linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_hdmi.c
Ville Syrjälä 121f0ff52f drm/i915: Use memmove() for punching the hole into infoframes
Replace the hand rolled memmove() with the real thing.

Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180920185145.1912-9-ville.syrjala@linux.intel.com
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2018-10-01 22:11:56 +03:00

2488 lines
72 KiB
C

/*
* Copyright 2006 Dave Airlie <airlied@linux.ie>
* Copyright © 2006-2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Jesse Barnes <jesse.barnes@intel.com>
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/hdmi.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_hdcp.h>
#include <drm/drm_scdc_helper.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include <drm/intel_lpe_audio.h>
#include "i915_drv.h"
static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
{
return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
}
static void
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
{
struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
struct drm_i915_private *dev_priv = to_i915(dev);
u32 enabled_bits;
enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
"HDMI port enabled, expecting disabled\n");
}
static void
assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
WARN(I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
TRANS_DDI_FUNC_ENABLE,
"HDMI transcoder function enabled, expecting disabled\n");
}
struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port =
container_of(encoder, struct intel_digital_port, base.base);
return &intel_dig_port->hdmi;
}
static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
{
return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
}
static u32 g4x_infoframe_index(unsigned int type)
{
switch (type) {
case HDMI_INFOFRAME_TYPE_AVI:
return VIDEO_DIP_SELECT_AVI;
case HDMI_INFOFRAME_TYPE_SPD:
return VIDEO_DIP_SELECT_SPD;
case HDMI_INFOFRAME_TYPE_VENDOR:
return VIDEO_DIP_SELECT_VENDOR;
default:
MISSING_CASE(type);
return 0;
}
}
static u32 g4x_infoframe_enable(unsigned int type)
{
switch (type) {
case HDMI_INFOFRAME_TYPE_AVI:
return VIDEO_DIP_ENABLE_AVI;
case HDMI_INFOFRAME_TYPE_SPD:
return VIDEO_DIP_ENABLE_SPD;
case HDMI_INFOFRAME_TYPE_VENDOR:
return VIDEO_DIP_ENABLE_VENDOR;
default:
MISSING_CASE(type);
return 0;
}
}
static u32 hsw_infoframe_enable(unsigned int type)
{
switch (type) {
case DP_SDP_VSC:
return VIDEO_DIP_ENABLE_VSC_HSW;
case HDMI_INFOFRAME_TYPE_AVI:
return VIDEO_DIP_ENABLE_AVI_HSW;
case HDMI_INFOFRAME_TYPE_SPD:
return VIDEO_DIP_ENABLE_SPD_HSW;
case HDMI_INFOFRAME_TYPE_VENDOR:
return VIDEO_DIP_ENABLE_VS_HSW;
default:
MISSING_CASE(type);
return 0;
}
}
static i915_reg_t
hsw_dip_data_reg(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder,
unsigned int type,
int i)
{
switch (type) {
case DP_SDP_VSC:
return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
case HDMI_INFOFRAME_TYPE_AVI:
return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
case HDMI_INFOFRAME_TYPE_SPD:
return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
case HDMI_INFOFRAME_TYPE_VENDOR:
return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
default:
MISSING_CASE(type);
return INVALID_MMIO_REG;
}
}
static void g4x_write_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 val = I915_READ(VIDEO_DIP_CTL);
int i;
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
val &= ~g4x_infoframe_enable(type);
I915_WRITE(VIDEO_DIP_CTL, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(VIDEO_DIP_DATA, *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(VIDEO_DIP_DATA, 0);
mmiowb();
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(VIDEO_DIP_CTL, val);
POSTING_READ(VIDEO_DIP_CTL);
}
static bool g4x_infoframe_enabled(struct drm_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
u32 val = I915_READ(VIDEO_DIP_CTL);
if ((val & VIDEO_DIP_ENABLE) == 0)
return false;
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->base.port))
return false;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
}
static void ibx_write_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
int i;
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
val &= ~g4x_infoframe_enable(type);
I915_WRITE(reg, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
mmiowb();
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static bool ibx_infoframe_enabled(struct drm_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
u32 val = I915_READ(reg);
if ((val & VIDEO_DIP_ENABLE) == 0)
return false;
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->base.port))
return false;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
}
static void cpt_write_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
int i;
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
/* The DIP control register spec says that we need to update the AVI
* infoframe without clearing its enable bit */
if (type != HDMI_INFOFRAME_TYPE_AVI)
val &= ~g4x_infoframe_enable(type);
I915_WRITE(reg, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
mmiowb();
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static bool cpt_infoframe_enabled(struct drm_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
u32 val = I915_READ(TVIDEO_DIP_CTL(pipe));
if ((val & VIDEO_DIP_ENABLE) == 0)
return false;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
}
static void vlv_write_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
int i;
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
val &= ~g4x_infoframe_enable(type);
I915_WRITE(reg, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
mmiowb();
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static bool vlv_infoframe_enabled(struct drm_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
u32 val = I915_READ(VLV_TVIDEO_DIP_CTL(pipe));
if ((val & VIDEO_DIP_ENABLE) == 0)
return false;
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->base.port))
return false;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
}
static void hsw_write_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len)
{
const u32 *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
int data_size = type == DP_SDP_VSC ?
VIDEO_DIP_VSC_DATA_SIZE : VIDEO_DIP_DATA_SIZE;
int i;
u32 val = I915_READ(ctl_reg);
val &= ~hsw_infoframe_enable(type);
I915_WRITE(ctl_reg, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
type, i >> 2), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < data_size; i += 4)
I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
type, i >> 2), 0);
mmiowb();
val |= hsw_infoframe_enable(type);
I915_WRITE(ctl_reg, val);
POSTING_READ(ctl_reg);
}
static bool hsw_infoframe_enabled(struct drm_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
u32 val = I915_READ(HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
}
/*
* The data we write to the DIP data buffer registers is 1 byte bigger than the
* HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
* at 0). It's also a byte used by DisplayPort so the same DIP registers can be
* used for both technologies.
*
* DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
* DW1: DB3 | DB2 | DB1 | DB0
* DW2: DB7 | DB6 | DB5 | DB4
* DW3: ...
*
* (HB is Header Byte, DB is Data Byte)
*
* The hdmi pack() functions don't know about that hardware specific hole so we
* trick them by giving an offset into the buffer and moving back the header
* bytes by one.
*/
static void intel_write_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state,
union hdmi_infoframe *frame)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
u8 buffer[VIDEO_DIP_DATA_SIZE];
ssize_t len;
/* see comment above for the reason for this offset */
len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
if (len < 0)
return;
/* Insert the 'hole' (see big comment above) at position 3 */
memmove(&buffer[0], &buffer[1], 3);
buffer[3] = 0;
len++;
intel_dig_port->write_infoframe(encoder, crtc_state, frame->any.type, buffer, len);
}
static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
const struct drm_display_mode *adjusted_mode =
&crtc_state->base.adjusted_mode;
struct drm_connector *connector = &intel_hdmi->attached_connector->base;
bool is_hdmi2_sink = connector->display_info.hdmi.scdc.supported;
union hdmi_infoframe frame;
int ret;
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
adjusted_mode,
is_hdmi2_sink);
if (ret < 0) {
DRM_ERROR("couldn't fill AVI infoframe\n");
return;
}
if (crtc_state->ycbcr420)
frame.avi.colorspace = HDMI_COLORSPACE_YUV420;
else
frame.avi.colorspace = HDMI_COLORSPACE_RGB;
drm_hdmi_avi_infoframe_quant_range(&frame.avi, adjusted_mode,
crtc_state->limited_color_range ?
HDMI_QUANTIZATION_RANGE_LIMITED :
HDMI_QUANTIZATION_RANGE_FULL,
intel_hdmi->rgb_quant_range_selectable,
is_hdmi2_sink);
drm_hdmi_avi_infoframe_content_type(&frame.avi,
conn_state);
/* TODO: handle pixel repetition for YCBCR420 outputs */
intel_write_infoframe(encoder, crtc_state, &frame);
}
static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
union hdmi_infoframe frame;
int ret;
ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
if (ret < 0) {
DRM_ERROR("couldn't fill SPD infoframe\n");
return;
}
frame.spd.sdi = HDMI_SPD_SDI_PC;
intel_write_infoframe(encoder, crtc_state, &frame);
}
static void
intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
union hdmi_infoframe frame;
int ret;
ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
conn_state->connector,
&crtc_state->base.adjusted_mode);
if (ret < 0)
return;
intel_write_infoframe(encoder, crtc_state, &frame);
}
static void g4x_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
i915_reg_t reg = VIDEO_DIP_CTL;
u32 val = I915_READ(reg);
u32 port = VIDEO_DIP_PORT(intel_dig_port->base.port);
assert_hdmi_port_disabled(intel_hdmi);
/* If the registers were not initialized yet, they might be zeroes,
* which means we're selecting the AVI DIP and we're setting its
* frequency to once. This seems to really confuse the HW and make
* things stop working (the register spec says the AVI always needs to
* be sent every VSync). So here we avoid writing to the register more
* than we need and also explicitly select the AVI DIP and explicitly
* set its frequency to every VSync. Avoiding to write it twice seems to
* be enough to solve the problem, but being defensive shouldn't hurt us
* either. */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
if (port != (val & VIDEO_DIP_PORT_MASK)) {
DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
return;
}
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (port != (val & VIDEO_DIP_PORT_MASK)) {
if (val & VIDEO_DIP_ENABLE) {
DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
return;
}
val &= ~VIDEO_DIP_PORT_MASK;
val |= port;
}
val |= VIDEO_DIP_ENABLE;
val &= ~(VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state);
intel_hdmi_set_spd_infoframe(encoder, crtc_state);
intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
}
static bool hdmi_sink_is_deep_color(const struct drm_connector_state *conn_state)
{
struct drm_connector *connector = conn_state->connector;
/*
* HDMI cloning is only supported on g4x which doesn't
* support deep color or GCP infoframes anyway so no
* need to worry about multiple HDMI sinks here.
*/
return connector->display_info.bpc > 8;
}
/*
* Determine if default_phase=1 can be indicated in the GCP infoframe.
*
* From HDMI specification 1.4a:
* - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
* - The first pixel following each Video Data Period shall have a pixel packing phase of 0
* - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
* - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
* phase of 0
*/
static bool gcp_default_phase_possible(int pipe_bpp,
const struct drm_display_mode *mode)
{
unsigned int pixels_per_group;
switch (pipe_bpp) {
case 30:
/* 4 pixels in 5 clocks */
pixels_per_group = 4;
break;
case 36:
/* 2 pixels in 3 clocks */
pixels_per_group = 2;
break;
case 48:
/* 1 pixel in 2 clocks */
pixels_per_group = 1;
break;
default:
/* phase information not relevant for 8bpc */
return false;
}
return mode->crtc_hdisplay % pixels_per_group == 0 &&
mode->crtc_htotal % pixels_per_group == 0 &&
mode->crtc_hblank_start % pixels_per_group == 0 &&
mode->crtc_hblank_end % pixels_per_group == 0 &&
mode->crtc_hsync_start % pixels_per_group == 0 &&
mode->crtc_hsync_end % pixels_per_group == 0 &&
((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
mode->crtc_htotal/2 % pixels_per_group == 0);
}
static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
i915_reg_t reg;
u32 val = 0;
if (HAS_DDI(dev_priv))
reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
else if (HAS_PCH_SPLIT(dev_priv))
reg = TVIDEO_DIP_GCP(crtc->pipe);
else
return false;
/* Indicate color depth whenever the sink supports deep color */
if (hdmi_sink_is_deep_color(conn_state))
val |= GCP_COLOR_INDICATION;
/* Enable default_phase whenever the display mode is suitably aligned */
if (gcp_default_phase_possible(crtc_state->pipe_bpp,
&crtc_state->base.adjusted_mode))
val |= GCP_DEFAULT_PHASE_ENABLE;
I915_WRITE(reg, val);
return val != 0;
}
static void ibx_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
u32 port = VIDEO_DIP_PORT(intel_dig_port->base.port);
assert_hdmi_port_disabled(intel_hdmi);
/* See the big comment in g4x_set_infoframes() */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (port != (val & VIDEO_DIP_PORT_MASK)) {
WARN(val & VIDEO_DIP_ENABLE,
"DIP already enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
val &= ~VIDEO_DIP_PORT_MASK;
val |= port;
}
val |= VIDEO_DIP_ENABLE;
val &= ~(VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
val |= VIDEO_DIP_ENABLE_GCP;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state);
intel_hdmi_set_spd_infoframe(encoder, crtc_state);
intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
}
static void cpt_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
assert_hdmi_port_disabled(intel_hdmi);
/* See the big comment in g4x_set_infoframes() */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
/* Set both together, unset both together: see the spec. */
val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
val |= VIDEO_DIP_ENABLE_GCP;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state);
intel_hdmi_set_spd_infoframe(encoder, crtc_state);
intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
}
static void vlv_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
u32 port = VIDEO_DIP_PORT(intel_dig_port->base.port);
assert_hdmi_port_disabled(intel_hdmi);
/* See the big comment in g4x_set_infoframes() */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (port != (val & VIDEO_DIP_PORT_MASK)) {
WARN(val & VIDEO_DIP_ENABLE,
"DIP already enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
val &= ~VIDEO_DIP_PORT_MASK;
val |= port;
}
val |= VIDEO_DIP_ENABLE;
val &= ~(VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
val |= VIDEO_DIP_ENABLE_GCP;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state);
intel_hdmi_set_spd_infoframe(encoder, crtc_state);
intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
}
static void hsw_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
u32 val = I915_READ(reg);
assert_hdmi_transcoder_func_disabled(dev_priv,
crtc_state->cpu_transcoder);
val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
if (!enable) {
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
val |= VIDEO_DIP_ENABLE_GCP_HSW;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state);
intel_hdmi_set_spd_infoframe(encoder, crtc_state);
intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
}
void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
{
struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
struct i2c_adapter *adapter =
intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
return;
DRM_DEBUG_KMS("%s DP dual mode adaptor TMDS output\n",
enable ? "Enabling" : "Disabling");
drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type,
adapter, enable);
}
static int intel_hdmi_hdcp_read(struct intel_digital_port *intel_dig_port,
unsigned int offset, void *buffer, size_t size)
{
struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
struct drm_i915_private *dev_priv =
intel_dig_port->base.base.dev->dev_private;
struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
hdmi->ddc_bus);
int ret;
u8 start = offset & 0xff;
struct i2c_msg msgs[] = {
{
.addr = DRM_HDCP_DDC_ADDR,
.flags = 0,
.len = 1,
.buf = &start,
},
{
.addr = DRM_HDCP_DDC_ADDR,
.flags = I2C_M_RD,
.len = size,
.buf = buffer
}
};
ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
if (ret == ARRAY_SIZE(msgs))
return 0;
return ret >= 0 ? -EIO : ret;
}
static int intel_hdmi_hdcp_write(struct intel_digital_port *intel_dig_port,
unsigned int offset, void *buffer, size_t size)
{
struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
struct drm_i915_private *dev_priv =
intel_dig_port->base.base.dev->dev_private;
struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
hdmi->ddc_bus);
int ret;
u8 *write_buf;
struct i2c_msg msg;
write_buf = kzalloc(size + 1, GFP_KERNEL);
if (!write_buf)
return -ENOMEM;
write_buf[0] = offset & 0xff;
memcpy(&write_buf[1], buffer, size);
msg.addr = DRM_HDCP_DDC_ADDR;
msg.flags = 0,
msg.len = size + 1,
msg.buf = write_buf;
ret = i2c_transfer(adapter, &msg, 1);
if (ret == 1)
ret = 0;
else if (ret >= 0)
ret = -EIO;
kfree(write_buf);
return ret;
}
static
int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
u8 *an)
{
struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
struct drm_i915_private *dev_priv =
intel_dig_port->base.base.dev->dev_private;
struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
hdmi->ddc_bus);
int ret;
ret = intel_hdmi_hdcp_write(intel_dig_port, DRM_HDCP_DDC_AN, an,
DRM_HDCP_AN_LEN);
if (ret) {
DRM_ERROR("Write An over DDC failed (%d)\n", ret);
return ret;
}
ret = intel_gmbus_output_aksv(adapter);
if (ret < 0) {
DRM_ERROR("Failed to output aksv (%d)\n", ret);
return ret;
}
return 0;
}
static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
u8 *bksv)
{
int ret;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BKSV, bksv,
DRM_HDCP_KSV_LEN);
if (ret)
DRM_ERROR("Read Bksv over DDC failed (%d)\n", ret);
return ret;
}
static
int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
u8 *bstatus)
{
int ret;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BSTATUS,
bstatus, DRM_HDCP_BSTATUS_LEN);
if (ret)
DRM_ERROR("Read bstatus over DDC failed (%d)\n", ret);
return ret;
}
static
int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
bool *repeater_present)
{
int ret;
u8 val;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
if (ret) {
DRM_ERROR("Read bcaps over DDC failed (%d)\n", ret);
return ret;
}
*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
return 0;
}
static
int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
u8 *ri_prime)
{
int ret;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_RI_PRIME,
ri_prime, DRM_HDCP_RI_LEN);
if (ret)
DRM_ERROR("Read Ri' over DDC failed (%d)\n", ret);
return ret;
}
static
int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
bool *ksv_ready)
{
int ret;
u8 val;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
if (ret) {
DRM_ERROR("Read bcaps over DDC failed (%d)\n", ret);
return ret;
}
*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
return 0;
}
static
int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
int num_downstream, u8 *ksv_fifo)
{
int ret;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_KSV_FIFO,
ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
if (ret) {
DRM_ERROR("Read ksv fifo over DDC failed (%d)\n", ret);
return ret;
}
return 0;
}
static
int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
int i, u32 *part)
{
int ret;
if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
return -EINVAL;
ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_V_PRIME(i),
part, DRM_HDCP_V_PRIME_PART_LEN);
if (ret)
DRM_ERROR("Read V'[%d] over DDC failed (%d)\n", i, ret);
return ret;
}
static
int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
bool enable)
{
int ret;
if (!enable)
usleep_range(6, 60); /* Bspec says >= 6us */
ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, enable);
if (ret) {
DRM_ERROR("%s HDCP signalling failed (%d)\n",
enable ? "Enable" : "Disable", ret);
return ret;
}
return 0;
}
static
bool intel_hdmi_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
struct drm_i915_private *dev_priv =
intel_dig_port->base.base.dev->dev_private;
enum port port = intel_dig_port->base.port;
int ret;
union {
u32 reg;
u8 shim[DRM_HDCP_RI_LEN];
} ri;
ret = intel_hdmi_hdcp_read_ri_prime(intel_dig_port, ri.shim);
if (ret)
return false;
I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
/* Wait for Ri prime match */
if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
(HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
DRM_ERROR("Ri' mismatch detected, link check failed (%x)\n",
I915_READ(PORT_HDCP_STATUS(port)));
return false;
}
return true;
}
static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
.read_bksv = intel_hdmi_hdcp_read_bksv,
.read_bstatus = intel_hdmi_hdcp_read_bstatus,
.repeater_present = intel_hdmi_hdcp_repeater_present,
.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
.check_link = intel_hdmi_hdcp_check_link,
};
static void intel_hdmi_prepare(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
u32 hdmi_val;
intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
hdmi_val = SDVO_ENCODING_HDMI;
if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range)
hdmi_val |= HDMI_COLOR_RANGE_16_235;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
if (crtc_state->pipe_bpp > 24)
hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
else
hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
if (crtc_state->has_hdmi_sink)
hdmi_val |= HDMI_MODE_SELECT_HDMI;
if (HAS_PCH_CPT(dev_priv))
hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
else if (IS_CHERRYVIEW(dev_priv))
hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
else
hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
POSTING_READ(intel_hdmi->hdmi_reg);
}
static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
bool ret;
if (!intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain))
return false;
ret = intel_sdvo_port_enabled(dev_priv, intel_hdmi->hdmi_reg, pipe);
intel_display_power_put(dev_priv, encoder->power_domain);
return ret;
}
static void intel_hdmi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct intel_digital_port *intel_dig_port = hdmi_to_dig_port(intel_hdmi);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 tmp, flags = 0;
int dotclock;
pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
tmp = I915_READ(intel_hdmi->hdmi_reg);
if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
if (tmp & HDMI_MODE_SELECT_HDMI)
pipe_config->has_hdmi_sink = true;
if (intel_dig_port->infoframe_enabled(&encoder->base, pipe_config))
pipe_config->has_infoframe = true;
if (tmp & SDVO_AUDIO_ENABLE)
pipe_config->has_audio = true;
if (!HAS_PCH_SPLIT(dev_priv) &&
tmp & HDMI_COLOR_RANGE_16_235)
pipe_config->limited_color_range = true;
pipe_config->base.adjusted_mode.flags |= flags;
if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
dotclock = pipe_config->port_clock * 2 / 3;
else
dotclock = pipe_config->port_clock;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
pipe_config->lane_count = 4;
}
static void intel_enable_hdmi_audio(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
WARN_ON(!pipe_config->has_hdmi_sink);
DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
pipe_name(crtc->pipe));
intel_audio_codec_enable(encoder, pipe_config, conn_state);
}
static void g4x_enable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp |= SDVO_ENABLE;
if (pipe_config->has_audio)
temp |= SDVO_AUDIO_ENABLE;
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
if (pipe_config->has_audio)
intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
}
static void ibx_enable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp |= SDVO_ENABLE;
if (pipe_config->has_audio)
temp |= SDVO_AUDIO_ENABLE;
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
/*
* HW workaround, need to toggle enable bit off and on
* for 12bpc with pixel repeat.
*
* FIXME: BSpec says this should be done at the end of
* of the modeset sequence, so not sure if this isn't too soon.
*/
if (pipe_config->pipe_bpp > 24 &&
pipe_config->pixel_multiplier > 1) {
I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
POSTING_READ(intel_hdmi->hdmi_reg);
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
}
if (pipe_config->has_audio)
intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
}
static void cpt_enable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
enum pipe pipe = crtc->pipe;
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp |= SDVO_ENABLE;
if (pipe_config->has_audio)
temp |= SDVO_AUDIO_ENABLE;
/*
* WaEnableHDMI8bpcBefore12bpc:snb,ivb
*
* The procedure for 12bpc is as follows:
* 1. disable HDMI clock gating
* 2. enable HDMI with 8bpc
* 3. enable HDMI with 12bpc
* 4. enable HDMI clock gating
*/
if (pipe_config->pipe_bpp > 24) {
I915_WRITE(TRANS_CHICKEN1(pipe),
I915_READ(TRANS_CHICKEN1(pipe)) |
TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
temp &= ~SDVO_COLOR_FORMAT_MASK;
temp |= SDVO_COLOR_FORMAT_8bpc;
}
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
if (pipe_config->pipe_bpp > 24) {
temp &= ~SDVO_COLOR_FORMAT_MASK;
temp |= HDMI_COLOR_FORMAT_12bpc;
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(TRANS_CHICKEN1(pipe),
I915_READ(TRANS_CHICKEN1(pipe)) &
~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
}
if (pipe_config->has_audio)
intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
}
static void vlv_enable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
}
static void intel_disable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct intel_digital_port *intel_dig_port =
hdmi_to_dig_port(intel_hdmi);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
/*
* HW workaround for IBX, we need to move the port
* to transcoder A after disabling it to allow the
* matching DP port to be enabled on transcoder A.
*/
if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) {
/*
* We get CPU/PCH FIFO underruns on the other pipe when
* doing the workaround. Sweep them under the rug.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
temp &= ~SDVO_PIPE_SEL_MASK;
temp |= SDVO_ENABLE | SDVO_PIPE_SEL(PIPE_A);
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
temp &= ~SDVO_ENABLE;
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
}
intel_dig_port->set_infoframes(&encoder->base, false,
old_crtc_state, old_conn_state);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
}
static void g4x_disable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
if (old_crtc_state->has_audio)
intel_audio_codec_disable(encoder,
old_crtc_state, old_conn_state);
intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
}
static void pch_disable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
if (old_crtc_state->has_audio)
intel_audio_codec_disable(encoder,
old_crtc_state, old_conn_state);
}
static void pch_post_disable_hdmi(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
}
static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[encoder->port];
int max_tmds_clock;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
max_tmds_clock = 594000;
else if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv))
max_tmds_clock = 300000;
else if (INTEL_GEN(dev_priv) >= 5)
max_tmds_clock = 225000;
else
max_tmds_clock = 165000;
if (info->max_tmds_clock)
max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock);
return max_tmds_clock;
}
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
bool respect_downstream_limits,
bool force_dvi)
{
struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
if (respect_downstream_limits) {
struct intel_connector *connector = hdmi->attached_connector;
const struct drm_display_info *info = &connector->base.display_info;
if (hdmi->dp_dual_mode.max_tmds_clock)
max_tmds_clock = min(max_tmds_clock,
hdmi->dp_dual_mode.max_tmds_clock);
if (info->max_tmds_clock)
max_tmds_clock = min(max_tmds_clock,
info->max_tmds_clock);
else if (!hdmi->has_hdmi_sink || force_dvi)
max_tmds_clock = min(max_tmds_clock, 165000);
}
return max_tmds_clock;
}
static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
int clock, bool respect_downstream_limits,
bool force_dvi)
{
struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
if (clock < 25000)
return MODE_CLOCK_LOW;
if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, force_dvi))
return MODE_CLOCK_HIGH;
/* BXT DPLL can't generate 223-240 MHz */
if (IS_GEN9_LP(dev_priv) && clock > 223333 && clock < 240000)
return MODE_CLOCK_RANGE;
/* CHV DPLL can't generate 216-240 MHz */
if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
return MODE_CLOCK_RANGE;
return MODE_OK;
}
static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
struct drm_device *dev = intel_hdmi_to_dev(hdmi);
struct drm_i915_private *dev_priv = to_i915(dev);
enum drm_mode_status status;
int clock;
int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
bool force_dvi =
READ_ONCE(to_intel_digital_connector_state(connector->state)->force_audio) == HDMI_AUDIO_OFF_DVI;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
clock = mode->clock;
if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
clock *= 2;
if (clock > max_dotclk)
return MODE_CLOCK_HIGH;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
clock *= 2;
if (drm_mode_is_420_only(&connector->display_info, mode))
clock /= 2;
/* check if we can do 8bpc */
status = hdmi_port_clock_valid(hdmi, clock, true, force_dvi);
if (hdmi->has_hdmi_sink && !force_dvi) {
/* if we can't do 8bpc we may still be able to do 12bpc */
if (status != MODE_OK && !HAS_GMCH_DISPLAY(dev_priv))
status = hdmi_port_clock_valid(hdmi, clock * 3 / 2,
true, force_dvi);
/* if we can't do 8,12bpc we may still be able to do 10bpc */
if (status != MODE_OK && INTEL_GEN(dev_priv) >= 11)
status = hdmi_port_clock_valid(hdmi, clock * 5 / 4,
true, force_dvi);
}
return status;
}
static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
int bpc)
{
struct drm_i915_private *dev_priv =
to_i915(crtc_state->base.crtc->dev);
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector_state *connector_state;
struct drm_connector *connector;
int i;
if (HAS_GMCH_DISPLAY(dev_priv))
return false;
if (bpc == 10 && INTEL_GEN(dev_priv) < 11)
return false;
if (crtc_state->pipe_bpp <= 8*3)
return false;
if (!crtc_state->has_hdmi_sink)
return false;
/*
* HDMI deep color affects the clocks, so it's only possible
* when not cloning with other encoder types.
*/
if (crtc_state->output_types != 1 << INTEL_OUTPUT_HDMI)
return false;
for_each_new_connector_in_state(state, connector, connector_state, i) {
const struct drm_display_info *info = &connector->display_info;
if (connector_state->crtc != crtc_state->base.crtc)
continue;
if (crtc_state->ycbcr420) {
const struct drm_hdmi_info *hdmi = &info->hdmi;
if (bpc == 12 && !(hdmi->y420_dc_modes &
DRM_EDID_YCBCR420_DC_36))
return false;
else if (bpc == 10 && !(hdmi->y420_dc_modes &
DRM_EDID_YCBCR420_DC_30))
return false;
} else {
if (bpc == 12 && !(info->edid_hdmi_dc_modes &
DRM_EDID_HDMI_DC_36))
return false;
else if (bpc == 10 && !(info->edid_hdmi_dc_modes &
DRM_EDID_HDMI_DC_30))
return false;
}
}
/* Display WA #1139: glk */
if (bpc == 12 && IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1) &&
crtc_state->base.adjusted_mode.htotal > 5460)
return false;
return true;
}
static bool
intel_hdmi_ycbcr420_config(struct drm_connector *connector,
struct intel_crtc_state *config,
int *clock_12bpc, int *clock_10bpc,
int *clock_8bpc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(config->base.crtc);
if (!connector->ycbcr_420_allowed) {
DRM_ERROR("Platform doesn't support YCBCR420 output\n");
return false;
}
/* YCBCR420 TMDS rate requirement is half the pixel clock */
config->port_clock /= 2;
*clock_12bpc /= 2;
*clock_10bpc /= 2;
*clock_8bpc /= 2;
config->ycbcr420 = true;
/* YCBCR 420 output conversion needs a scaler */
if (skl_update_scaler_crtc(config)) {
DRM_DEBUG_KMS("Scaler allocation for output failed\n");
return false;
}
intel_pch_panel_fitting(intel_crtc, config,
DRM_MODE_SCALE_FULLSCREEN);
return true;
}
bool intel_hdmi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
struct drm_connector *connector = conn_state->connector;
struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
struct intel_digital_connector_state *intel_conn_state =
to_intel_digital_connector_state(conn_state);
int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
int clock_10bpc = clock_8bpc * 5 / 4;
int clock_12bpc = clock_8bpc * 3 / 2;
int desired_bpp;
bool force_dvi = intel_conn_state->force_audio == HDMI_AUDIO_OFF_DVI;
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
return false;
pipe_config->has_hdmi_sink = !force_dvi && intel_hdmi->has_hdmi_sink;
if (pipe_config->has_hdmi_sink)
pipe_config->has_infoframe = true;
if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
/* See CEA-861-E - 5.1 Default Encoding Parameters */
pipe_config->limited_color_range =
pipe_config->has_hdmi_sink &&
drm_default_rgb_quant_range(adjusted_mode) ==
HDMI_QUANTIZATION_RANGE_LIMITED;
} else {
pipe_config->limited_color_range =
intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
pipe_config->pixel_multiplier = 2;
clock_8bpc *= 2;
clock_10bpc *= 2;
clock_12bpc *= 2;
}
if (drm_mode_is_420_only(&connector->display_info, adjusted_mode)) {
if (!intel_hdmi_ycbcr420_config(connector, pipe_config,
&clock_12bpc, &clock_10bpc,
&clock_8bpc)) {
DRM_ERROR("Can't support YCBCR420 output\n");
return false;
}
}
if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
pipe_config->has_pch_encoder = true;
if (pipe_config->has_hdmi_sink) {
if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
pipe_config->has_audio = intel_hdmi->has_audio;
else
pipe_config->has_audio =
intel_conn_state->force_audio == HDMI_AUDIO_ON;
}
/*
* Note that g4x/vlv don't support 12bpc hdmi outputs. We also need
* to check that the higher clock still fits within limits.
*/
if (hdmi_deep_color_possible(pipe_config, 12) &&
hdmi_port_clock_valid(intel_hdmi, clock_12bpc,
true, force_dvi) == MODE_OK) {
DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
desired_bpp = 12*3;
/* Need to adjust the port link by 1.5x for 12bpc. */
pipe_config->port_clock = clock_12bpc;
} else if (hdmi_deep_color_possible(pipe_config, 10) &&
hdmi_port_clock_valid(intel_hdmi, clock_10bpc,
true, force_dvi) == MODE_OK) {
DRM_DEBUG_KMS("picking bpc to 10 for HDMI output\n");
desired_bpp = 10 * 3;
/* Need to adjust the port link by 1.25x for 10bpc. */
pipe_config->port_clock = clock_10bpc;
} else {
DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
desired_bpp = 8*3;
pipe_config->port_clock = clock_8bpc;
}
if (!pipe_config->bw_constrained) {
DRM_DEBUG_KMS("forcing pipe bpp to %i for HDMI\n", desired_bpp);
pipe_config->pipe_bpp = desired_bpp;
}
if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
false, force_dvi) != MODE_OK) {
DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
return false;
}
/* Set user selected PAR to incoming mode's member */
adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio;
pipe_config->lane_count = 4;
if (scdc->scrambling.supported && (INTEL_GEN(dev_priv) >= 10 ||
IS_GEMINILAKE(dev_priv))) {
if (scdc->scrambling.low_rates)
pipe_config->hdmi_scrambling = true;
if (pipe_config->port_clock > 340000) {
pipe_config->hdmi_scrambling = true;
pipe_config->hdmi_high_tmds_clock_ratio = true;
}
}
return true;
}
static void
intel_hdmi_unset_edid(struct drm_connector *connector)
{
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
intel_hdmi->has_hdmi_sink = false;
intel_hdmi->has_audio = false;
intel_hdmi->rgb_quant_range_selectable = false;
intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
kfree(to_intel_connector(connector)->detect_edid);
to_intel_connector(connector)->detect_edid = NULL;
}
static void
intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
enum port port = hdmi_to_dig_port(hdmi)->base.port;
struct i2c_adapter *adapter =
intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter);
/*
* Type 1 DVI adaptors are not required to implement any
* registers, so we can't always detect their presence.
* Ideally we should be able to check the state of the
* CONFIG1 pin, but no such luck on our hardware.
*
* The only method left to us is to check the VBT to see
* if the port is a dual mode capable DP port. But let's
* only do that when we sucesfully read the EDID, to avoid
* confusing log messages about DP dual mode adaptors when
* there's nothing connected to the port.
*/
if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
/* An overridden EDID imply that we want this port for testing.
* Make sure not to set limits for that port.
*/
if (has_edid && !connector->override_edid &&
intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
DRM_DEBUG_KMS("Assuming DP dual mode adaptor presence based on VBT\n");
type = DRM_DP_DUAL_MODE_TYPE1_DVI;
} else {
type = DRM_DP_DUAL_MODE_NONE;
}
}
if (type == DRM_DP_DUAL_MODE_NONE)
return;
hdmi->dp_dual_mode.type = type;
hdmi->dp_dual_mode.max_tmds_clock =
drm_dp_dual_mode_max_tmds_clock(type, adapter);
DRM_DEBUG_KMS("DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
drm_dp_get_dual_mode_type_name(type),
hdmi->dp_dual_mode.max_tmds_clock);
}
static bool
intel_hdmi_set_edid(struct drm_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
struct edid *edid;
bool connected = false;
struct i2c_adapter *i2c;
intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
edid = drm_get_edid(connector, i2c);
if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
DRM_DEBUG_KMS("HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
intel_gmbus_force_bit(i2c, true);
edid = drm_get_edid(connector, i2c);
intel_gmbus_force_bit(i2c, false);
}
intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
to_intel_connector(connector)->detect_edid = edid;
if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
intel_hdmi->rgb_quant_range_selectable =
drm_rgb_quant_range_selectable(edid);
intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
connected = true;
}
cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
return connected;
}
static enum drm_connector_status
intel_hdmi_detect(struct drm_connector *connector, bool force)
{
enum drm_connector_status status = connector_status_disconnected;
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
if (IS_ICELAKE(dev_priv) &&
!intel_digital_port_connected(encoder))
goto out;
intel_hdmi_unset_edid(connector);
if (intel_hdmi_set_edid(connector))
status = connector_status_connected;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
if (status != connector_status_connected)
cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
return status;
}
static void
intel_hdmi_force(struct drm_connector *connector)
{
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
intel_hdmi_unset_edid(connector);
if (connector->status != connector_status_connected)
return;
intel_hdmi_set_edid(connector);
}
static int intel_hdmi_get_modes(struct drm_connector *connector)
{
struct edid *edid;
edid = to_intel_connector(connector)->detect_edid;
if (edid == NULL)
return 0;
return intel_connector_update_modes(connector, edid);
}
static void intel_hdmi_pre_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(&encoder->base);
intel_hdmi_prepare(encoder, pipe_config);
intel_dig_port->set_infoframes(&encoder->base,
pipe_config->has_infoframe,
pipe_config, conn_state);
}
static void vlv_hdmi_pre_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
vlv_phy_pre_encoder_enable(encoder, pipe_config);
/* HDMI 1.0V-2dB */
vlv_set_phy_signal_level(encoder, 0x2b245f5f, 0x00002000, 0x5578b83a,
0x2b247878);
dport->set_infoframes(&encoder->base,
pipe_config->has_infoframe,
pipe_config, conn_state);
g4x_enable_hdmi(encoder, pipe_config, conn_state);
vlv_wait_port_ready(dev_priv, dport, 0x0);
}
static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_hdmi_prepare(encoder, pipe_config);
vlv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_hdmi_prepare(encoder, pipe_config);
chv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
chv_phy_post_pll_disable(encoder, old_crtc_state);
}
static void vlv_hdmi_post_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
/* Reset lanes to avoid HDMI flicker (VLV w/a) */
vlv_phy_reset_lanes(encoder, old_crtc_state);
}
static void chv_hdmi_post_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
mutex_lock(&dev_priv->sb_lock);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, old_crtc_state, true);
mutex_unlock(&dev_priv->sb_lock);
}
static void chv_hdmi_pre_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
chv_phy_pre_encoder_enable(encoder, pipe_config);
/* FIXME: Program the support xxx V-dB */
/* Use 800mV-0dB */
chv_set_phy_signal_level(encoder, 128, 102, false);
dport->set_infoframes(&encoder->base,
pipe_config->has_infoframe,
pipe_config, conn_state);
g4x_enable_hdmi(encoder, pipe_config, conn_state);
vlv_wait_port_ready(dev_priv, dport, 0x0);
/* Second common lane will stay alive on its own now */
chv_phy_release_cl2_override(encoder);
}
static void intel_hdmi_destroy(struct drm_connector *connector)
{
if (intel_attached_hdmi(connector)->cec_notifier)
cec_notifier_put(intel_attached_hdmi(connector)->cec_notifier);
kfree(to_intel_connector(connector)->detect_edid);
drm_connector_cleanup(connector);
kfree(connector);
}
static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
.detect = intel_hdmi_detect,
.force = intel_hdmi_force,
.fill_modes = drm_helper_probe_single_connector_modes,
.atomic_get_property = intel_digital_connector_atomic_get_property,
.atomic_set_property = intel_digital_connector_atomic_set_property,
.late_register = intel_connector_register,
.early_unregister = intel_connector_unregister,
.destroy = intel_hdmi_destroy,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = intel_digital_connector_duplicate_state,
};
static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
.get_modes = intel_hdmi_get_modes,
.mode_valid = intel_hdmi_mode_valid,
.atomic_check = intel_digital_connector_atomic_check,
};
static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
.destroy = intel_encoder_destroy,
};
static void
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
{
intel_attach_force_audio_property(connector);
intel_attach_broadcast_rgb_property(connector);
intel_attach_aspect_ratio_property(connector);
drm_connector_attach_content_type_property(connector);
connector->state->picture_aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
}
/*
* intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
* @encoder: intel_encoder
* @connector: drm_connector
* @high_tmds_clock_ratio = bool to indicate if the function needs to set
* or reset the high tmds clock ratio for scrambling
* @scrambling: bool to Indicate if the function needs to set or reset
* sink scrambling
*
* This function handles scrambling on HDMI 2.0 capable sinks.
* If required clock rate is > 340 Mhz && scrambling is supported by sink
* it enables scrambling. This should be called before enabling the HDMI
* 2.0 port, as the sink can choose to disable the scrambling if it doesn't
* detect a scrambled clock within 100 ms.
*
* Returns:
* True on success, false on failure.
*/
bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
struct drm_connector *connector,
bool high_tmds_clock_ratio,
bool scrambling)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct drm_scrambling *sink_scrambling =
&connector->display_info.hdmi.scdc.scrambling;
struct i2c_adapter *adapter =
intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
if (!sink_scrambling->supported)
return true;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
connector->base.id, connector->name,
yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
return drm_scdc_set_high_tmds_clock_ratio(adapter,
high_tmds_clock_ratio) &&
drm_scdc_set_scrambling(adapter, scrambling);
}
static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_B:
ddc_pin = GMBUS_PIN_DPB;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_DPC;
break;
case PORT_D:
ddc_pin = GMBUS_PIN_DPD_CHV;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_DPB;
break;
}
return ddc_pin;
}
static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_B:
ddc_pin = GMBUS_PIN_1_BXT;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_2_BXT;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_1_BXT;
break;
}
return ddc_pin;
}
static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_B:
ddc_pin = GMBUS_PIN_1_BXT;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_2_BXT;
break;
case PORT_D:
ddc_pin = GMBUS_PIN_4_CNP;
break;
case PORT_F:
ddc_pin = GMBUS_PIN_3_BXT;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_1_BXT;
break;
}
return ddc_pin;
}
static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_A:
ddc_pin = GMBUS_PIN_1_BXT;
break;
case PORT_B:
ddc_pin = GMBUS_PIN_2_BXT;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_9_TC1_ICP;
break;
case PORT_D:
ddc_pin = GMBUS_PIN_10_TC2_ICP;
break;
case PORT_E:
ddc_pin = GMBUS_PIN_11_TC3_ICP;
break;
case PORT_F:
ddc_pin = GMBUS_PIN_12_TC4_ICP;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_2_BXT;
break;
}
return ddc_pin;
}
static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
enum port port)
{
u8 ddc_pin;
switch (port) {
case PORT_B:
ddc_pin = GMBUS_PIN_DPB;
break;
case PORT_C:
ddc_pin = GMBUS_PIN_DPC;
break;
case PORT_D:
ddc_pin = GMBUS_PIN_DPD;
break;
default:
MISSING_CASE(port);
ddc_pin = GMBUS_PIN_DPB;
break;
}
return ddc_pin;
}
static u8 intel_hdmi_ddc_pin(struct drm_i915_private *dev_priv,
enum port port)
{
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
u8 ddc_pin;
if (info->alternate_ddc_pin) {
DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (VBT)\n",
info->alternate_ddc_pin, port_name(port));
return info->alternate_ddc_pin;
}
if (IS_CHERRYVIEW(dev_priv))
ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
else if (IS_GEN9_LP(dev_priv))
ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
else if (HAS_PCH_CNP(dev_priv))
ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
else if (HAS_PCH_ICP(dev_priv))
ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
else
ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (platform default)\n",
ddc_pin, port_name(port));
return ddc_pin;
}
void intel_infoframe_init(struct intel_digital_port *intel_dig_port)
{
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
intel_dig_port->write_infoframe = vlv_write_infoframe;
intel_dig_port->set_infoframes = vlv_set_infoframes;
intel_dig_port->infoframe_enabled = vlv_infoframe_enabled;
} else if (IS_G4X(dev_priv)) {
intel_dig_port->write_infoframe = g4x_write_infoframe;
intel_dig_port->set_infoframes = g4x_set_infoframes;
intel_dig_port->infoframe_enabled = g4x_infoframe_enabled;
} else if (HAS_DDI(dev_priv)) {
intel_dig_port->write_infoframe = hsw_write_infoframe;
intel_dig_port->set_infoframes = hsw_set_infoframes;
intel_dig_port->infoframe_enabled = hsw_infoframe_enabled;
} else if (HAS_PCH_IBX(dev_priv)) {
intel_dig_port->write_infoframe = ibx_write_infoframe;
intel_dig_port->set_infoframes = ibx_set_infoframes;
intel_dig_port->infoframe_enabled = ibx_infoframe_enabled;
} else {
intel_dig_port->write_infoframe = cpt_write_infoframe;
intel_dig_port->set_infoframes = cpt_set_infoframes;
intel_dig_port->infoframe_enabled = cpt_infoframe_enabled;
}
}
void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = intel_encoder->port;
DRM_DEBUG_KMS("Adding HDMI connector on port %c\n",
port_name(port));
if (WARN(intel_dig_port->max_lanes < 4,
"Not enough lanes (%d) for HDMI on port %c\n",
intel_dig_port->max_lanes, port_name(port)))
return;
drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
connector->interlace_allowed = 1;
connector->doublescan_allowed = 0;
connector->stereo_allowed = 1;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
connector->ycbcr_420_allowed = true;
intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(dev_priv, port);
if (WARN_ON(port == PORT_A))
return;
intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
if (HAS_DDI(dev_priv))
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
else
intel_connector->get_hw_state = intel_connector_get_hw_state;
intel_hdmi_add_properties(intel_hdmi, connector);
if (is_hdcp_supported(dev_priv, port)) {
int ret = intel_hdcp_init(intel_connector,
&intel_hdmi_hdcp_shim);
if (ret)
DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
}
intel_connector_attach_encoder(intel_connector, intel_encoder);
intel_hdmi->attached_connector = intel_connector;
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G45(dev_priv)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
intel_hdmi->cec_notifier = cec_notifier_get_conn(dev->dev,
port_identifier(port));
if (!intel_hdmi->cec_notifier)
DRM_DEBUG_KMS("CEC notifier get failed\n");
}
void intel_hdmi_init(struct drm_i915_private *dev_priv,
i915_reg_t hdmi_reg, enum port port)
{
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct intel_connector *intel_connector;
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return;
intel_connector = intel_connector_alloc();
if (!intel_connector) {
kfree(intel_dig_port);
return;
}
intel_encoder = &intel_dig_port->base;
drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
&intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS,
"HDMI %c", port_name(port));
intel_encoder->hotplug = intel_encoder_hotplug;
intel_encoder->compute_config = intel_hdmi_compute_config;
if (HAS_PCH_SPLIT(dev_priv)) {
intel_encoder->disable = pch_disable_hdmi;
intel_encoder->post_disable = pch_post_disable_hdmi;
} else {
intel_encoder->disable = g4x_disable_hdmi;
}
intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
intel_encoder->get_config = intel_hdmi_get_config;
if (IS_CHERRYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
intel_encoder->pre_enable = chv_hdmi_pre_enable;
intel_encoder->enable = vlv_enable_hdmi;
intel_encoder->post_disable = chv_hdmi_post_disable;
intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
} else if (IS_VALLEYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
intel_encoder->pre_enable = vlv_hdmi_pre_enable;
intel_encoder->enable = vlv_enable_hdmi;
intel_encoder->post_disable = vlv_hdmi_post_disable;
} else {
intel_encoder->pre_enable = intel_hdmi_pre_enable;
if (HAS_PCH_CPT(dev_priv))
intel_encoder->enable = cpt_enable_hdmi;
else if (HAS_PCH_IBX(dev_priv))
intel_encoder->enable = ibx_enable_hdmi;
else
intel_encoder->enable = g4x_enable_hdmi;
}
intel_encoder->type = INTEL_OUTPUT_HDMI;
intel_encoder->power_domain = intel_port_to_power_domain(port);
intel_encoder->port = port;
if (IS_CHERRYVIEW(dev_priv)) {
if (port == PORT_D)
intel_encoder->crtc_mask = 1 << 2;
else
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
} else {
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
}
intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
/*
* BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
* to work on real hardware. And since g4x can send infoframes to
* only one port anyway, nothing is lost by allowing it.
*/
if (IS_G4X(dev_priv))
intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
intel_dig_port->max_lanes = 4;
intel_infoframe_init(intel_dig_port);
intel_hdmi_init_connector(intel_dig_port, intel_connector);
}