mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 11:16:42 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
113 lines
4.2 KiB
C
113 lines
4.2 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Kernelspace interface to the pkey device driver
|
|
*
|
|
* Copyright IBM Corp. 2016
|
|
*
|
|
* Author: Harald Freudenberger <freude@de.ibm.com>
|
|
*
|
|
*/
|
|
|
|
#ifndef _KAPI_PKEY_H
|
|
#define _KAPI_PKEY_H
|
|
|
|
#include <linux/ioctl.h>
|
|
#include <linux/types.h>
|
|
#include <uapi/asm/pkey.h>
|
|
|
|
/*
|
|
* Generate (AES) random secure key.
|
|
* @param cardnr may be -1 (use default card)
|
|
* @param domain may be -1 (use default domain)
|
|
* @param keytype one of the PKEY_KEYTYPE values
|
|
* @param seckey pointer to buffer receiving the secure key
|
|
* @return 0 on success, negative errno value on failure
|
|
*/
|
|
int pkey_genseckey(__u16 cardnr, __u16 domain,
|
|
__u32 keytype, struct pkey_seckey *seckey);
|
|
|
|
/*
|
|
* Generate (AES) secure key with given key value.
|
|
* @param cardnr may be -1 (use default card)
|
|
* @param domain may be -1 (use default domain)
|
|
* @param keytype one of the PKEY_KEYTYPE values
|
|
* @param clrkey pointer to buffer with clear key data
|
|
* @param seckey pointer to buffer receiving the secure key
|
|
* @return 0 on success, negative errno value on failure
|
|
*/
|
|
int pkey_clr2seckey(__u16 cardnr, __u16 domain, __u32 keytype,
|
|
const struct pkey_clrkey *clrkey,
|
|
struct pkey_seckey *seckey);
|
|
|
|
/*
|
|
* Derive (AES) proteced key from the (AES) secure key blob.
|
|
* @param cardnr may be -1 (use default card)
|
|
* @param domain may be -1 (use default domain)
|
|
* @param seckey pointer to buffer with the input secure key
|
|
* @param protkey pointer to buffer receiving the protected key and
|
|
* additional info (type, length)
|
|
* @return 0 on success, negative errno value on failure
|
|
*/
|
|
int pkey_sec2protkey(__u16 cardnr, __u16 domain,
|
|
const struct pkey_seckey *seckey,
|
|
struct pkey_protkey *protkey);
|
|
|
|
/*
|
|
* Derive (AES) protected key from a given clear key value.
|
|
* @param keytype one of the PKEY_KEYTYPE values
|
|
* @param clrkey pointer to buffer with clear key data
|
|
* @param protkey pointer to buffer receiving the protected key and
|
|
* additional info (type, length)
|
|
* @return 0 on success, negative errno value on failure
|
|
*/
|
|
int pkey_clr2protkey(__u32 keytype,
|
|
const struct pkey_clrkey *clrkey,
|
|
struct pkey_protkey *protkey);
|
|
|
|
/*
|
|
* Search for a matching crypto card based on the Master Key
|
|
* Verification Pattern provided inside a secure key.
|
|
* @param seckey pointer to buffer with the input secure key
|
|
* @param cardnr pointer to cardnr, receives the card number on success
|
|
* @param domain pointer to domain, receives the domain number on success
|
|
* @param verify if set, always verify by fetching verification pattern
|
|
* from card
|
|
* @return 0 on success, negative errno value on failure. If no card could be
|
|
* found, -ENODEV is returned.
|
|
*/
|
|
int pkey_findcard(const struct pkey_seckey *seckey,
|
|
__u16 *cardnr, __u16 *domain, int verify);
|
|
|
|
/*
|
|
* Find card and transform secure key to protected key.
|
|
* @param seckey pointer to buffer with the input secure key
|
|
* @param protkey pointer to buffer receiving the protected key and
|
|
* additional info (type, length)
|
|
* @return 0 on success, negative errno value on failure
|
|
*/
|
|
int pkey_skey2pkey(const struct pkey_seckey *seckey,
|
|
struct pkey_protkey *protkey);
|
|
|
|
/*
|
|
* Verify the given secure key for being able to be useable with
|
|
* the pkey module. Check for correct key type and check for having at
|
|
* least one crypto card being able to handle this key (master key
|
|
* or old master key verification pattern matches).
|
|
* Return some info about the key: keysize in bits, keytype (currently
|
|
* only AES), flag if key is wrapped with an old MKVP.
|
|
* @param seckey pointer to buffer with the input secure key
|
|
* @param pcardnr pointer to cardnr, receives the card number on success
|
|
* @param pdomain pointer to domain, receives the domain number on success
|
|
* @param pkeysize pointer to keysize, receives the bitsize of the key
|
|
* @param pattributes pointer to attributes, receives additional info
|
|
* PKEY_VERIFY_ATTR_AES if the key is an AES key
|
|
* PKEY_VERIFY_ATTR_OLD_MKVP if key has old mkvp stored in
|
|
* @return 0 on success, negative errno value on failure. If no card could
|
|
* be found which is able to handle this key, -ENODEV is returned.
|
|
*/
|
|
int pkey_verifykey(const struct pkey_seckey *seckey,
|
|
u16 *pcardnr, u16 *pdomain,
|
|
u16 *pkeysize, u32 *pattributes);
|
|
|
|
#endif /* _KAPI_PKEY_H */
|