mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-17 04:49:33 +07:00
7da45139d2
In the raw NAND core, a NAND chip is described by a nand_chip structure, while a NAND controller is described with a nand_hw_control structure which is not very meaningful. Rename this structure nand_controller. As the structure gets renamed, it is logical to also rename the core function initializing it from nand_hw_control_init() to nand_controller_init(). Lastly, the 'hwcontrol' entry of the nand_chip structure is not meaningful neither while it has the role of fallback when no controller structure is provided by the driver (the controller driver is dumb and can only control a single chip). Thus, it is renamed dummy_controller. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Acked-by: Boris Brezillon <boris.brezillon@bootlin.com>
1233 lines
33 KiB
C
1233 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
|
|
* Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
|
|
* Copyright (C) 2012 Avionic Design GmbH
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/reset.h>
|
|
|
|
#define COMMAND 0x00
|
|
#define COMMAND_GO BIT(31)
|
|
#define COMMAND_CLE BIT(30)
|
|
#define COMMAND_ALE BIT(29)
|
|
#define COMMAND_PIO BIT(28)
|
|
#define COMMAND_TX BIT(27)
|
|
#define COMMAND_RX BIT(26)
|
|
#define COMMAND_SEC_CMD BIT(25)
|
|
#define COMMAND_AFT_DAT BIT(24)
|
|
#define COMMAND_TRANS_SIZE(size) ((((size) - 1) & 0xf) << 20)
|
|
#define COMMAND_A_VALID BIT(19)
|
|
#define COMMAND_B_VALID BIT(18)
|
|
#define COMMAND_RD_STATUS_CHK BIT(17)
|
|
#define COMMAND_RBSY_CHK BIT(16)
|
|
#define COMMAND_CE(x) BIT(8 + ((x) & 0x7))
|
|
#define COMMAND_CLE_SIZE(size) ((((size) - 1) & 0x3) << 4)
|
|
#define COMMAND_ALE_SIZE(size) ((((size) - 1) & 0xf) << 0)
|
|
|
|
#define STATUS 0x04
|
|
|
|
#define ISR 0x08
|
|
#define ISR_CORRFAIL_ERR BIT(24)
|
|
#define ISR_UND BIT(7)
|
|
#define ISR_OVR BIT(6)
|
|
#define ISR_CMD_DONE BIT(5)
|
|
#define ISR_ECC_ERR BIT(4)
|
|
|
|
#define IER 0x0c
|
|
#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16)
|
|
#define IER_UND BIT(7)
|
|
#define IER_OVR BIT(6)
|
|
#define IER_CMD_DONE BIT(5)
|
|
#define IER_ECC_ERR BIT(4)
|
|
#define IER_GIE BIT(0)
|
|
|
|
#define CONFIG 0x10
|
|
#define CONFIG_HW_ECC BIT(31)
|
|
#define CONFIG_ECC_SEL BIT(30)
|
|
#define CONFIG_ERR_COR BIT(29)
|
|
#define CONFIG_PIPE_EN BIT(28)
|
|
#define CONFIG_TVAL_4 (0 << 24)
|
|
#define CONFIG_TVAL_6 (1 << 24)
|
|
#define CONFIG_TVAL_8 (2 << 24)
|
|
#define CONFIG_SKIP_SPARE BIT(23)
|
|
#define CONFIG_BUS_WIDTH_16 BIT(21)
|
|
#define CONFIG_COM_BSY BIT(20)
|
|
#define CONFIG_PS_256 (0 << 16)
|
|
#define CONFIG_PS_512 (1 << 16)
|
|
#define CONFIG_PS_1024 (2 << 16)
|
|
#define CONFIG_PS_2048 (3 << 16)
|
|
#define CONFIG_PS_4096 (4 << 16)
|
|
#define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14)
|
|
#define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14)
|
|
#define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14)
|
|
#define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14)
|
|
#define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff)
|
|
|
|
#define TIMING_1 0x14
|
|
#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28)
|
|
#define TIMING_TWB(x) (((x) & 0xf) << 24)
|
|
#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20)
|
|
#define TIMING_TWHR(x) (((x) & 0xf) << 16)
|
|
#define TIMING_TCS(x) (((x) & 0x3) << 14)
|
|
#define TIMING_TWH(x) (((x) & 0x3) << 12)
|
|
#define TIMING_TWP(x) (((x) & 0xf) << 8)
|
|
#define TIMING_TRH(x) (((x) & 0x3) << 4)
|
|
#define TIMING_TRP(x) (((x) & 0xf) << 0)
|
|
|
|
#define RESP 0x18
|
|
|
|
#define TIMING_2 0x1c
|
|
#define TIMING_TADL(x) ((x) & 0xf)
|
|
|
|
#define CMD_REG1 0x20
|
|
#define CMD_REG2 0x24
|
|
#define ADDR_REG1 0x28
|
|
#define ADDR_REG2 0x2c
|
|
|
|
#define DMA_MST_CTRL 0x30
|
|
#define DMA_MST_CTRL_GO BIT(31)
|
|
#define DMA_MST_CTRL_IN (0 << 30)
|
|
#define DMA_MST_CTRL_OUT BIT(30)
|
|
#define DMA_MST_CTRL_PERF_EN BIT(29)
|
|
#define DMA_MST_CTRL_IE_DONE BIT(28)
|
|
#define DMA_MST_CTRL_REUSE BIT(27)
|
|
#define DMA_MST_CTRL_BURST_1 (2 << 24)
|
|
#define DMA_MST_CTRL_BURST_4 (3 << 24)
|
|
#define DMA_MST_CTRL_BURST_8 (4 << 24)
|
|
#define DMA_MST_CTRL_BURST_16 (5 << 24)
|
|
#define DMA_MST_CTRL_IS_DONE BIT(20)
|
|
#define DMA_MST_CTRL_EN_A BIT(2)
|
|
#define DMA_MST_CTRL_EN_B BIT(1)
|
|
|
|
#define DMA_CFG_A 0x34
|
|
#define DMA_CFG_B 0x38
|
|
|
|
#define FIFO_CTRL 0x3c
|
|
#define FIFO_CTRL_CLR_ALL BIT(3)
|
|
|
|
#define DATA_PTR 0x40
|
|
#define TAG_PTR 0x44
|
|
#define ECC_PTR 0x48
|
|
|
|
#define DEC_STATUS 0x4c
|
|
#define DEC_STATUS_A_ECC_FAIL BIT(1)
|
|
#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000
|
|
#define DEC_STATUS_ERR_COUNT_SHIFT 16
|
|
|
|
#define HWSTATUS_CMD 0x50
|
|
#define HWSTATUS_MASK 0x54
|
|
#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24)
|
|
#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16)
|
|
#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8)
|
|
#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0)
|
|
|
|
#define BCH_CONFIG 0xcc
|
|
#define BCH_ENABLE BIT(0)
|
|
#define BCH_TVAL_4 (0 << 4)
|
|
#define BCH_TVAL_8 (1 << 4)
|
|
#define BCH_TVAL_14 (2 << 4)
|
|
#define BCH_TVAL_16 (3 << 4)
|
|
|
|
#define DEC_STAT_RESULT 0xd0
|
|
#define DEC_STAT_BUF 0xd4
|
|
#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000
|
|
#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24
|
|
#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000
|
|
#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16
|
|
#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00
|
|
#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8
|
|
|
|
#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off))
|
|
|
|
#define SKIP_SPARE_BYTES 4
|
|
#define BITS_PER_STEP_RS 18
|
|
#define BITS_PER_STEP_BCH 13
|
|
|
|
#define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
|
|
#define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY
|
|
#define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \
|
|
HWSTATUS_RDSTATUS_VALUE(0) | \
|
|
HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
|
|
HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
|
|
|
|
struct tegra_nand_controller {
|
|
struct nand_controller controller;
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
int irq;
|
|
struct clk *clk;
|
|
struct completion command_complete;
|
|
struct completion dma_complete;
|
|
bool last_read_error;
|
|
int cur_cs;
|
|
struct nand_chip *chip;
|
|
};
|
|
|
|
struct tegra_nand_chip {
|
|
struct nand_chip chip;
|
|
struct gpio_desc *wp_gpio;
|
|
struct mtd_oob_region ecc;
|
|
u32 config;
|
|
u32 config_ecc;
|
|
u32 bch_config;
|
|
int cs[1];
|
|
};
|
|
|
|
static inline struct tegra_nand_controller *
|
|
to_tegra_ctrl(struct nand_controller *hw_ctrl)
|
|
{
|
|
return container_of(hw_ctrl, struct tegra_nand_controller, controller);
|
|
}
|
|
|
|
static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct tegra_nand_chip, chip);
|
|
}
|
|
|
|
static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
|
|
BITS_PER_BYTE);
|
|
|
|
if (section > 0)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = SKIP_SPARE_BYTES;
|
|
oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
return -ERANGE;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
|
|
.ecc = tegra_nand_ooblayout_rs_ecc,
|
|
.free = tegra_nand_ooblayout_no_free,
|
|
};
|
|
|
|
static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
|
|
BITS_PER_BYTE);
|
|
|
|
if (section > 0)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = SKIP_SPARE_BYTES;
|
|
oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
|
|
.ecc = tegra_nand_ooblayout_bch_ecc,
|
|
.free = tegra_nand_ooblayout_no_free,
|
|
};
|
|
|
|
static irqreturn_t tegra_nand_irq(int irq, void *data)
|
|
{
|
|
struct tegra_nand_controller *ctrl = data;
|
|
u32 isr, dma;
|
|
|
|
isr = readl_relaxed(ctrl->regs + ISR);
|
|
dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
|
|
dev_dbg(ctrl->dev, "isr %08x\n", isr);
|
|
|
|
if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
|
|
return IRQ_NONE;
|
|
|
|
/*
|
|
* The bit name is somewhat missleading: This is also set when
|
|
* HW ECC was successful. The data sheet states:
|
|
* Correctable OR Un-correctable errors occurred in the DMA transfer...
|
|
*/
|
|
if (isr & ISR_CORRFAIL_ERR)
|
|
ctrl->last_read_error = true;
|
|
|
|
if (isr & ISR_CMD_DONE)
|
|
complete(&ctrl->command_complete);
|
|
|
|
if (isr & ISR_UND)
|
|
dev_err(ctrl->dev, "FIFO underrun\n");
|
|
|
|
if (isr & ISR_OVR)
|
|
dev_err(ctrl->dev, "FIFO overrun\n");
|
|
|
|
/* handle DMA interrupts */
|
|
if (dma & DMA_MST_CTRL_IS_DONE) {
|
|
writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
|
|
complete(&ctrl->dma_complete);
|
|
}
|
|
|
|
/* clear interrupts */
|
|
writel_relaxed(isr, ctrl->regs + ISR);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const char * const tegra_nand_reg_names[] = {
|
|
"COMMAND",
|
|
"STATUS",
|
|
"ISR",
|
|
"IER",
|
|
"CONFIG",
|
|
"TIMING",
|
|
NULL,
|
|
"TIMING2",
|
|
"CMD_REG1",
|
|
"CMD_REG2",
|
|
"ADDR_REG1",
|
|
"ADDR_REG2",
|
|
"DMA_MST_CTRL",
|
|
"DMA_CFG_A",
|
|
"DMA_CFG_B",
|
|
"FIFO_CTRL",
|
|
};
|
|
|
|
static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
|
|
{
|
|
u32 reg;
|
|
int i;
|
|
|
|
dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
|
|
for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
|
|
const char *reg_name = tegra_nand_reg_names[i];
|
|
|
|
if (!reg_name)
|
|
continue;
|
|
|
|
reg = readl_relaxed(ctrl->regs + (i * 4));
|
|
dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
|
|
}
|
|
}
|
|
|
|
static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
|
|
{
|
|
u32 isr, dma;
|
|
|
|
disable_irq(ctrl->irq);
|
|
|
|
/* Abort current command/DMA operation */
|
|
writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
|
|
writel_relaxed(0, ctrl->regs + COMMAND);
|
|
|
|
/* clear interrupts */
|
|
isr = readl_relaxed(ctrl->regs + ISR);
|
|
writel_relaxed(isr, ctrl->regs + ISR);
|
|
dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
|
|
writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
|
|
|
|
reinit_completion(&ctrl->command_complete);
|
|
reinit_completion(&ctrl->dma_complete);
|
|
|
|
enable_irq(ctrl->irq);
|
|
}
|
|
|
|
static int tegra_nand_cmd(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
const struct nand_op_instr *instr;
|
|
const struct nand_op_instr *instr_data_in = NULL;
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
unsigned int op_id, size = 0, offset = 0;
|
|
bool first_cmd = true;
|
|
u32 reg, cmd = 0;
|
|
int ret;
|
|
|
|
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
|
|
unsigned int naddrs, i;
|
|
const u8 *addrs;
|
|
u32 addr1 = 0, addr2 = 0;
|
|
|
|
instr = &subop->instrs[op_id];
|
|
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
if (first_cmd) {
|
|
cmd |= COMMAND_CLE;
|
|
writel_relaxed(instr->ctx.cmd.opcode,
|
|
ctrl->regs + CMD_REG1);
|
|
} else {
|
|
cmd |= COMMAND_SEC_CMD;
|
|
writel_relaxed(instr->ctx.cmd.opcode,
|
|
ctrl->regs + CMD_REG2);
|
|
}
|
|
first_cmd = false;
|
|
break;
|
|
|
|
case NAND_OP_ADDR_INSTR:
|
|
offset = nand_subop_get_addr_start_off(subop, op_id);
|
|
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
|
|
addrs = &instr->ctx.addr.addrs[offset];
|
|
|
|
cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
|
|
for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
|
|
addr1 |= *addrs++ << (BITS_PER_BYTE * i);
|
|
naddrs -= i;
|
|
for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
|
|
addr2 |= *addrs++ << (BITS_PER_BYTE * i);
|
|
|
|
writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
|
|
writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
size = nand_subop_get_data_len(subop, op_id);
|
|
offset = nand_subop_get_data_start_off(subop, op_id);
|
|
|
|
cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
|
|
COMMAND_RX | COMMAND_A_VALID;
|
|
|
|
instr_data_in = instr;
|
|
break;
|
|
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
size = nand_subop_get_data_len(subop, op_id);
|
|
offset = nand_subop_get_data_start_off(subop, op_id);
|
|
|
|
cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
|
|
COMMAND_TX | COMMAND_A_VALID;
|
|
memcpy(®, instr->ctx.data.buf.out + offset, size);
|
|
|
|
writel_relaxed(reg, ctrl->regs + RESP);
|
|
break;
|
|
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
cmd |= COMMAND_RBSY_CHK;
|
|
break;
|
|
}
|
|
}
|
|
|
|
cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
|
|
writel_relaxed(cmd, ctrl->regs + COMMAND);
|
|
ret = wait_for_completion_timeout(&ctrl->command_complete,
|
|
msecs_to_jiffies(500));
|
|
if (!ret) {
|
|
dev_err(ctrl->dev, "COMMAND timeout\n");
|
|
tegra_nand_dump_reg(ctrl);
|
|
tegra_nand_controller_abort(ctrl);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (instr_data_in) {
|
|
reg = readl_relaxed(ctrl->regs + RESP);
|
|
memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
|
|
NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
|
|
NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
|
|
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
|
|
NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
|
|
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
|
|
);
|
|
|
|
static int tegra_nand_exec_op(struct nand_chip *chip,
|
|
const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
|
|
check_only);
|
|
}
|
|
|
|
static void tegra_nand_select_chip(struct mtd_info *mtd, int die_nr)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct tegra_nand_chip *nand = to_tegra_chip(chip);
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
|
|
WARN_ON(die_nr >= (int)ARRAY_SIZE(nand->cs));
|
|
|
|
if (die_nr < 0 || die_nr > 0) {
|
|
ctrl->cur_cs = -1;
|
|
return;
|
|
}
|
|
|
|
ctrl->cur_cs = nand->cs[die_nr];
|
|
}
|
|
|
|
static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
|
|
struct nand_chip *chip, bool enable)
|
|
{
|
|
struct tegra_nand_chip *nand = to_tegra_chip(chip);
|
|
|
|
if (chip->ecc.algo == NAND_ECC_BCH && enable)
|
|
writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
|
|
else
|
|
writel_relaxed(0, ctrl->regs + BCH_CONFIG);
|
|
|
|
if (enable)
|
|
writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
|
|
else
|
|
writel_relaxed(nand->config, ctrl->regs + CONFIG);
|
|
}
|
|
|
|
static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
|
|
void *buf, void *oob_buf, int oob_len, int page,
|
|
bool read)
|
|
{
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
|
|
dma_addr_t dma_addr = 0, dma_addr_oob = 0;
|
|
u32 addr1, cmd, dma_ctrl;
|
|
int ret;
|
|
|
|
if (read) {
|
|
writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
|
|
writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
|
|
} else {
|
|
writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
|
|
writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
|
|
}
|
|
cmd = COMMAND_CLE | COMMAND_SEC_CMD;
|
|
|
|
/* Lower 16-bits are column, by default 0 */
|
|
addr1 = page << 16;
|
|
|
|
if (!buf)
|
|
addr1 |= mtd->writesize;
|
|
writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
|
|
cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
|
|
} else {
|
|
cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
|
|
}
|
|
|
|
if (buf) {
|
|
dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
|
|
ret = dma_mapping_error(ctrl->dev, dma_addr);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "dma mapping error\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
|
|
writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
|
|
}
|
|
|
|
if (oob_buf) {
|
|
dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
|
|
dir);
|
|
ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "dma mapping error\n");
|
|
ret = -EINVAL;
|
|
goto err_unmap_dma_page;
|
|
}
|
|
|
|
writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
|
|
writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
|
|
}
|
|
|
|
dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
|
|
DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
|
|
DMA_MST_CTRL_BURST_16;
|
|
|
|
if (buf)
|
|
dma_ctrl |= DMA_MST_CTRL_EN_A;
|
|
if (oob_buf)
|
|
dma_ctrl |= DMA_MST_CTRL_EN_B;
|
|
|
|
if (read)
|
|
dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
|
|
else
|
|
dma_ctrl |= DMA_MST_CTRL_OUT;
|
|
|
|
writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
|
|
|
|
cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
|
|
COMMAND_CE(ctrl->cur_cs);
|
|
|
|
if (buf)
|
|
cmd |= COMMAND_A_VALID;
|
|
if (oob_buf)
|
|
cmd |= COMMAND_B_VALID;
|
|
|
|
if (read)
|
|
cmd |= COMMAND_RX;
|
|
else
|
|
cmd |= COMMAND_TX | COMMAND_AFT_DAT;
|
|
|
|
writel_relaxed(cmd, ctrl->regs + COMMAND);
|
|
|
|
ret = wait_for_completion_timeout(&ctrl->command_complete,
|
|
msecs_to_jiffies(500));
|
|
if (!ret) {
|
|
dev_err(ctrl->dev, "COMMAND timeout\n");
|
|
tegra_nand_dump_reg(ctrl);
|
|
tegra_nand_controller_abort(ctrl);
|
|
ret = -ETIMEDOUT;
|
|
goto err_unmap_dma;
|
|
}
|
|
|
|
ret = wait_for_completion_timeout(&ctrl->dma_complete,
|
|
msecs_to_jiffies(500));
|
|
if (!ret) {
|
|
dev_err(ctrl->dev, "DMA timeout\n");
|
|
tegra_nand_dump_reg(ctrl);
|
|
tegra_nand_controller_abort(ctrl);
|
|
ret = -ETIMEDOUT;
|
|
goto err_unmap_dma;
|
|
}
|
|
ret = 0;
|
|
|
|
err_unmap_dma:
|
|
if (oob_buf)
|
|
dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
|
|
err_unmap_dma_page:
|
|
if (buf)
|
|
dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tegra_nand_read_page_raw(struct mtd_info *mtd,
|
|
struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
void *oob_buf = oob_required ? chip->oob_poi : NULL;
|
|
|
|
return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
|
|
mtd->oobsize, page, true);
|
|
}
|
|
|
|
static int tegra_nand_write_page_raw(struct mtd_info *mtd,
|
|
struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
void *oob_buf = oob_required ? chip->oob_poi : NULL;
|
|
|
|
return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
|
|
mtd->oobsize, page, false);
|
|
}
|
|
|
|
static int tegra_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
|
|
mtd->oobsize, page, true);
|
|
}
|
|
|
|
static int tegra_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
|
|
mtd->oobsize, page, false);
|
|
}
|
|
|
|
static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
|
|
struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
struct tegra_nand_chip *nand = to_tegra_chip(chip);
|
|
void *oob_buf = oob_required ? chip->oob_poi : NULL;
|
|
u32 dec_stat, max_corr_cnt;
|
|
unsigned long fail_sec_flag;
|
|
int ret;
|
|
|
|
tegra_nand_hw_ecc(ctrl, chip, true);
|
|
ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
|
|
tegra_nand_hw_ecc(ctrl, chip, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* No correctable or un-correctable errors, page must have 0 bitflips */
|
|
if (!ctrl->last_read_error)
|
|
return 0;
|
|
|
|
/*
|
|
* Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
|
|
* which contains information for all ECC selections.
|
|
*
|
|
* Note that since we do not use Command Queues DEC_RESULT does not
|
|
* state the number of pages we can read from the DEC_STAT_BUF. But
|
|
* since CORRFAIL_ERR did occur during page read we do have a valid
|
|
* result in DEC_STAT_BUF.
|
|
*/
|
|
ctrl->last_read_error = false;
|
|
dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
|
|
|
|
fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
|
|
DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
|
|
|
|
max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
|
|
DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
|
|
|
|
if (fail_sec_flag) {
|
|
int bit, max_bitflips = 0;
|
|
|
|
/*
|
|
* Since we do not support subpage writes, a complete page
|
|
* is either written or not. We can take a shortcut here by
|
|
* checking wheather any of the sector has been successful
|
|
* read. If at least one sectors has been read successfully,
|
|
* the page must have been a written previously. It cannot
|
|
* be an erased page.
|
|
*
|
|
* E.g. controller might return fail_sec_flag with 0x4, which
|
|
* would mean only the third sector failed to correct. The
|
|
* page must have been written and the third sector is really
|
|
* not correctable anymore.
|
|
*/
|
|
if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
|
|
mtd->ecc_stats.failed += hweight8(fail_sec_flag);
|
|
return max_corr_cnt;
|
|
}
|
|
|
|
/*
|
|
* All sectors failed to correct, but the ECC isn't smart
|
|
* enough to figure out if a page is really just erased.
|
|
* Read OOB data and check whether data/OOB is completely
|
|
* erased or if error correction just failed for all sub-
|
|
* pages.
|
|
*/
|
|
ret = tegra_nand_read_oob(mtd, chip, page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
|
|
u8 *data = buf + (chip->ecc.size * bit);
|
|
u8 *oob = chip->oob_poi + nand->ecc.offset +
|
|
(chip->ecc.bytes * bit);
|
|
|
|
ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
|
|
oob, chip->ecc.bytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
if (ret < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += ret;
|
|
max_bitflips = max(ret, max_bitflips);
|
|
}
|
|
}
|
|
|
|
return max_t(unsigned int, max_corr_cnt, max_bitflips);
|
|
} else {
|
|
int corr_sec_flag;
|
|
|
|
corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
|
|
DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
|
|
|
|
/*
|
|
* The value returned in the register is the maximum of
|
|
* bitflips encountered in any of the ECC regions. As there is
|
|
* no way to get the number of bitflips in a specific regions
|
|
* we are not able to deliver correct stats but instead
|
|
* overestimate the number of corrected bitflips by assuming
|
|
* that all regions where errors have been corrected
|
|
* encountered the maximum number of bitflips.
|
|
*/
|
|
mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
|
|
|
|
return max_corr_cnt;
|
|
}
|
|
}
|
|
|
|
static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
|
|
struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
void *oob_buf = oob_required ? chip->oob_poi : NULL;
|
|
int ret;
|
|
|
|
tegra_nand_hw_ecc(ctrl, chip, true);
|
|
ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
|
|
0, page, false);
|
|
tegra_nand_hw_ecc(ctrl, chip, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
|
|
const struct nand_sdr_timings *timings)
|
|
{
|
|
/*
|
|
* The period (and all other timings in this function) is in ps,
|
|
* so need to take care here to avoid integer overflows.
|
|
*/
|
|
unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
|
|
unsigned int period = DIV_ROUND_UP(1000000, rate);
|
|
u32 val, reg = 0;
|
|
|
|
val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
|
|
timings->tRC_min), period);
|
|
reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
|
|
|
|
val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
|
|
max(timings->tALS_min, timings->tALH_min)),
|
|
period);
|
|
reg |= TIMING_TCS(OFFSET(val, 2));
|
|
|
|
val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
|
|
period);
|
|
reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
|
|
|
|
reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
|
|
reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
|
|
reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
|
|
reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
|
|
reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
|
|
|
|
writel_relaxed(reg, ctrl->regs + TIMING_1);
|
|
|
|
val = DIV_ROUND_UP(timings->tADL_min, period);
|
|
reg = TIMING_TADL(OFFSET(val, 3));
|
|
|
|
writel_relaxed(reg, ctrl->regs + TIMING_2);
|
|
}
|
|
|
|
static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
|
|
const struct nand_sdr_timings *timings;
|
|
|
|
timings = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(timings))
|
|
return PTR_ERR(timings);
|
|
|
|
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
tegra_nand_setup_timing(ctrl, timings);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const int rs_strength_bootable[] = { 4 };
|
|
static const int rs_strength[] = { 4, 6, 8 };
|
|
static const int bch_strength_bootable[] = { 8, 16 };
|
|
static const int bch_strength[] = { 4, 8, 14, 16 };
|
|
|
|
static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
|
|
int strength_len, int bits_per_step,
|
|
int oobsize)
|
|
{
|
|
bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE;
|
|
int i;
|
|
|
|
/*
|
|
* Loop through available strengths. Backwards in case we try to
|
|
* maximize the BCH strength.
|
|
*/
|
|
for (i = 0; i < strength_len; i++) {
|
|
int strength_sel, bytes_per_step, bytes_per_page;
|
|
|
|
if (maximize) {
|
|
strength_sel = strength[strength_len - i - 1];
|
|
} else {
|
|
strength_sel = strength[i];
|
|
|
|
if (strength_sel < chip->ecc_strength_ds)
|
|
continue;
|
|
}
|
|
|
|
bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
|
|
BITS_PER_BYTE);
|
|
bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
|
|
|
|
/* Check whether strength fits OOB */
|
|
if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
|
|
return strength_sel;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
|
|
{
|
|
const int *strength;
|
|
int strength_len, bits_per_step;
|
|
|
|
switch (chip->ecc.algo) {
|
|
case NAND_ECC_RS:
|
|
bits_per_step = BITS_PER_STEP_RS;
|
|
if (chip->options & NAND_IS_BOOT_MEDIUM) {
|
|
strength = rs_strength_bootable;
|
|
strength_len = ARRAY_SIZE(rs_strength_bootable);
|
|
} else {
|
|
strength = rs_strength;
|
|
strength_len = ARRAY_SIZE(rs_strength);
|
|
}
|
|
break;
|
|
case NAND_ECC_BCH:
|
|
bits_per_step = BITS_PER_STEP_BCH;
|
|
if (chip->options & NAND_IS_BOOT_MEDIUM) {
|
|
strength = bch_strength_bootable;
|
|
strength_len = ARRAY_SIZE(bch_strength_bootable);
|
|
} else {
|
|
strength = bch_strength;
|
|
strength_len = ARRAY_SIZE(bch_strength);
|
|
}
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return tegra_nand_get_strength(chip, strength, strength_len,
|
|
bits_per_step, oobsize);
|
|
}
|
|
|
|
static int tegra_nand_chips_init(struct device *dev,
|
|
struct tegra_nand_controller *ctrl)
|
|
{
|
|
struct device_node *np = dev->of_node;
|
|
struct device_node *np_nand;
|
|
int nsels, nchips = of_get_child_count(np);
|
|
struct tegra_nand_chip *nand;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *chip;
|
|
int bits_per_step;
|
|
int ret;
|
|
u32 cs;
|
|
|
|
if (nchips != 1) {
|
|
dev_err(dev, "Currently only one NAND chip supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
np_nand = of_get_next_child(np, NULL);
|
|
|
|
nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
|
|
if (nsels != 1) {
|
|
dev_err(dev, "Missing/invalid reg property\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Retrieve CS id, currently only single die NAND supported */
|
|
ret = of_property_read_u32(np_nand, "reg", &cs);
|
|
if (ret) {
|
|
dev_err(dev, "could not retrieve reg property: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
|
|
if (!nand)
|
|
return -ENOMEM;
|
|
|
|
nand->cs[0] = cs;
|
|
|
|
nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
|
|
|
|
if (IS_ERR(nand->wp_gpio)) {
|
|
ret = PTR_ERR(nand->wp_gpio);
|
|
dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
chip = &nand->chip;
|
|
chip->controller = &ctrl->controller;
|
|
|
|
mtd = nand_to_mtd(chip);
|
|
|
|
mtd->dev.parent = dev;
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
nand_set_flash_node(chip, np_nand);
|
|
|
|
if (!mtd->name)
|
|
mtd->name = "tegra_nand";
|
|
|
|
chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
|
|
chip->exec_op = tegra_nand_exec_op;
|
|
chip->select_chip = tegra_nand_select_chip;
|
|
chip->setup_data_interface = tegra_nand_setup_data_interface;
|
|
|
|
ret = nand_scan_ident(mtd, 1, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (chip->bbt_options & NAND_BBT_USE_FLASH)
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
chip->ecc.size = 512;
|
|
chip->ecc.steps = mtd->writesize / chip->ecc.size;
|
|
if (chip->ecc_step_ds != 512) {
|
|
dev_err(dev, "Unsupported step size %d\n", chip->ecc_step_ds);
|
|
return -EINVAL;
|
|
}
|
|
|
|
chip->ecc.read_page = tegra_nand_read_page_hwecc;
|
|
chip->ecc.write_page = tegra_nand_write_page_hwecc;
|
|
chip->ecc.read_page_raw = tegra_nand_read_page_raw;
|
|
chip->ecc.write_page_raw = tegra_nand_write_page_raw;
|
|
chip->ecc.read_oob = tegra_nand_read_oob;
|
|
chip->ecc.write_oob = tegra_nand_write_oob;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
nand->config |= CONFIG_BUS_WIDTH_16;
|
|
|
|
if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
|
|
if (mtd->writesize < 2048)
|
|
chip->ecc.algo = NAND_ECC_RS;
|
|
else
|
|
chip->ecc.algo = NAND_ECC_BCH;
|
|
}
|
|
|
|
if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) {
|
|
dev_err(dev, "BCH supports 2K or 4K page size only\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!chip->ecc.strength) {
|
|
ret = tegra_nand_select_strength(chip, mtd->oobsize);
|
|
if (ret < 0) {
|
|
dev_err(dev, "No valid strength found, minimum %d\n",
|
|
chip->ecc_strength_ds);
|
|
return ret;
|
|
}
|
|
|
|
chip->ecc.strength = ret;
|
|
}
|
|
|
|
nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
|
|
CONFIG_SKIP_SPARE_SIZE_4;
|
|
|
|
switch (chip->ecc.algo) {
|
|
case NAND_ECC_RS:
|
|
bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
|
|
mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
|
|
nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
|
|
CONFIG_ERR_COR;
|
|
switch (chip->ecc.strength) {
|
|
case 4:
|
|
nand->config_ecc |= CONFIG_TVAL_4;
|
|
break;
|
|
case 6:
|
|
nand->config_ecc |= CONFIG_TVAL_6;
|
|
break;
|
|
case 8:
|
|
nand->config_ecc |= CONFIG_TVAL_8;
|
|
break;
|
|
default:
|
|
dev_err(dev, "ECC strength %d not supported\n",
|
|
chip->ecc.strength);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case NAND_ECC_BCH:
|
|
bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
|
|
mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
|
|
nand->bch_config = BCH_ENABLE;
|
|
switch (chip->ecc.strength) {
|
|
case 4:
|
|
nand->bch_config |= BCH_TVAL_4;
|
|
break;
|
|
case 8:
|
|
nand->bch_config |= BCH_TVAL_8;
|
|
break;
|
|
case 14:
|
|
nand->bch_config |= BCH_TVAL_14;
|
|
break;
|
|
case 16:
|
|
nand->bch_config |= BCH_TVAL_16;
|
|
break;
|
|
default:
|
|
dev_err(dev, "ECC strength %d not supported\n",
|
|
chip->ecc.strength);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
dev_err(dev, "ECC algorithm not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_info(dev, "Using %s with strength %d per 512 byte step\n",
|
|
chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS",
|
|
chip->ecc.strength);
|
|
|
|
chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
|
|
|
|
switch (mtd->writesize) {
|
|
case 256:
|
|
nand->config |= CONFIG_PS_256;
|
|
break;
|
|
case 512:
|
|
nand->config |= CONFIG_PS_512;
|
|
break;
|
|
case 1024:
|
|
nand->config |= CONFIG_PS_1024;
|
|
break;
|
|
case 2048:
|
|
nand->config |= CONFIG_PS_2048;
|
|
break;
|
|
case 4096:
|
|
nand->config |= CONFIG_PS_4096;
|
|
break;
|
|
default:
|
|
dev_err(dev, "Unsupported writesize %d\n", mtd->writesize);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Store complete configuration for HW ECC in config_ecc */
|
|
nand->config_ecc |= nand->config;
|
|
|
|
/* Non-HW ECC read/writes complete OOB */
|
|
nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
|
|
writel_relaxed(nand->config, ctrl->regs + CONFIG);
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to register mtd device: %d\n", ret);
|
|
nand_cleanup(chip);
|
|
return ret;
|
|
}
|
|
|
|
ctrl->chip = chip;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct reset_control *rst;
|
|
struct tegra_nand_controller *ctrl;
|
|
struct resource *res;
|
|
int err = 0;
|
|
|
|
ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
|
|
if (!ctrl)
|
|
return -ENOMEM;
|
|
|
|
ctrl->dev = &pdev->dev;
|
|
nand_controller_init(&ctrl->controller);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(ctrl->regs))
|
|
return PTR_ERR(ctrl->regs);
|
|
|
|
rst = devm_reset_control_get(&pdev->dev, "nand");
|
|
if (IS_ERR(rst))
|
|
return PTR_ERR(rst);
|
|
|
|
ctrl->clk = devm_clk_get(&pdev->dev, "nand");
|
|
if (IS_ERR(ctrl->clk))
|
|
return PTR_ERR(ctrl->clk);
|
|
|
|
err = clk_prepare_enable(ctrl->clk);
|
|
if (err)
|
|
return err;
|
|
|
|
err = reset_control_reset(rst);
|
|
if (err) {
|
|
dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
|
|
goto err_disable_clk;
|
|
}
|
|
|
|
writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
|
|
writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
|
|
writel_relaxed(INT_MASK, ctrl->regs + IER);
|
|
|
|
init_completion(&ctrl->command_complete);
|
|
init_completion(&ctrl->dma_complete);
|
|
|
|
ctrl->irq = platform_get_irq(pdev, 0);
|
|
err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
|
|
dev_name(&pdev->dev), ctrl);
|
|
if (err) {
|
|
dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
|
|
goto err_disable_clk;
|
|
}
|
|
|
|
writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
|
|
|
|
err = tegra_nand_chips_init(ctrl->dev, ctrl);
|
|
if (err)
|
|
goto err_disable_clk;
|
|
|
|
platform_set_drvdata(pdev, ctrl);
|
|
|
|
return 0;
|
|
|
|
err_disable_clk:
|
|
clk_disable_unprepare(ctrl->clk);
|
|
return err;
|
|
}
|
|
|
|
static int tegra_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
|
|
struct nand_chip *chip = ctrl->chip;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
ret = mtd_device_unregister(mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nand_cleanup(chip);
|
|
|
|
clk_disable_unprepare(ctrl->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id tegra_nand_of_match[] = {
|
|
{ .compatible = "nvidia,tegra20-nand" },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
|
|
|
|
static struct platform_driver tegra_nand_driver = {
|
|
.driver = {
|
|
.name = "tegra-nand",
|
|
.of_match_table = tegra_nand_of_match,
|
|
},
|
|
.probe = tegra_nand_probe,
|
|
.remove = tegra_nand_remove,
|
|
};
|
|
module_platform_driver(tegra_nand_driver);
|
|
|
|
MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
|
|
MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
|
|
MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
|
|
MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
|
|
MODULE_LICENSE("GPL v2");
|