mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 21:56:01 +07:00
105ab3d8ce
We are going to split <linux/sched/topology.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/topology.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
532 lines
12 KiB
C
532 lines
12 KiB
C
/*
|
|
* arch/arm64/kernel/topology.c
|
|
*
|
|
* Copyright (C) 2011,2013,2014 Linaro Limited.
|
|
*
|
|
* Based on the arm32 version written by Vincent Guittot in turn based on
|
|
* arch/sh/kernel/topology.c
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/node.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/of.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/topology.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/cpufreq.h>
|
|
|
|
#include <asm/cpu.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/topology.h>
|
|
|
|
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
|
|
static DEFINE_MUTEX(cpu_scale_mutex);
|
|
|
|
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
|
|
{
|
|
return per_cpu(cpu_scale, cpu);
|
|
}
|
|
|
|
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
|
|
{
|
|
per_cpu(cpu_scale, cpu) = capacity;
|
|
}
|
|
|
|
static ssize_t cpu_capacity_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
|
|
|
return sprintf(buf, "%lu\n",
|
|
arch_scale_cpu_capacity(NULL, cpu->dev.id));
|
|
}
|
|
|
|
static ssize_t cpu_capacity_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
|
int this_cpu = cpu->dev.id, i;
|
|
unsigned long new_capacity;
|
|
ssize_t ret;
|
|
|
|
if (count) {
|
|
ret = kstrtoul(buf, 0, &new_capacity);
|
|
if (ret)
|
|
return ret;
|
|
if (new_capacity > SCHED_CAPACITY_SCALE)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&cpu_scale_mutex);
|
|
for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
|
|
set_capacity_scale(i, new_capacity);
|
|
mutex_unlock(&cpu_scale_mutex);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(cpu_capacity);
|
|
|
|
static int register_cpu_capacity_sysctl(void)
|
|
{
|
|
int i;
|
|
struct device *cpu;
|
|
|
|
for_each_possible_cpu(i) {
|
|
cpu = get_cpu_device(i);
|
|
if (!cpu) {
|
|
pr_err("%s: too early to get CPU%d device!\n",
|
|
__func__, i);
|
|
continue;
|
|
}
|
|
device_create_file(cpu, &dev_attr_cpu_capacity);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
subsys_initcall(register_cpu_capacity_sysctl);
|
|
|
|
static u32 capacity_scale;
|
|
static u32 *raw_capacity;
|
|
static bool cap_parsing_failed;
|
|
|
|
static void __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
|
|
{
|
|
int ret;
|
|
u32 cpu_capacity;
|
|
|
|
if (cap_parsing_failed)
|
|
return;
|
|
|
|
ret = of_property_read_u32(cpu_node,
|
|
"capacity-dmips-mhz",
|
|
&cpu_capacity);
|
|
if (!ret) {
|
|
if (!raw_capacity) {
|
|
raw_capacity = kcalloc(num_possible_cpus(),
|
|
sizeof(*raw_capacity),
|
|
GFP_KERNEL);
|
|
if (!raw_capacity) {
|
|
pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
|
|
cap_parsing_failed = true;
|
|
return;
|
|
}
|
|
}
|
|
capacity_scale = max(cpu_capacity, capacity_scale);
|
|
raw_capacity[cpu] = cpu_capacity;
|
|
pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
|
|
cpu_node->full_name, raw_capacity[cpu]);
|
|
} else {
|
|
if (raw_capacity) {
|
|
pr_err("cpu_capacity: missing %s raw capacity\n",
|
|
cpu_node->full_name);
|
|
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
|
|
}
|
|
cap_parsing_failed = true;
|
|
kfree(raw_capacity);
|
|
}
|
|
}
|
|
|
|
static void normalize_cpu_capacity(void)
|
|
{
|
|
u64 capacity;
|
|
int cpu;
|
|
|
|
if (!raw_capacity || cap_parsing_failed)
|
|
return;
|
|
|
|
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
|
|
mutex_lock(&cpu_scale_mutex);
|
|
for_each_possible_cpu(cpu) {
|
|
pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
|
|
cpu, raw_capacity[cpu]);
|
|
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
|
|
/ capacity_scale;
|
|
set_capacity_scale(cpu, capacity);
|
|
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
|
|
cpu, arch_scale_cpu_capacity(NULL, cpu));
|
|
}
|
|
mutex_unlock(&cpu_scale_mutex);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
static cpumask_var_t cpus_to_visit;
|
|
static bool cap_parsing_done;
|
|
static void parsing_done_workfn(struct work_struct *work);
|
|
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
|
|
|
|
static int
|
|
init_cpu_capacity_callback(struct notifier_block *nb,
|
|
unsigned long val,
|
|
void *data)
|
|
{
|
|
struct cpufreq_policy *policy = data;
|
|
int cpu;
|
|
|
|
if (cap_parsing_failed || cap_parsing_done)
|
|
return 0;
|
|
|
|
switch (val) {
|
|
case CPUFREQ_NOTIFY:
|
|
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
|
|
cpumask_pr_args(policy->related_cpus),
|
|
cpumask_pr_args(cpus_to_visit));
|
|
cpumask_andnot(cpus_to_visit,
|
|
cpus_to_visit,
|
|
policy->related_cpus);
|
|
for_each_cpu(cpu, policy->related_cpus) {
|
|
raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
|
|
policy->cpuinfo.max_freq / 1000UL;
|
|
capacity_scale = max(raw_capacity[cpu], capacity_scale);
|
|
}
|
|
if (cpumask_empty(cpus_to_visit)) {
|
|
normalize_cpu_capacity();
|
|
kfree(raw_capacity);
|
|
pr_debug("cpu_capacity: parsing done\n");
|
|
cap_parsing_done = true;
|
|
schedule_work(&parsing_done_work);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block init_cpu_capacity_notifier = {
|
|
.notifier_call = init_cpu_capacity_callback,
|
|
};
|
|
|
|
static int __init register_cpufreq_notifier(void)
|
|
{
|
|
/*
|
|
* on ACPI-based systems we need to use the default cpu capacity
|
|
* until we have the necessary code to parse the cpu capacity, so
|
|
* skip registering cpufreq notifier.
|
|
*/
|
|
if (!acpi_disabled || cap_parsing_failed)
|
|
return -EINVAL;
|
|
|
|
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
|
|
pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
|
|
return -ENOMEM;
|
|
}
|
|
cpumask_copy(cpus_to_visit, cpu_possible_mask);
|
|
|
|
return cpufreq_register_notifier(&init_cpu_capacity_notifier,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
}
|
|
core_initcall(register_cpufreq_notifier);
|
|
|
|
static void parsing_done_workfn(struct work_struct *work)
|
|
{
|
|
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
}
|
|
|
|
#else
|
|
static int __init free_raw_capacity(void)
|
|
{
|
|
kfree(raw_capacity);
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(free_raw_capacity);
|
|
#endif
|
|
|
|
static int __init get_cpu_for_node(struct device_node *node)
|
|
{
|
|
struct device_node *cpu_node;
|
|
int cpu;
|
|
|
|
cpu_node = of_parse_phandle(node, "cpu", 0);
|
|
if (!cpu_node)
|
|
return -1;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (of_get_cpu_node(cpu, NULL) == cpu_node) {
|
|
parse_cpu_capacity(cpu_node, cpu);
|
|
of_node_put(cpu_node);
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
|
|
|
|
of_node_put(cpu_node);
|
|
return -1;
|
|
}
|
|
|
|
static int __init parse_core(struct device_node *core, int cluster_id,
|
|
int core_id)
|
|
{
|
|
char name[10];
|
|
bool leaf = true;
|
|
int i = 0;
|
|
int cpu;
|
|
struct device_node *t;
|
|
|
|
do {
|
|
snprintf(name, sizeof(name), "thread%d", i);
|
|
t = of_get_child_by_name(core, name);
|
|
if (t) {
|
|
leaf = false;
|
|
cpu = get_cpu_for_node(t);
|
|
if (cpu >= 0) {
|
|
cpu_topology[cpu].cluster_id = cluster_id;
|
|
cpu_topology[cpu].core_id = core_id;
|
|
cpu_topology[cpu].thread_id = i;
|
|
} else {
|
|
pr_err("%s: Can't get CPU for thread\n",
|
|
t->full_name);
|
|
of_node_put(t);
|
|
return -EINVAL;
|
|
}
|
|
of_node_put(t);
|
|
}
|
|
i++;
|
|
} while (t);
|
|
|
|
cpu = get_cpu_for_node(core);
|
|
if (cpu >= 0) {
|
|
if (!leaf) {
|
|
pr_err("%s: Core has both threads and CPU\n",
|
|
core->full_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cpu_topology[cpu].cluster_id = cluster_id;
|
|
cpu_topology[cpu].core_id = core_id;
|
|
} else if (leaf) {
|
|
pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init parse_cluster(struct device_node *cluster, int depth)
|
|
{
|
|
char name[10];
|
|
bool leaf = true;
|
|
bool has_cores = false;
|
|
struct device_node *c;
|
|
static int cluster_id __initdata;
|
|
int core_id = 0;
|
|
int i, ret;
|
|
|
|
/*
|
|
* First check for child clusters; we currently ignore any
|
|
* information about the nesting of clusters and present the
|
|
* scheduler with a flat list of them.
|
|
*/
|
|
i = 0;
|
|
do {
|
|
snprintf(name, sizeof(name), "cluster%d", i);
|
|
c = of_get_child_by_name(cluster, name);
|
|
if (c) {
|
|
leaf = false;
|
|
ret = parse_cluster(c, depth + 1);
|
|
of_node_put(c);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
i++;
|
|
} while (c);
|
|
|
|
/* Now check for cores */
|
|
i = 0;
|
|
do {
|
|
snprintf(name, sizeof(name), "core%d", i);
|
|
c = of_get_child_by_name(cluster, name);
|
|
if (c) {
|
|
has_cores = true;
|
|
|
|
if (depth == 0) {
|
|
pr_err("%s: cpu-map children should be clusters\n",
|
|
c->full_name);
|
|
of_node_put(c);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (leaf) {
|
|
ret = parse_core(c, cluster_id, core_id++);
|
|
} else {
|
|
pr_err("%s: Non-leaf cluster with core %s\n",
|
|
cluster->full_name, name);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
of_node_put(c);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
i++;
|
|
} while (c);
|
|
|
|
if (leaf && !has_cores)
|
|
pr_warn("%s: empty cluster\n", cluster->full_name);
|
|
|
|
if (leaf)
|
|
cluster_id++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init parse_dt_topology(void)
|
|
{
|
|
struct device_node *cn, *map;
|
|
int ret = 0;
|
|
int cpu;
|
|
|
|
cn = of_find_node_by_path("/cpus");
|
|
if (!cn) {
|
|
pr_err("No CPU information found in DT\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When topology is provided cpu-map is essentially a root
|
|
* cluster with restricted subnodes.
|
|
*/
|
|
map = of_get_child_by_name(cn, "cpu-map");
|
|
if (!map) {
|
|
cap_parsing_failed = true;
|
|
goto out;
|
|
}
|
|
|
|
ret = parse_cluster(map, 0);
|
|
if (ret != 0)
|
|
goto out_map;
|
|
|
|
normalize_cpu_capacity();
|
|
|
|
/*
|
|
* Check that all cores are in the topology; the SMP code will
|
|
* only mark cores described in the DT as possible.
|
|
*/
|
|
for_each_possible_cpu(cpu)
|
|
if (cpu_topology[cpu].cluster_id == -1)
|
|
ret = -EINVAL;
|
|
|
|
out_map:
|
|
of_node_put(map);
|
|
out:
|
|
of_node_put(cn);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* cpu topology table
|
|
*/
|
|
struct cpu_topology cpu_topology[NR_CPUS];
|
|
EXPORT_SYMBOL_GPL(cpu_topology);
|
|
|
|
const struct cpumask *cpu_coregroup_mask(int cpu)
|
|
{
|
|
return &cpu_topology[cpu].core_sibling;
|
|
}
|
|
|
|
static void update_siblings_masks(unsigned int cpuid)
|
|
{
|
|
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
|
|
int cpu;
|
|
|
|
/* update core and thread sibling masks */
|
|
for_each_possible_cpu(cpu) {
|
|
cpu_topo = &cpu_topology[cpu];
|
|
|
|
if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
|
|
continue;
|
|
|
|
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
|
|
if (cpu != cpuid)
|
|
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
|
|
|
|
if (cpuid_topo->core_id != cpu_topo->core_id)
|
|
continue;
|
|
|
|
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
|
|
if (cpu != cpuid)
|
|
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
|
|
}
|
|
}
|
|
|
|
void store_cpu_topology(unsigned int cpuid)
|
|
{
|
|
struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
|
|
u64 mpidr;
|
|
|
|
if (cpuid_topo->cluster_id != -1)
|
|
goto topology_populated;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
|
|
/* Uniprocessor systems can rely on default topology values */
|
|
if (mpidr & MPIDR_UP_BITMASK)
|
|
return;
|
|
|
|
/* Create cpu topology mapping based on MPIDR. */
|
|
if (mpidr & MPIDR_MT_BITMASK) {
|
|
/* Multiprocessor system : Multi-threads per core */
|
|
cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
|
|
} else {
|
|
/* Multiprocessor system : Single-thread per core */
|
|
cpuid_topo->thread_id = -1;
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
|
|
}
|
|
|
|
pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
|
|
cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
|
|
cpuid_topo->thread_id, mpidr);
|
|
|
|
topology_populated:
|
|
update_siblings_masks(cpuid);
|
|
}
|
|
|
|
static void __init reset_cpu_topology(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
|
|
|
|
cpu_topo->thread_id = -1;
|
|
cpu_topo->core_id = 0;
|
|
cpu_topo->cluster_id = -1;
|
|
|
|
cpumask_clear(&cpu_topo->core_sibling);
|
|
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
|
|
cpumask_clear(&cpu_topo->thread_sibling);
|
|
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
|
|
}
|
|
}
|
|
|
|
void __init init_cpu_topology(void)
|
|
{
|
|
reset_cpu_topology();
|
|
|
|
/*
|
|
* Discard anything that was parsed if we hit an error so we
|
|
* don't use partial information.
|
|
*/
|
|
if (of_have_populated_dt() && parse_dt_topology())
|
|
reset_cpu_topology();
|
|
}
|