mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 15:19:44 +07:00
9da0ea0963
We cached the number of vma bound to the object in order to speed up shrinker decisions. This has been superseded by being more proactive in removing objects we cannot shrink from the shrinker lists, and so we can drop the clumsy attempt at atomically counting the bind count and comparing it to the number of pinned mappings of the object. This will only get more clumsier with asynchronous binding and unbinding. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200401223924.16667-1-chris@chris-wilson.co.uk
1333 lines
34 KiB
C
1333 lines
34 KiB
C
/*
|
|
* Copyright © 2008-2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include <drm/drm_vma_manager.h>
|
|
#include <linux/dma-fence-array.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/dma-resv.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-buf.h>
|
|
#include <linux/mman.h>
|
|
|
|
#include "display/intel_display.h"
|
|
#include "display/intel_frontbuffer.h"
|
|
|
|
#include "gem/i915_gem_clflush.h"
|
|
#include "gem/i915_gem_context.h"
|
|
#include "gem/i915_gem_ioctls.h"
|
|
#include "gem/i915_gem_mman.h"
|
|
#include "gem/i915_gem_region.h"
|
|
#include "gt/intel_engine_user.h"
|
|
#include "gt/intel_gt.h"
|
|
#include "gt/intel_gt_pm.h"
|
|
#include "gt/intel_workarounds.h"
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include "i915_vgpu.h"
|
|
|
|
#include "intel_pm.h"
|
|
|
|
static int
|
|
insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&ggtt->vm.mutex);
|
|
if (err)
|
|
return err;
|
|
|
|
memset(node, 0, sizeof(*node));
|
|
err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
|
|
size, 0, I915_COLOR_UNEVICTABLE,
|
|
0, ggtt->mappable_end,
|
|
DRM_MM_INSERT_LOW);
|
|
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
|
|
{
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
drm_mm_remove_node(node);
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
}
|
|
|
|
int
|
|
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
|
|
struct drm_i915_gem_get_aperture *args = data;
|
|
struct i915_vma *vma;
|
|
u64 pinned;
|
|
|
|
if (mutex_lock_interruptible(&ggtt->vm.mutex))
|
|
return -EINTR;
|
|
|
|
pinned = ggtt->vm.reserved;
|
|
list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
|
|
if (i915_vma_is_pinned(vma))
|
|
pinned += vma->node.size;
|
|
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
|
|
args->aper_size = ggtt->vm.total;
|
|
args->aper_available_size = args->aper_size - pinned;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
|
|
unsigned long flags)
|
|
{
|
|
struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
|
|
LIST_HEAD(still_in_list);
|
|
intel_wakeref_t wakeref;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
if (list_empty(&obj->vma.list))
|
|
return 0;
|
|
|
|
/*
|
|
* As some machines use ACPI to handle runtime-resume callbacks, and
|
|
* ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
|
|
* as they are required by the shrinker. Ergo, we wake the device up
|
|
* first just in case.
|
|
*/
|
|
wakeref = intel_runtime_pm_get(rpm);
|
|
|
|
try_again:
|
|
ret = 0;
|
|
spin_lock(&obj->vma.lock);
|
|
while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
|
|
struct i915_vma,
|
|
obj_link))) {
|
|
struct i915_address_space *vm = vma->vm;
|
|
|
|
list_move_tail(&vma->obj_link, &still_in_list);
|
|
if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
|
|
continue;
|
|
|
|
if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
ret = -EAGAIN;
|
|
if (!i915_vm_tryopen(vm))
|
|
break;
|
|
|
|
/* Prevent vma being freed by i915_vma_parked as we unbind */
|
|
vma = __i915_vma_get(vma);
|
|
spin_unlock(&obj->vma.lock);
|
|
|
|
if (vma) {
|
|
ret = -EBUSY;
|
|
if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
|
|
!i915_vma_is_active(vma))
|
|
ret = i915_vma_unbind(vma);
|
|
|
|
__i915_vma_put(vma);
|
|
}
|
|
|
|
i915_vm_close(vm);
|
|
spin_lock(&obj->vma.lock);
|
|
}
|
|
list_splice_init(&still_in_list, &obj->vma.list);
|
|
spin_unlock(&obj->vma.lock);
|
|
|
|
if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
|
|
rcu_barrier(); /* flush the i915_vm_release() */
|
|
goto try_again;
|
|
}
|
|
|
|
intel_runtime_pm_put(rpm, wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
|
|
char __user *user_data = u64_to_user_ptr(args->data_ptr);
|
|
|
|
/*
|
|
* We manually control the domain here and pretend that it
|
|
* remains coherent i.e. in the GTT domain, like shmem_pwrite.
|
|
*/
|
|
i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
|
|
|
|
if (copy_from_user(vaddr, user_data, args->size))
|
|
return -EFAULT;
|
|
|
|
drm_clflush_virt_range(vaddr, args->size);
|
|
intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
|
|
|
|
i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_create(struct drm_file *file,
|
|
struct intel_memory_region *mr,
|
|
u64 *size_p,
|
|
u32 *handle_p)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
u32 handle;
|
|
u64 size;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
|
|
size = round_up(*size_p, mr->min_page_size);
|
|
if (size == 0)
|
|
return -EINVAL;
|
|
|
|
/* For most of the ABI (e.g. mmap) we think in system pages */
|
|
GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
|
|
|
|
/* Allocate the new object */
|
|
obj = i915_gem_object_create_region(mr, size, 0);
|
|
if (IS_ERR(obj))
|
|
return PTR_ERR(obj);
|
|
|
|
ret = drm_gem_handle_create(file, &obj->base, &handle);
|
|
/* drop reference from allocate - handle holds it now */
|
|
i915_gem_object_put(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*handle_p = handle;
|
|
*size_p = size;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_dumb_create(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
struct drm_mode_create_dumb *args)
|
|
{
|
|
enum intel_memory_type mem_type;
|
|
int cpp = DIV_ROUND_UP(args->bpp, 8);
|
|
u32 format;
|
|
|
|
switch (cpp) {
|
|
case 1:
|
|
format = DRM_FORMAT_C8;
|
|
break;
|
|
case 2:
|
|
format = DRM_FORMAT_RGB565;
|
|
break;
|
|
case 4:
|
|
format = DRM_FORMAT_XRGB8888;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* have to work out size/pitch and return them */
|
|
args->pitch = ALIGN(args->width * cpp, 64);
|
|
|
|
/* align stride to page size so that we can remap */
|
|
if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
|
|
DRM_FORMAT_MOD_LINEAR))
|
|
args->pitch = ALIGN(args->pitch, 4096);
|
|
|
|
if (args->pitch < args->width)
|
|
return -EINVAL;
|
|
|
|
args->size = mul_u32_u32(args->pitch, args->height);
|
|
|
|
mem_type = INTEL_MEMORY_SYSTEM;
|
|
if (HAS_LMEM(to_i915(dev)))
|
|
mem_type = INTEL_MEMORY_LOCAL;
|
|
|
|
return i915_gem_create(file,
|
|
intel_memory_region_by_type(to_i915(dev),
|
|
mem_type),
|
|
&args->size, &args->handle);
|
|
}
|
|
|
|
/**
|
|
* Creates a new mm object and returns a handle to it.
|
|
* @dev: drm device pointer
|
|
* @data: ioctl data blob
|
|
* @file: drm file pointer
|
|
*/
|
|
int
|
|
i915_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dev);
|
|
struct drm_i915_gem_create *args = data;
|
|
|
|
i915_gem_flush_free_objects(i915);
|
|
|
|
return i915_gem_create(file,
|
|
intel_memory_region_by_type(i915,
|
|
INTEL_MEMORY_SYSTEM),
|
|
&args->size, &args->handle);
|
|
}
|
|
|
|
static int
|
|
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
|
|
bool needs_clflush)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
|
|
if (needs_clflush)
|
|
drm_clflush_virt_range(vaddr + offset, len);
|
|
|
|
ret = __copy_to_user(user_data, vaddr + offset, len);
|
|
|
|
kunmap(page);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pread *args)
|
|
{
|
|
unsigned int needs_clflush;
|
|
unsigned int idx, offset;
|
|
struct dma_fence *fence;
|
|
char __user *user_data;
|
|
u64 remain;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_prepare_read(obj, &needs_clflush);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fence = i915_gem_object_lock_fence(obj);
|
|
i915_gem_object_finish_access(obj);
|
|
if (!fence)
|
|
return -ENOMEM;
|
|
|
|
remain = args->size;
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
offset = offset_in_page(args->offset);
|
|
for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
|
|
struct page *page = i915_gem_object_get_page(obj, idx);
|
|
unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
|
|
|
|
ret = shmem_pread(page, offset, length, user_data,
|
|
needs_clflush);
|
|
if (ret)
|
|
break;
|
|
|
|
remain -= length;
|
|
user_data += length;
|
|
offset = 0;
|
|
}
|
|
|
|
i915_gem_object_unlock_fence(obj, fence);
|
|
return ret;
|
|
}
|
|
|
|
static inline bool
|
|
gtt_user_read(struct io_mapping *mapping,
|
|
loff_t base, int offset,
|
|
char __user *user_data, int length)
|
|
{
|
|
void __iomem *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
/* We can use the cpu mem copy function because this is X86. */
|
|
vaddr = io_mapping_map_atomic_wc(mapping, base);
|
|
unwritten = __copy_to_user_inatomic(user_data,
|
|
(void __force *)vaddr + offset,
|
|
length);
|
|
io_mapping_unmap_atomic(vaddr);
|
|
if (unwritten) {
|
|
vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
|
|
unwritten = copy_to_user(user_data,
|
|
(void __force *)vaddr + offset,
|
|
length);
|
|
io_mapping_unmap(vaddr);
|
|
}
|
|
return unwritten;
|
|
}
|
|
|
|
static int
|
|
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_pread *args)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
intel_wakeref_t wakeref;
|
|
struct drm_mm_node node;
|
|
struct dma_fence *fence;
|
|
void __user *user_data;
|
|
struct i915_vma *vma;
|
|
u64 remain, offset;
|
|
int ret;
|
|
|
|
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
|
|
vma = ERR_PTR(-ENODEV);
|
|
if (!i915_gem_object_is_tiled(obj))
|
|
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
|
|
PIN_MAPPABLE |
|
|
PIN_NONBLOCK /* NOWARN */ |
|
|
PIN_NOEVICT);
|
|
if (!IS_ERR(vma)) {
|
|
node.start = i915_ggtt_offset(vma);
|
|
node.flags = 0;
|
|
} else {
|
|
ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
|
|
if (ret)
|
|
goto out_rpm;
|
|
GEM_BUG_ON(!drm_mm_node_allocated(&node));
|
|
}
|
|
|
|
ret = i915_gem_object_lock_interruptible(obj);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, false);
|
|
if (ret) {
|
|
i915_gem_object_unlock(obj);
|
|
goto out_unpin;
|
|
}
|
|
|
|
fence = i915_gem_object_lock_fence(obj);
|
|
i915_gem_object_unlock(obj);
|
|
if (!fence) {
|
|
ret = -ENOMEM;
|
|
goto out_unpin;
|
|
}
|
|
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
offset = args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
u32 page_base = node.start;
|
|
unsigned page_offset = offset_in_page(offset);
|
|
unsigned page_length = PAGE_SIZE - page_offset;
|
|
page_length = remain < page_length ? remain : page_length;
|
|
if (drm_mm_node_allocated(&node)) {
|
|
ggtt->vm.insert_page(&ggtt->vm,
|
|
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
|
|
node.start, I915_CACHE_NONE, 0);
|
|
} else {
|
|
page_base += offset & PAGE_MASK;
|
|
}
|
|
|
|
if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
|
|
user_data, page_length)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
i915_gem_object_unlock_fence(obj, fence);
|
|
out_unpin:
|
|
if (drm_mm_node_allocated(&node)) {
|
|
ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
|
|
remove_mappable_node(ggtt, &node);
|
|
} else {
|
|
i915_vma_unpin(vma);
|
|
}
|
|
out_rpm:
|
|
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads data from the object referenced by handle.
|
|
* @dev: drm device pointer
|
|
* @data: ioctl data blob
|
|
* @file: drm file pointer
|
|
*
|
|
* On error, the contents of *data are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pread *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(u64_to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/* Bounds check source. */
|
|
if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trace_i915_gem_object_pread(obj, args->offset, args->size);
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_shmem_pread(obj, args);
|
|
if (ret == -EFAULT || ret == -ENODEV)
|
|
ret = i915_gem_gtt_pread(obj, args);
|
|
|
|
i915_gem_object_unpin_pages(obj);
|
|
out:
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
/* This is the fast write path which cannot handle
|
|
* page faults in the source data
|
|
*/
|
|
|
|
static inline bool
|
|
ggtt_write(struct io_mapping *mapping,
|
|
loff_t base, int offset,
|
|
char __user *user_data, int length)
|
|
{
|
|
void __iomem *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
/* We can use the cpu mem copy function because this is X86. */
|
|
vaddr = io_mapping_map_atomic_wc(mapping, base);
|
|
unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
|
|
user_data, length);
|
|
io_mapping_unmap_atomic(vaddr);
|
|
if (unwritten) {
|
|
vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
|
|
unwritten = copy_from_user((void __force *)vaddr + offset,
|
|
user_data, length);
|
|
io_mapping_unmap(vaddr);
|
|
}
|
|
|
|
return unwritten;
|
|
}
|
|
|
|
/**
|
|
* This is the fast pwrite path, where we copy the data directly from the
|
|
* user into the GTT, uncached.
|
|
* @obj: i915 GEM object
|
|
* @args: pwrite arguments structure
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_pwrite *args)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
struct intel_runtime_pm *rpm = &i915->runtime_pm;
|
|
intel_wakeref_t wakeref;
|
|
struct drm_mm_node node;
|
|
struct dma_fence *fence;
|
|
struct i915_vma *vma;
|
|
u64 remain, offset;
|
|
void __user *user_data;
|
|
int ret;
|
|
|
|
if (i915_gem_object_has_struct_page(obj)) {
|
|
/*
|
|
* Avoid waking the device up if we can fallback, as
|
|
* waking/resuming is very slow (worst-case 10-100 ms
|
|
* depending on PCI sleeps and our own resume time).
|
|
* This easily dwarfs any performance advantage from
|
|
* using the cache bypass of indirect GGTT access.
|
|
*/
|
|
wakeref = intel_runtime_pm_get_if_in_use(rpm);
|
|
if (!wakeref)
|
|
return -EFAULT;
|
|
} else {
|
|
/* No backing pages, no fallback, we must force GGTT access */
|
|
wakeref = intel_runtime_pm_get(rpm);
|
|
}
|
|
|
|
vma = ERR_PTR(-ENODEV);
|
|
if (!i915_gem_object_is_tiled(obj))
|
|
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
|
|
PIN_MAPPABLE |
|
|
PIN_NONBLOCK /* NOWARN */ |
|
|
PIN_NOEVICT);
|
|
if (!IS_ERR(vma)) {
|
|
node.start = i915_ggtt_offset(vma);
|
|
node.flags = 0;
|
|
} else {
|
|
ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
|
|
if (ret)
|
|
goto out_rpm;
|
|
GEM_BUG_ON(!drm_mm_node_allocated(&node));
|
|
}
|
|
|
|
ret = i915_gem_object_lock_interruptible(obj);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, true);
|
|
if (ret) {
|
|
i915_gem_object_unlock(obj);
|
|
goto out_unpin;
|
|
}
|
|
|
|
fence = i915_gem_object_lock_fence(obj);
|
|
i915_gem_object_unlock(obj);
|
|
if (!fence) {
|
|
ret = -ENOMEM;
|
|
goto out_unpin;
|
|
}
|
|
|
|
i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
|
|
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
offset = args->offset;
|
|
remain = args->size;
|
|
while (remain) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
u32 page_base = node.start;
|
|
unsigned int page_offset = offset_in_page(offset);
|
|
unsigned int page_length = PAGE_SIZE - page_offset;
|
|
page_length = remain < page_length ? remain : page_length;
|
|
if (drm_mm_node_allocated(&node)) {
|
|
/* flush the write before we modify the GGTT */
|
|
intel_gt_flush_ggtt_writes(ggtt->vm.gt);
|
|
ggtt->vm.insert_page(&ggtt->vm,
|
|
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
|
|
node.start, I915_CACHE_NONE, 0);
|
|
wmb(); /* flush modifications to the GGTT (insert_page) */
|
|
} else {
|
|
page_base += offset & PAGE_MASK;
|
|
}
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
* If the object is non-shmem backed, we retry again with the
|
|
* path that handles page fault.
|
|
*/
|
|
if (ggtt_write(&ggtt->iomap, page_base, page_offset,
|
|
user_data, page_length)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
intel_gt_flush_ggtt_writes(ggtt->vm.gt);
|
|
i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
|
|
|
|
i915_gem_object_unlock_fence(obj, fence);
|
|
out_unpin:
|
|
if (drm_mm_node_allocated(&node)) {
|
|
ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
|
|
remove_mappable_node(ggtt, &node);
|
|
} else {
|
|
i915_vma_unpin(vma);
|
|
}
|
|
out_rpm:
|
|
intel_runtime_pm_put(rpm, wakeref);
|
|
return ret;
|
|
}
|
|
|
|
/* Per-page copy function for the shmem pwrite fastpath.
|
|
* Flushes invalid cachelines before writing to the target if
|
|
* needs_clflush_before is set and flushes out any written cachelines after
|
|
* writing if needs_clflush is set.
|
|
*/
|
|
static int
|
|
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
|
|
if (needs_clflush_before)
|
|
drm_clflush_virt_range(vaddr + offset, len);
|
|
|
|
ret = __copy_from_user(vaddr + offset, user_data, len);
|
|
if (!ret && needs_clflush_after)
|
|
drm_clflush_virt_range(vaddr + offset, len);
|
|
|
|
kunmap(page);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_pwrite *args)
|
|
{
|
|
unsigned int partial_cacheline_write;
|
|
unsigned int needs_clflush;
|
|
unsigned int offset, idx;
|
|
struct dma_fence *fence;
|
|
void __user *user_data;
|
|
u64 remain;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_prepare_write(obj, &needs_clflush);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fence = i915_gem_object_lock_fence(obj);
|
|
i915_gem_object_finish_access(obj);
|
|
if (!fence)
|
|
return -ENOMEM;
|
|
|
|
/* If we don't overwrite a cacheline completely we need to be
|
|
* careful to have up-to-date data by first clflushing. Don't
|
|
* overcomplicate things and flush the entire patch.
|
|
*/
|
|
partial_cacheline_write = 0;
|
|
if (needs_clflush & CLFLUSH_BEFORE)
|
|
partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
|
|
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
offset = offset_in_page(args->offset);
|
|
for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
|
|
struct page *page = i915_gem_object_get_page(obj, idx);
|
|
unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
|
|
|
|
ret = shmem_pwrite(page, offset, length, user_data,
|
|
(offset | length) & partial_cacheline_write,
|
|
needs_clflush & CLFLUSH_AFTER);
|
|
if (ret)
|
|
break;
|
|
|
|
remain -= length;
|
|
user_data += length;
|
|
offset = 0;
|
|
}
|
|
|
|
i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
|
|
i915_gem_object_unlock_fence(obj, fence);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Writes data to the object referenced by handle.
|
|
* @dev: drm device
|
|
* @data: ioctl data blob
|
|
* @file: drm file
|
|
*
|
|
* On error, the contents of the buffer that were to be modified are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pwrite *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
|
|
return -EFAULT;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/* Bounds check destination. */
|
|
if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* Writes not allowed into this read-only object */
|
|
if (i915_gem_object_is_readonly(obj)) {
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
|
|
|
|
ret = -ENODEV;
|
|
if (obj->ops->pwrite)
|
|
ret = obj->ops->pwrite(obj, args);
|
|
if (ret != -ENODEV)
|
|
goto err;
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_ALL,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = -EFAULT;
|
|
/* We can only do the GTT pwrite on untiled buffers, as otherwise
|
|
* it would end up going through the fenced access, and we'll get
|
|
* different detiling behavior between reading and writing.
|
|
* pread/pwrite currently are reading and writing from the CPU
|
|
* perspective, requiring manual detiling by the client.
|
|
*/
|
|
if (!i915_gem_object_has_struct_page(obj) ||
|
|
cpu_write_needs_clflush(obj))
|
|
/* Note that the gtt paths might fail with non-page-backed user
|
|
* pointers (e.g. gtt mappings when moving data between
|
|
* textures). Fallback to the shmem path in that case.
|
|
*/
|
|
ret = i915_gem_gtt_pwrite_fast(obj, args);
|
|
|
|
if (ret == -EFAULT || ret == -ENOSPC) {
|
|
if (i915_gem_object_has_struct_page(obj))
|
|
ret = i915_gem_shmem_pwrite(obj, args);
|
|
else
|
|
ret = i915_gem_phys_pwrite(obj, args, file);
|
|
}
|
|
|
|
i915_gem_object_unpin_pages(obj);
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space has done writes to this buffer
|
|
* @dev: drm device
|
|
* @data: ioctl data blob
|
|
* @file: drm file
|
|
*/
|
|
int
|
|
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_sw_finish *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Proxy objects are barred from CPU access, so there is no
|
|
* need to ban sw_finish as it is a nop.
|
|
*/
|
|
|
|
/* Pinned buffers may be scanout, so flush the cache */
|
|
i915_gem_object_flush_if_display(obj);
|
|
i915_gem_object_put(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_runtime_suspend(struct drm_i915_private *i915)
|
|
{
|
|
struct drm_i915_gem_object *obj, *on;
|
|
int i;
|
|
|
|
/*
|
|
* Only called during RPM suspend. All users of the userfault_list
|
|
* must be holding an RPM wakeref to ensure that this can not
|
|
* run concurrently with themselves (and use the struct_mutex for
|
|
* protection between themselves).
|
|
*/
|
|
|
|
list_for_each_entry_safe(obj, on,
|
|
&i915->ggtt.userfault_list, userfault_link)
|
|
__i915_gem_object_release_mmap_gtt(obj);
|
|
|
|
/*
|
|
* The fence will be lost when the device powers down. If any were
|
|
* in use by hardware (i.e. they are pinned), we should not be powering
|
|
* down! All other fences will be reacquired by the user upon waking.
|
|
*/
|
|
for (i = 0; i < i915->ggtt.num_fences; i++) {
|
|
struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
|
|
|
|
/*
|
|
* Ideally we want to assert that the fence register is not
|
|
* live at this point (i.e. that no piece of code will be
|
|
* trying to write through fence + GTT, as that both violates
|
|
* our tracking of activity and associated locking/barriers,
|
|
* but also is illegal given that the hw is powered down).
|
|
*
|
|
* Previously we used reg->pin_count as a "liveness" indicator.
|
|
* That is not sufficient, and we need a more fine-grained
|
|
* tool if we want to have a sanity check here.
|
|
*/
|
|
|
|
if (!reg->vma)
|
|
continue;
|
|
|
|
GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
|
|
reg->dirty = true;
|
|
}
|
|
}
|
|
|
|
struct i915_vma *
|
|
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
|
|
const struct i915_ggtt_view *view,
|
|
u64 size,
|
|
u64 alignment,
|
|
u64 flags)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
if (flags & PIN_MAPPABLE &&
|
|
(!view || view->type == I915_GGTT_VIEW_NORMAL)) {
|
|
/*
|
|
* If the required space is larger than the available
|
|
* aperture, we will not able to find a slot for the
|
|
* object and unbinding the object now will be in
|
|
* vain. Worse, doing so may cause us to ping-pong
|
|
* the object in and out of the Global GTT and
|
|
* waste a lot of cycles under the mutex.
|
|
*/
|
|
if (obj->base.size > ggtt->mappable_end)
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
/*
|
|
* If NONBLOCK is set the caller is optimistically
|
|
* trying to cache the full object within the mappable
|
|
* aperture, and *must* have a fallback in place for
|
|
* situations where we cannot bind the object. We
|
|
* can be a little more lax here and use the fallback
|
|
* more often to avoid costly migrations of ourselves
|
|
* and other objects within the aperture.
|
|
*
|
|
* Half-the-aperture is used as a simple heuristic.
|
|
* More interesting would to do search for a free
|
|
* block prior to making the commitment to unbind.
|
|
* That caters for the self-harm case, and with a
|
|
* little more heuristics (e.g. NOFAULT, NOEVICT)
|
|
* we could try to minimise harm to others.
|
|
*/
|
|
if (flags & PIN_NONBLOCK &&
|
|
obj->base.size > ggtt->mappable_end / 2)
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
vma = i915_vma_instance(obj, &ggtt->vm, view);
|
|
if (IS_ERR(vma))
|
|
return vma;
|
|
|
|
if (i915_vma_misplaced(vma, size, alignment, flags)) {
|
|
if (flags & PIN_NONBLOCK) {
|
|
if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
|
|
return ERR_PTR(-ENOSPC);
|
|
|
|
if (flags & PIN_MAPPABLE &&
|
|
vma->fence_size > ggtt->mappable_end / 2)
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
if (vma->fence && !i915_gem_object_is_tiled(obj)) {
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
i915_vma_revoke_fence(vma);
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
}
|
|
|
|
ret = i915_vma_wait_for_bind(vma);
|
|
if (ret) {
|
|
i915_vma_unpin(vma);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return vma;
|
|
}
|
|
|
|
int
|
|
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dev);
|
|
struct drm_i915_gem_madvise *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int err;
|
|
|
|
switch (args->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
case I915_MADV_WILLNEED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
obj = i915_gem_object_lookup(file_priv, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
err = mutex_lock_interruptible(&obj->mm.lock);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (i915_gem_object_has_pages(obj) &&
|
|
i915_gem_object_is_tiled(obj) &&
|
|
i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
|
|
if (obj->mm.madv == I915_MADV_WILLNEED) {
|
|
GEM_BUG_ON(!obj->mm.quirked);
|
|
__i915_gem_object_unpin_pages(obj);
|
|
obj->mm.quirked = false;
|
|
}
|
|
if (args->madv == I915_MADV_WILLNEED) {
|
|
GEM_BUG_ON(obj->mm.quirked);
|
|
__i915_gem_object_pin_pages(obj);
|
|
obj->mm.quirked = true;
|
|
}
|
|
}
|
|
|
|
if (obj->mm.madv != __I915_MADV_PURGED)
|
|
obj->mm.madv = args->madv;
|
|
|
|
if (i915_gem_object_has_pages(obj)) {
|
|
struct list_head *list;
|
|
|
|
if (i915_gem_object_is_shrinkable(obj)) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i915->mm.obj_lock, flags);
|
|
|
|
if (obj->mm.madv != I915_MADV_WILLNEED)
|
|
list = &i915->mm.purge_list;
|
|
else
|
|
list = &i915->mm.shrink_list;
|
|
list_move_tail(&obj->mm.link, list);
|
|
|
|
spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
|
|
}
|
|
}
|
|
|
|
/* if the object is no longer attached, discard its backing storage */
|
|
if (obj->mm.madv == I915_MADV_DONTNEED &&
|
|
!i915_gem_object_has_pages(obj))
|
|
i915_gem_object_truncate(obj);
|
|
|
|
args->retained = obj->mm.madv != __I915_MADV_PURGED;
|
|
mutex_unlock(&obj->mm.lock);
|
|
|
|
out:
|
|
i915_gem_object_put(obj);
|
|
return err;
|
|
}
|
|
|
|
int i915_gem_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
int ret;
|
|
|
|
/* We need to fallback to 4K pages if host doesn't support huge gtt. */
|
|
if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
|
|
mkwrite_device_info(dev_priv)->page_sizes =
|
|
I915_GTT_PAGE_SIZE_4K;
|
|
|
|
ret = i915_gem_init_userptr(dev_priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_uc_fetch_firmwares(&dev_priv->gt.uc);
|
|
intel_wopcm_init(&dev_priv->wopcm);
|
|
|
|
ret = i915_init_ggtt(dev_priv);
|
|
if (ret) {
|
|
GEM_BUG_ON(ret == -EIO);
|
|
goto err_unlock;
|
|
}
|
|
|
|
/*
|
|
* Despite its name intel_init_clock_gating applies both display
|
|
* clock gating workarounds; GT mmio workarounds and the occasional
|
|
* GT power context workaround. Worse, sometimes it includes a context
|
|
* register workaround which we need to apply before we record the
|
|
* default HW state for all contexts.
|
|
*
|
|
* FIXME: break up the workarounds and apply them at the right time!
|
|
*/
|
|
intel_init_clock_gating(dev_priv);
|
|
|
|
ret = intel_gt_init(&dev_priv->gt);
|
|
if (ret)
|
|
goto err_unlock;
|
|
|
|
return 0;
|
|
|
|
/*
|
|
* Unwinding is complicated by that we want to handle -EIO to mean
|
|
* disable GPU submission but keep KMS alive. We want to mark the
|
|
* HW as irrevisibly wedged, but keep enough state around that the
|
|
* driver doesn't explode during runtime.
|
|
*/
|
|
err_unlock:
|
|
i915_gem_drain_workqueue(dev_priv);
|
|
|
|
if (ret != -EIO) {
|
|
intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
|
|
i915_gem_cleanup_userptr(dev_priv);
|
|
}
|
|
|
|
if (ret == -EIO) {
|
|
/*
|
|
* Allow engines or uC initialisation to fail by marking the GPU
|
|
* as wedged. But we only want to do this when the GPU is angry,
|
|
* for all other failure, such as an allocation failure, bail.
|
|
*/
|
|
if (!intel_gt_is_wedged(&dev_priv->gt)) {
|
|
i915_probe_error(dev_priv,
|
|
"Failed to initialize GPU, declaring it wedged!\n");
|
|
intel_gt_set_wedged(&dev_priv->gt);
|
|
}
|
|
|
|
/* Minimal basic recovery for KMS */
|
|
ret = i915_ggtt_enable_hw(dev_priv);
|
|
i915_ggtt_resume(&dev_priv->ggtt);
|
|
intel_init_clock_gating(dev_priv);
|
|
}
|
|
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_driver_register(struct drm_i915_private *i915)
|
|
{
|
|
i915_gem_driver_register__shrinker(i915);
|
|
|
|
intel_engines_driver_register(i915);
|
|
}
|
|
|
|
void i915_gem_driver_unregister(struct drm_i915_private *i915)
|
|
{
|
|
i915_gem_driver_unregister__shrinker(i915);
|
|
}
|
|
|
|
void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
|
|
{
|
|
intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
|
|
|
|
i915_gem_suspend_late(dev_priv);
|
|
intel_gt_driver_remove(&dev_priv->gt);
|
|
dev_priv->uabi_engines = RB_ROOT;
|
|
|
|
/* Flush any outstanding unpin_work. */
|
|
i915_gem_drain_workqueue(dev_priv);
|
|
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
}
|
|
|
|
void i915_gem_driver_release(struct drm_i915_private *dev_priv)
|
|
{
|
|
i915_gem_driver_release__contexts(dev_priv);
|
|
|
|
intel_gt_driver_release(&dev_priv->gt);
|
|
|
|
intel_wa_list_free(&dev_priv->gt_wa_list);
|
|
|
|
intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
|
|
i915_gem_cleanup_userptr(dev_priv);
|
|
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
|
|
drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
|
|
}
|
|
|
|
static void i915_gem_init__mm(struct drm_i915_private *i915)
|
|
{
|
|
spin_lock_init(&i915->mm.obj_lock);
|
|
|
|
init_llist_head(&i915->mm.free_list);
|
|
|
|
INIT_LIST_HEAD(&i915->mm.purge_list);
|
|
INIT_LIST_HEAD(&i915->mm.shrink_list);
|
|
|
|
i915_gem_init__objects(i915);
|
|
}
|
|
|
|
void i915_gem_init_early(struct drm_i915_private *dev_priv)
|
|
{
|
|
i915_gem_init__mm(dev_priv);
|
|
i915_gem_init__contexts(dev_priv);
|
|
|
|
spin_lock_init(&dev_priv->fb_tracking.lock);
|
|
}
|
|
|
|
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
|
|
{
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
|
|
GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
|
|
drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
|
|
}
|
|
|
|
int i915_gem_freeze(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* Discard all purgeable objects, let userspace recover those as
|
|
* required after resuming.
|
|
*/
|
|
i915_gem_shrink_all(dev_priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_freeze_late(struct drm_i915_private *i915)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
intel_wakeref_t wakeref;
|
|
|
|
/*
|
|
* Called just before we write the hibernation image.
|
|
*
|
|
* We need to update the domain tracking to reflect that the CPU
|
|
* will be accessing all the pages to create and restore from the
|
|
* hibernation, and so upon restoration those pages will be in the
|
|
* CPU domain.
|
|
*
|
|
* To make sure the hibernation image contains the latest state,
|
|
* we update that state just before writing out the image.
|
|
*
|
|
* To try and reduce the hibernation image, we manually shrink
|
|
* the objects as well, see i915_gem_freeze()
|
|
*/
|
|
|
|
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
|
|
|
|
i915_gem_shrink(i915, -1UL, NULL, ~0);
|
|
i915_gem_drain_freed_objects(i915);
|
|
|
|
list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
|
|
i915_gem_object_lock(obj);
|
|
drm_WARN_ON(&i915->drm,
|
|
i915_gem_object_set_to_cpu_domain(obj, true));
|
|
i915_gem_object_unlock(obj);
|
|
}
|
|
|
|
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
struct i915_request *request;
|
|
|
|
/* Clean up our request list when the client is going away, so that
|
|
* later retire_requests won't dereference our soon-to-be-gone
|
|
* file_priv.
|
|
*/
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_for_each_entry(request, &file_priv->mm.request_list, client_link)
|
|
request->file_priv = NULL;
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv;
|
|
int ret;
|
|
|
|
DRM_DEBUG("\n");
|
|
|
|
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
|
|
if (!file_priv)
|
|
return -ENOMEM;
|
|
|
|
file->driver_priv = file_priv;
|
|
file_priv->dev_priv = i915;
|
|
file_priv->file = file;
|
|
|
|
spin_lock_init(&file_priv->mm.lock);
|
|
INIT_LIST_HEAD(&file_priv->mm.request_list);
|
|
|
|
file_priv->bsd_engine = -1;
|
|
file_priv->hang_timestamp = jiffies;
|
|
|
|
ret = i915_gem_context_open(i915, file);
|
|
if (ret)
|
|
kfree(file_priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftests/mock_gem_device.c"
|
|
#include "selftests/i915_gem.c"
|
|
#endif
|