mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 22:06:20 +07:00
22240df7ac
Enhance the GHASH implementation that uses 64-bit polynomial multiplication by adding support for 4-way aggregation. This more than doubles the performance, from 2.4 cycles per byte to 1.1 cpb on Cortex-A53. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
666 lines
16 KiB
C
666 lines
16 KiB
C
/*
|
|
* Accelerated GHASH implementation with ARMv8 PMULL instructions.
|
|
*
|
|
* Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <asm/neon.h>
|
|
#include <asm/simd.h>
|
|
#include <asm/unaligned.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/b128ops.h>
|
|
#include <crypto/gf128mul.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/cpufeature.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/module.h>
|
|
|
|
MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
|
|
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_ALIAS_CRYPTO("ghash");
|
|
|
|
#define GHASH_BLOCK_SIZE 16
|
|
#define GHASH_DIGEST_SIZE 16
|
|
#define GCM_IV_SIZE 12
|
|
|
|
struct ghash_key {
|
|
u64 h[2];
|
|
u64 h2[2];
|
|
u64 h3[2];
|
|
u64 h4[2];
|
|
|
|
be128 k;
|
|
};
|
|
|
|
struct ghash_desc_ctx {
|
|
u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
|
|
u8 buf[GHASH_BLOCK_SIZE];
|
|
u32 count;
|
|
};
|
|
|
|
struct gcm_aes_ctx {
|
|
struct crypto_aes_ctx aes_key;
|
|
struct ghash_key ghash_key;
|
|
};
|
|
|
|
asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
|
|
struct ghash_key const *k,
|
|
const char *head);
|
|
|
|
asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
|
|
struct ghash_key const *k,
|
|
const char *head);
|
|
|
|
static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src,
|
|
struct ghash_key const *k,
|
|
const char *head);
|
|
|
|
asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
|
|
const u8 src[], struct ghash_key const *k,
|
|
u8 ctr[], u32 const rk[], int rounds,
|
|
u8 ks[]);
|
|
|
|
asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
|
|
const u8 src[], struct ghash_key const *k,
|
|
u8 ctr[], u32 const rk[], int rounds);
|
|
|
|
asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
|
|
u32 const rk[], int rounds);
|
|
|
|
asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
|
|
|
|
static int ghash_init(struct shash_desc *desc)
|
|
{
|
|
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
*ctx = (struct ghash_desc_ctx){};
|
|
return 0;
|
|
}
|
|
|
|
static void ghash_do_update(int blocks, u64 dg[], const char *src,
|
|
struct ghash_key *key, const char *head)
|
|
{
|
|
if (likely(may_use_simd())) {
|
|
kernel_neon_begin();
|
|
pmull_ghash_update(blocks, dg, src, key, head);
|
|
kernel_neon_end();
|
|
} else {
|
|
be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
|
|
|
|
do {
|
|
const u8 *in = src;
|
|
|
|
if (head) {
|
|
in = head;
|
|
blocks++;
|
|
head = NULL;
|
|
} else {
|
|
src += GHASH_BLOCK_SIZE;
|
|
}
|
|
|
|
crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
|
|
gf128mul_lle(&dst, &key->k);
|
|
} while (--blocks);
|
|
|
|
dg[0] = be64_to_cpu(dst.b);
|
|
dg[1] = be64_to_cpu(dst.a);
|
|
}
|
|
}
|
|
|
|
/* avoid hogging the CPU for too long */
|
|
#define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE)
|
|
|
|
static int ghash_update(struct shash_desc *desc, const u8 *src,
|
|
unsigned int len)
|
|
{
|
|
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
|
|
|
|
ctx->count += len;
|
|
|
|
if ((partial + len) >= GHASH_BLOCK_SIZE) {
|
|
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
|
|
int blocks;
|
|
|
|
if (partial) {
|
|
int p = GHASH_BLOCK_SIZE - partial;
|
|
|
|
memcpy(ctx->buf + partial, src, p);
|
|
src += p;
|
|
len -= p;
|
|
}
|
|
|
|
blocks = len / GHASH_BLOCK_SIZE;
|
|
len %= GHASH_BLOCK_SIZE;
|
|
|
|
do {
|
|
int chunk = min(blocks, MAX_BLOCKS);
|
|
|
|
ghash_do_update(chunk, ctx->digest, src, key,
|
|
partial ? ctx->buf : NULL);
|
|
|
|
blocks -= chunk;
|
|
src += chunk * GHASH_BLOCK_SIZE;
|
|
partial = 0;
|
|
} while (unlikely(blocks > 0));
|
|
}
|
|
if (len)
|
|
memcpy(ctx->buf + partial, src, len);
|
|
return 0;
|
|
}
|
|
|
|
static int ghash_final(struct shash_desc *desc, u8 *dst)
|
|
{
|
|
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
|
|
|
|
if (partial) {
|
|
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
|
|
|
|
memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
|
|
|
|
ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
|
|
}
|
|
put_unaligned_be64(ctx->digest[1], dst);
|
|
put_unaligned_be64(ctx->digest[0], dst + 8);
|
|
|
|
*ctx = (struct ghash_desc_ctx){};
|
|
return 0;
|
|
}
|
|
|
|
static void ghash_reflect(u64 h[], const be128 *k)
|
|
{
|
|
u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
|
|
|
|
h[0] = (be64_to_cpu(k->b) << 1) | carry;
|
|
h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
|
|
|
|
if (carry)
|
|
h[1] ^= 0xc200000000000000UL;
|
|
}
|
|
|
|
static int __ghash_setkey(struct ghash_key *key,
|
|
const u8 *inkey, unsigned int keylen)
|
|
{
|
|
be128 h;
|
|
|
|
/* needed for the fallback */
|
|
memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
|
|
|
|
ghash_reflect(key->h, &key->k);
|
|
|
|
h = key->k;
|
|
gf128mul_lle(&h, &key->k);
|
|
ghash_reflect(key->h2, &h);
|
|
|
|
gf128mul_lle(&h, &key->k);
|
|
ghash_reflect(key->h3, &h);
|
|
|
|
gf128mul_lle(&h, &key->k);
|
|
ghash_reflect(key->h4, &h);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ghash_setkey(struct crypto_shash *tfm,
|
|
const u8 *inkey, unsigned int keylen)
|
|
{
|
|
struct ghash_key *key = crypto_shash_ctx(tfm);
|
|
|
|
if (keylen != GHASH_BLOCK_SIZE) {
|
|
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return __ghash_setkey(key, inkey, keylen);
|
|
}
|
|
|
|
static struct shash_alg ghash_alg = {
|
|
.base.cra_name = "ghash",
|
|
.base.cra_driver_name = "ghash-ce",
|
|
.base.cra_priority = 200,
|
|
.base.cra_blocksize = GHASH_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct ghash_key),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.digestsize = GHASH_DIGEST_SIZE,
|
|
.init = ghash_init,
|
|
.update = ghash_update,
|
|
.final = ghash_final,
|
|
.setkey = ghash_setkey,
|
|
.descsize = sizeof(struct ghash_desc_ctx),
|
|
};
|
|
|
|
static int num_rounds(struct crypto_aes_ctx *ctx)
|
|
{
|
|
/*
|
|
* # of rounds specified by AES:
|
|
* 128 bit key 10 rounds
|
|
* 192 bit key 12 rounds
|
|
* 256 bit key 14 rounds
|
|
* => n byte key => 6 + (n/4) rounds
|
|
*/
|
|
return 6 + ctx->key_length / 4;
|
|
}
|
|
|
|
static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
|
|
unsigned int keylen)
|
|
{
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
|
|
u8 key[GHASH_BLOCK_SIZE];
|
|
int ret;
|
|
|
|
ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
|
|
if (ret) {
|
|
tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
|
return -EINVAL;
|
|
}
|
|
|
|
__aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
|
|
num_rounds(&ctx->aes_key));
|
|
|
|
return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
|
|
}
|
|
|
|
static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
switch (authsize) {
|
|
case 4:
|
|
case 8:
|
|
case 12 ... 16:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
|
|
int *buf_count, struct gcm_aes_ctx *ctx)
|
|
{
|
|
if (*buf_count > 0) {
|
|
int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
|
|
|
|
memcpy(&buf[*buf_count], src, buf_added);
|
|
|
|
*buf_count += buf_added;
|
|
src += buf_added;
|
|
count -= buf_added;
|
|
}
|
|
|
|
if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
|
|
int blocks = count / GHASH_BLOCK_SIZE;
|
|
|
|
ghash_do_update(blocks, dg, src, &ctx->ghash_key,
|
|
*buf_count ? buf : NULL);
|
|
|
|
src += blocks * GHASH_BLOCK_SIZE;
|
|
count %= GHASH_BLOCK_SIZE;
|
|
*buf_count = 0;
|
|
}
|
|
|
|
if (count > 0) {
|
|
memcpy(buf, src, count);
|
|
*buf_count = count;
|
|
}
|
|
}
|
|
|
|
static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
u8 buf[GHASH_BLOCK_SIZE];
|
|
struct scatter_walk walk;
|
|
u32 len = req->assoclen;
|
|
int buf_count = 0;
|
|
|
|
scatterwalk_start(&walk, req->src);
|
|
|
|
do {
|
|
u32 n = scatterwalk_clamp(&walk, len);
|
|
u8 *p;
|
|
|
|
if (!n) {
|
|
scatterwalk_start(&walk, sg_next(walk.sg));
|
|
n = scatterwalk_clamp(&walk, len);
|
|
}
|
|
p = scatterwalk_map(&walk);
|
|
|
|
gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
|
|
len -= n;
|
|
|
|
scatterwalk_unmap(p);
|
|
scatterwalk_advance(&walk, n);
|
|
scatterwalk_done(&walk, 0, len);
|
|
} while (len);
|
|
|
|
if (buf_count) {
|
|
memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
|
|
ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
|
|
}
|
|
}
|
|
|
|
static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
|
|
u64 dg[], u8 tag[], int cryptlen)
|
|
{
|
|
u8 mac[AES_BLOCK_SIZE];
|
|
u128 lengths;
|
|
|
|
lengths.a = cpu_to_be64(req->assoclen * 8);
|
|
lengths.b = cpu_to_be64(cryptlen * 8);
|
|
|
|
ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL);
|
|
|
|
put_unaligned_be64(dg[1], mac);
|
|
put_unaligned_be64(dg[0], mac + 8);
|
|
|
|
crypto_xor(tag, mac, AES_BLOCK_SIZE);
|
|
}
|
|
|
|
static int gcm_encrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
struct skcipher_walk walk;
|
|
u8 iv[AES_BLOCK_SIZE];
|
|
u8 ks[2 * AES_BLOCK_SIZE];
|
|
u8 tag[AES_BLOCK_SIZE];
|
|
u64 dg[2] = {};
|
|
int nrounds = num_rounds(&ctx->aes_key);
|
|
int err;
|
|
|
|
if (req->assoclen)
|
|
gcm_calculate_auth_mac(req, dg);
|
|
|
|
memcpy(iv, req->iv, GCM_IV_SIZE);
|
|
put_unaligned_be32(1, iv + GCM_IV_SIZE);
|
|
|
|
err = skcipher_walk_aead_encrypt(&walk, req, false);
|
|
|
|
if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) {
|
|
u32 const *rk = NULL;
|
|
|
|
kernel_neon_begin();
|
|
pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
|
|
put_unaligned_be32(2, iv + GCM_IV_SIZE);
|
|
pmull_gcm_encrypt_block(ks, iv, NULL, nrounds);
|
|
put_unaligned_be32(3, iv + GCM_IV_SIZE);
|
|
pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds);
|
|
put_unaligned_be32(4, iv + GCM_IV_SIZE);
|
|
|
|
do {
|
|
int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
|
|
|
|
if (rk)
|
|
kernel_neon_begin();
|
|
|
|
pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
|
|
walk.src.virt.addr, &ctx->ghash_key,
|
|
iv, rk, nrounds, ks);
|
|
kernel_neon_end();
|
|
|
|
err = skcipher_walk_done(&walk,
|
|
walk.nbytes % (2 * AES_BLOCK_SIZE));
|
|
|
|
rk = ctx->aes_key.key_enc;
|
|
} while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
|
|
} else {
|
|
__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
|
|
put_unaligned_be32(2, iv + GCM_IV_SIZE);
|
|
|
|
while (walk.nbytes >= AES_BLOCK_SIZE) {
|
|
int blocks = walk.nbytes / AES_BLOCK_SIZE;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
u8 *src = walk.src.virt.addr;
|
|
|
|
do {
|
|
__aes_arm64_encrypt(ctx->aes_key.key_enc,
|
|
ks, iv, nrounds);
|
|
crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
|
|
crypto_inc(iv, AES_BLOCK_SIZE);
|
|
|
|
dst += AES_BLOCK_SIZE;
|
|
src += AES_BLOCK_SIZE;
|
|
} while (--blocks > 0);
|
|
|
|
ghash_do_update(walk.nbytes / AES_BLOCK_SIZE, dg,
|
|
walk.dst.virt.addr, &ctx->ghash_key,
|
|
NULL);
|
|
|
|
err = skcipher_walk_done(&walk,
|
|
walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
if (walk.nbytes)
|
|
__aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
|
|
nrounds);
|
|
}
|
|
|
|
/* handle the tail */
|
|
if (walk.nbytes) {
|
|
u8 buf[GHASH_BLOCK_SIZE];
|
|
unsigned int nbytes = walk.nbytes;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
u8 *head = NULL;
|
|
|
|
crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
|
|
walk.nbytes);
|
|
|
|
if (walk.nbytes > GHASH_BLOCK_SIZE) {
|
|
head = dst;
|
|
dst += GHASH_BLOCK_SIZE;
|
|
nbytes %= GHASH_BLOCK_SIZE;
|
|
}
|
|
|
|
memcpy(buf, dst, nbytes);
|
|
memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
|
|
ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head);
|
|
|
|
err = skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
gcm_final(req, ctx, dg, tag, req->cryptlen);
|
|
|
|
/* copy authtag to end of dst */
|
|
scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
|
|
crypto_aead_authsize(aead), 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gcm_decrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
unsigned int authsize = crypto_aead_authsize(aead);
|
|
struct skcipher_walk walk;
|
|
u8 iv[2 * AES_BLOCK_SIZE];
|
|
u8 tag[AES_BLOCK_SIZE];
|
|
u8 buf[2 * GHASH_BLOCK_SIZE];
|
|
u64 dg[2] = {};
|
|
int nrounds = num_rounds(&ctx->aes_key);
|
|
int err;
|
|
|
|
if (req->assoclen)
|
|
gcm_calculate_auth_mac(req, dg);
|
|
|
|
memcpy(iv, req->iv, GCM_IV_SIZE);
|
|
put_unaligned_be32(1, iv + GCM_IV_SIZE);
|
|
|
|
err = skcipher_walk_aead_decrypt(&walk, req, false);
|
|
|
|
if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) {
|
|
u32 const *rk = NULL;
|
|
|
|
kernel_neon_begin();
|
|
pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
|
|
put_unaligned_be32(2, iv + GCM_IV_SIZE);
|
|
|
|
do {
|
|
int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
|
|
int rem = walk.total - blocks * AES_BLOCK_SIZE;
|
|
|
|
if (rk)
|
|
kernel_neon_begin();
|
|
|
|
pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
|
|
walk.src.virt.addr, &ctx->ghash_key,
|
|
iv, rk, nrounds);
|
|
|
|
/* check if this is the final iteration of the loop */
|
|
if (rem < (2 * AES_BLOCK_SIZE)) {
|
|
u8 *iv2 = iv + AES_BLOCK_SIZE;
|
|
|
|
if (rem > AES_BLOCK_SIZE) {
|
|
memcpy(iv2, iv, AES_BLOCK_SIZE);
|
|
crypto_inc(iv2, AES_BLOCK_SIZE);
|
|
}
|
|
|
|
pmull_gcm_encrypt_block(iv, iv, NULL, nrounds);
|
|
|
|
if (rem > AES_BLOCK_SIZE)
|
|
pmull_gcm_encrypt_block(iv2, iv2, NULL,
|
|
nrounds);
|
|
}
|
|
|
|
kernel_neon_end();
|
|
|
|
err = skcipher_walk_done(&walk,
|
|
walk.nbytes % (2 * AES_BLOCK_SIZE));
|
|
|
|
rk = ctx->aes_key.key_enc;
|
|
} while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
|
|
} else {
|
|
__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
|
|
put_unaligned_be32(2, iv + GCM_IV_SIZE);
|
|
|
|
while (walk.nbytes >= AES_BLOCK_SIZE) {
|
|
int blocks = walk.nbytes / AES_BLOCK_SIZE;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
u8 *src = walk.src.virt.addr;
|
|
|
|
ghash_do_update(blocks, dg, walk.src.virt.addr,
|
|
&ctx->ghash_key, NULL);
|
|
|
|
do {
|
|
__aes_arm64_encrypt(ctx->aes_key.key_enc,
|
|
buf, iv, nrounds);
|
|
crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
|
|
crypto_inc(iv, AES_BLOCK_SIZE);
|
|
|
|
dst += AES_BLOCK_SIZE;
|
|
src += AES_BLOCK_SIZE;
|
|
} while (--blocks > 0);
|
|
|
|
err = skcipher_walk_done(&walk,
|
|
walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
if (walk.nbytes)
|
|
__aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
|
|
nrounds);
|
|
}
|
|
|
|
/* handle the tail */
|
|
if (walk.nbytes) {
|
|
const u8 *src = walk.src.virt.addr;
|
|
const u8 *head = NULL;
|
|
unsigned int nbytes = walk.nbytes;
|
|
|
|
if (walk.nbytes > GHASH_BLOCK_SIZE) {
|
|
head = src;
|
|
src += GHASH_BLOCK_SIZE;
|
|
nbytes %= GHASH_BLOCK_SIZE;
|
|
}
|
|
|
|
memcpy(buf, src, nbytes);
|
|
memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
|
|
ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head);
|
|
|
|
crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
|
|
walk.nbytes);
|
|
|
|
err = skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
|
|
|
|
/* compare calculated auth tag with the stored one */
|
|
scatterwalk_map_and_copy(buf, req->src,
|
|
req->assoclen + req->cryptlen - authsize,
|
|
authsize, 0);
|
|
|
|
if (crypto_memneq(tag, buf, authsize))
|
|
return -EBADMSG;
|
|
return 0;
|
|
}
|
|
|
|
static struct aead_alg gcm_aes_alg = {
|
|
.ivsize = GCM_IV_SIZE,
|
|
.chunksize = 2 * AES_BLOCK_SIZE,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
.setkey = gcm_setkey,
|
|
.setauthsize = gcm_setauthsize,
|
|
.encrypt = gcm_encrypt,
|
|
.decrypt = gcm_decrypt,
|
|
|
|
.base.cra_name = "gcm(aes)",
|
|
.base.cra_driver_name = "gcm-aes-ce",
|
|
.base.cra_priority = 300,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct gcm_aes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
};
|
|
|
|
static int __init ghash_ce_mod_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!(elf_hwcap & HWCAP_ASIMD))
|
|
return -ENODEV;
|
|
|
|
if (elf_hwcap & HWCAP_PMULL)
|
|
pmull_ghash_update = pmull_ghash_update_p64;
|
|
|
|
else
|
|
pmull_ghash_update = pmull_ghash_update_p8;
|
|
|
|
ret = crypto_register_shash(&ghash_alg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (elf_hwcap & HWCAP_PMULL) {
|
|
ret = crypto_register_aead(&gcm_aes_alg);
|
|
if (ret)
|
|
crypto_unregister_shash(&ghash_alg);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void __exit ghash_ce_mod_exit(void)
|
|
{
|
|
crypto_unregister_shash(&ghash_alg);
|
|
crypto_unregister_aead(&gcm_aes_alg);
|
|
}
|
|
|
|
static const struct cpu_feature ghash_cpu_feature[] = {
|
|
{ cpu_feature(PMULL) }, { }
|
|
};
|
|
MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
|
|
|
|
module_init(ghash_ce_mod_init);
|
|
module_exit(ghash_ce_mod_exit);
|