linux_dsm_epyc7002/arch/arm/mach-sa1100/cpu-sa1100.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

250 lines
7.8 KiB
C

/*
* cpu-sa1100.c: clock scaling for the SA1100
*
* Copyright (C) 2000 2001, The Delft University of Technology
*
* Authors:
* - Johan Pouwelse (J.A.Pouwelse@its.tudelft.nl): initial version
* - Erik Mouw (J.A.K.Mouw@its.tudelft.nl):
* - major rewrite for linux-2.3.99
* - rewritten for the more generic power management scheme in
* linux-2.4.5-rmk1
*
* This software has been developed while working on the LART
* computing board (http://www.lart.tudelft.nl/), which is
* sponsored by the Mobile Multi-media Communications
* (http://www.mmc.tudelft.nl/) and Ubiquitous Communications
* (http://www.ubicom.tudelft.nl/) projects.
*
* The authors can be reached at:
*
* Erik Mouw
* Information and Communication Theory Group
* Faculty of Information Technology and Systems
* Delft University of Technology
* P.O. Box 5031
* 2600 GA Delft
* The Netherlands
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* Theory of operations
* ====================
*
* Clock scaling can be used to lower the power consumption of the CPU
* core. This will give you a somewhat longer running time.
*
* The SA-1100 has a single register to change the core clock speed:
*
* PPCR 0x90020014 PLL config
*
* However, the DRAM timings are closely related to the core clock
* speed, so we need to change these, too. The used registers are:
*
* MDCNFG 0xA0000000 DRAM config
* MDCAS0 0xA0000004 Access waveform
* MDCAS1 0xA0000008 Access waveform
* MDCAS2 0xA000000C Access waveform
*
* Care must be taken to change the DRAM parameters the correct way,
* because otherwise the DRAM becomes unusable and the kernel will
* crash.
*
* The simple solution to avoid a kernel crash is to put the actual
* clock change in ROM and jump to that code from the kernel. The main
* disadvantage is that the ROM has to be modified, which is not
* possible on all SA-1100 platforms. Another disadvantage is that
* jumping to ROM makes clock switching unecessary complicated.
*
* The idea behind this driver is that the memory configuration can be
* changed while running from DRAM (even with interrupts turned on!)
* as long as all re-configuration steps yield a valid DRAM
* configuration. The advantages are clear: it will run on all SA-1100
* platforms, and the code is very simple.
*
* If you really want to understand what is going on in
* sa1100_update_dram_timings(), you'll have to read sections 8.2,
* 9.5.7.3, and 10.2 from the "Intel StrongARM SA-1100 Microprocessor
* Developers Manual" (available for free from Intel).
*
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <asm/hardware.h>
#include "generic.h"
typedef struct {
int speed;
u32 mdcnfg;
u32 mdcas0;
u32 mdcas1;
u32 mdcas2;
} sa1100_dram_regs_t;
static struct cpufreq_driver sa1100_driver;
static sa1100_dram_regs_t sa1100_dram_settings[] =
{
/* speed, mdcnfg, mdcas0, mdcas1, mdcas2 clock frequency */
{ 59000, 0x00dc88a3, 0xcccccccf, 0xfffffffc, 0xffffffff }, /* 59.0 MHz */
{ 73700, 0x011490a3, 0xcccccccf, 0xfffffffc, 0xffffffff }, /* 73.7 MHz */
{ 88500, 0x014e90a3, 0xcccccccf, 0xfffffffc, 0xffffffff }, /* 88.5 MHz */
{ 103200, 0x01889923, 0xcccccccf, 0xfffffffc, 0xffffffff }, /* 103.2 MHz */
{ 118000, 0x01c29923, 0x9999998f, 0xfffffff9, 0xffffffff }, /* 118.0 MHz */
{ 132700, 0x01fb2123, 0x9999998f, 0xfffffff9, 0xffffffff }, /* 132.7 MHz */
{ 147500, 0x02352123, 0x3333330f, 0xfffffff3, 0xffffffff }, /* 147.5 MHz */
{ 162200, 0x026b29a3, 0x38e38e1f, 0xfff8e38e, 0xffffffff }, /* 162.2 MHz */
{ 176900, 0x02a329a3, 0x71c71c1f, 0xfff1c71c, 0xffffffff }, /* 176.9 MHz */
{ 191700, 0x02dd31a3, 0xe38e383f, 0xffe38e38, 0xffffffff }, /* 191.7 MHz */
{ 206400, 0x03153223, 0xc71c703f, 0xffc71c71, 0xffffffff }, /* 206.4 MHz */
{ 221200, 0x034fba23, 0xc71c703f, 0xffc71c71, 0xffffffff }, /* 221.2 MHz */
{ 235900, 0x03853a23, 0xe1e1e07f, 0xe1e1e1e1, 0xffffffe1 }, /* 235.9 MHz */
{ 250700, 0x03bf3aa3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3 }, /* 250.7 MHz */
{ 265400, 0x03f7c2a3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3 }, /* 265.4 MHz */
{ 280200, 0x0431c2a3, 0x878780ff, 0x87878787, 0xffffff87 }, /* 280.2 MHz */
{ 0, 0, 0, 0, 0 } /* last entry */
};
static void sa1100_update_dram_timings(int current_speed, int new_speed)
{
sa1100_dram_regs_t *settings = sa1100_dram_settings;
/* find speed */
while (settings->speed != 0) {
if(new_speed == settings->speed)
break;
settings++;
}
if (settings->speed == 0) {
panic("%s: couldn't find dram setting for speed %d\n",
__FUNCTION__, new_speed);
}
/* No risk, no fun: run with interrupts on! */
if (new_speed > current_speed) {
/* We're going FASTER, so first relax the memory
* timings before changing the core frequency
*/
/* Half the memory access clock */
MDCNFG |= MDCNFG_CDB2;
/* The order of these statements IS important, keep 8
* pulses!!
*/
MDCAS2 = settings->mdcas2;
MDCAS1 = settings->mdcas1;
MDCAS0 = settings->mdcas0;
MDCNFG = settings->mdcnfg;
} else {
/* We're going SLOWER: first decrease the core
* frequency and then tighten the memory settings.
*/
/* Half the memory access clock */
MDCNFG |= MDCNFG_CDB2;
/* The order of these statements IS important, keep 8
* pulses!!
*/
MDCAS0 = settings->mdcas0;
MDCAS1 = settings->mdcas1;
MDCAS2 = settings->mdcas2;
MDCNFG = settings->mdcnfg;
}
}
static int sa1100_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
unsigned int cur = sa11x0_getspeed(0);
unsigned int new_ppcr;
struct cpufreq_freqs freqs;
switch(relation){
case CPUFREQ_RELATION_L:
new_ppcr = sa11x0_freq_to_ppcr(target_freq);
if (sa11x0_ppcr_to_freq(new_ppcr) > policy->max)
new_ppcr--;
break;
case CPUFREQ_RELATION_H:
new_ppcr = sa11x0_freq_to_ppcr(target_freq);
if ((sa11x0_ppcr_to_freq(new_ppcr) > target_freq) &&
(sa11x0_ppcr_to_freq(new_ppcr - 1) >= policy->min))
new_ppcr--;
break;
}
freqs.old = cur;
freqs.new = sa11x0_ppcr_to_freq(new_ppcr);
freqs.cpu = 0;
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
if (freqs.new > cur)
sa1100_update_dram_timings(cur, freqs.new);
PPCR = new_ppcr;
if (freqs.new < cur)
sa1100_update_dram_timings(cur, freqs.new);
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
return 0;
}
static int __init sa1100_cpu_init(struct cpufreq_policy *policy)
{
if (policy->cpu != 0)
return -EINVAL;
policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
policy->cpuinfo.min_freq = 59000;
policy->cpuinfo.max_freq = 287000;
policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
return 0;
}
static struct cpufreq_driver sa1100_driver = {
.flags = CPUFREQ_STICKY,
.verify = sa11x0_verify_speed,
.target = sa1100_target,
.get = sa11x0_getspeed,
.init = sa1100_cpu_init,
.name = "sa1100",
};
static int __init sa1100_dram_init(void)
{
if ((processor_id & CPU_SA1100_MASK) == CPU_SA1100_ID)
return cpufreq_register_driver(&sa1100_driver);
else
return -ENODEV;
}
arch_initcall(sa1100_dram_init);