoder *encoder;
struct drm_plane *plane;
core->func->init(core);
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
struct nouveau_encoder *nv_encoder =
nouveau_encoder(encoder);
nv50_mstm_init(nv_encoder->dp.mstm);
}
}
drm_for_each_plane(plane, dev) {
struct nv50_wndw *wndw = nv50_wndw(plane);
if (plane->funcs != &nv50_wndw)
continue;
nv50_wndw_init(wndw);
}
return 0;
}
void
nv50_display_destroy(struct drm_device *dev)
{
struct nv50_disp *disp = nv50_disp(dev);
nv50_core_del(&disp->core);
nouveau_bo_unmap(disp->sync);
if (disp->sync)
nouveau_bo_unpin(disp->sync);
nouveau_bo_ref(NULL, &disp->sync);
nouveau_display(dev)->priv = NULL;
kfree(disp);
}
int
nv50_display_create(struct drm_device *dev)
{
struct nvif_device *device = &nouveau_drm(dev)->client.device;
struct nouveau_drm *drm = nouveau_drm(dev);
struct dcb_table *dcb = &drm->vbios.dcb;
struct drm_connector *connector, *tmp;
struct nv50_disp *disp;
struct dcb_output *dcbe;
int crtcs, ret, i;
disp = kzalloc(sizeof(*disp), GFP_KERNEL);
if (!disp)
return -ENOMEM;
mutex_init(&disp->mutex);
nouveau_display(dev)->priv = disp;
nouveau_display(dev)->dtor = nv50_display_destroy;
nouveau_display(dev)->init = nv50_display_init;
nouveau_display(dev)->fini = nv50_display_fini;
disp->disp = &nouveau_display(dev)->disp;
dev->mode_config.funcs = &nv50_disp_func;
dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
/* small shared memory area we use for notifiers and semaphores */
ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, NULL, &disp->sync);
if (!ret) {
ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true);
if (!ret) {
ret = nouveau_bo_map(disp->sync);
if (ret)
nouveau_bo_unpin(disp->sync);
}
if (ret)
nouveau_bo_ref(NULL, &disp->sync);
}
if (ret)
goto out;
/* allocate master evo channel */
ret = nv50_core_new(drm, &disp->core);
if (ret)
goto out;
/* create crtc objects to represent the hw heads */
if (disp->disp->object.oclass >= GV100_DISP)
crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
else
if (disp->disp->object.oclass >= GF110_DISP)
crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
else
crtcs = 0x3;
for (i = 0; i < fls(crtcs); i++) {
if (!(crtcs & (1 << i)))
continue;
ret = nv50_head_create(dev, i);
if (ret)
goto out;
}
/* create encoder/connector objects based on VBIOS DCB table */
for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
connector = nouveau_connector_create(dev, dcbe->connector);
if (IS_ERR(connector))
continue;
if (dcbe->location == DCB_LOC_ON_CHIP) {
switch (dcbe->type) {
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_LVDS:
case DCB_OUTPUT_DP:
ret = nv50_sor_create(connector, dcbe);
break;
case DCB_OUTPUT_ANALOG:
ret = nv50_dac_create(connector, dcbe);
break;
default:
ret = -ENODEV;
break;
}
} else {
ret = nv50_pior_create(connector, dcbe);
}
if (ret) {
NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
dcbe->location, dcbe->type,
ffs(dcbe->or) - 1, ret);
ret = 0;
}
}
/* cull any connectors we created that don't have an encoder */
list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
if (connector->encoder_ids[0])
continue;
NV_WARN(drm, "%s has no encoders, removing\n",
connector->name);
connector->funcs->destroy(connector);
}
/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
dev->vblank_disable_immediate = true;
out:
if (ret)
nv50_display_destroy(dev);
return ret;
}