linux_dsm_epyc7002/fs/crypto/keysetup_v1.c
Eric Biggers 4006d799d9 fscrypt: invoke crypto API for ESSIV handling
Instead of open-coding the calculations for ESSIV handling, use an ESSIV
skcipher which does all of this under the hood.  ESSIV was added to the
crypto API in v5.4.

This is based on a patch from Ard Biesheuvel, but reworked to apply
after all the fscrypt changes that went into v5.4.

Tested with 'kvm-xfstests -c ext4,f2fs -g encrypt', including the
ciphertext verification tests for v1 and v2 encryption policies.

Originally-from: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-10-21 13:22:08 -07:00

337 lines
9.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Key setup for v1 encryption policies
*
* Copyright 2015, 2019 Google LLC
*/
/*
* This file implements compatibility functions for the original encryption
* policy version ("v1"), including:
*
* - Deriving per-file keys using the AES-128-ECB based KDF
* (rather than the new method of using HKDF-SHA512)
*
* - Retrieving fscrypt master keys from process-subscribed keyrings
* (rather than the new method of using a filesystem-level keyring)
*
* - Handling policies with the DIRECT_KEY flag set using a master key table
* (rather than the new method of implementing DIRECT_KEY with per-mode keys
* managed alongside the master keys in the filesystem-level keyring)
*/
#include <crypto/algapi.h>
#include <crypto/skcipher.h>
#include <keys/user-type.h>
#include <linux/hashtable.h>
#include <linux/scatterlist.h>
#include "fscrypt_private.h"
/* Table of keys referenced by DIRECT_KEY policies */
static DEFINE_HASHTABLE(fscrypt_direct_keys, 6); /* 6 bits = 64 buckets */
static DEFINE_SPINLOCK(fscrypt_direct_keys_lock);
/*
* v1 key derivation function. This generates the derived key by encrypting the
* master key with AES-128-ECB using the nonce as the AES key. This provides a
* unique derived key with sufficient entropy for each inode. However, it's
* nonstandard, non-extensible, doesn't evenly distribute the entropy from the
* master key, and is trivially reversible: an attacker who compromises a
* derived key can "decrypt" it to get back to the master key, then derive any
* other key. For all new code, use HKDF instead.
*
* The master key must be at least as long as the derived key. If the master
* key is longer, then only the first 'derived_keysize' bytes are used.
*/
static int derive_key_aes(const u8 *master_key,
const u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE],
u8 *derived_key, unsigned int derived_keysize)
{
int res = 0;
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
struct scatterlist src_sg, dst_sg;
struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
if (IS_ERR(tfm)) {
res = PTR_ERR(tfm);
tfm = NULL;
goto out;
}
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
req = skcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
res = -ENOMEM;
goto out;
}
skcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);
res = crypto_skcipher_setkey(tfm, nonce, FS_KEY_DERIVATION_NONCE_SIZE);
if (res < 0)
goto out;
sg_init_one(&src_sg, master_key, derived_keysize);
sg_init_one(&dst_sg, derived_key, derived_keysize);
skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize,
NULL);
res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
out:
skcipher_request_free(req);
crypto_free_skcipher(tfm);
return res;
}
/*
* Search the current task's subscribed keyrings for a "logon" key with
* description prefix:descriptor, and if found acquire a read lock on it and
* return a pointer to its validated payload in *payload_ret.
*/
static struct key *
find_and_lock_process_key(const char *prefix,
const u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE],
unsigned int min_keysize,
const struct fscrypt_key **payload_ret)
{
char *description;
struct key *key;
const struct user_key_payload *ukp;
const struct fscrypt_key *payload;
description = kasprintf(GFP_NOFS, "%s%*phN", prefix,
FSCRYPT_KEY_DESCRIPTOR_SIZE, descriptor);
if (!description)
return ERR_PTR(-ENOMEM);
key = request_key(&key_type_logon, description, NULL);
kfree(description);
if (IS_ERR(key))
return key;
down_read(&key->sem);
ukp = user_key_payload_locked(key);
if (!ukp) /* was the key revoked before we acquired its semaphore? */
goto invalid;
payload = (const struct fscrypt_key *)ukp->data;
if (ukp->datalen != sizeof(struct fscrypt_key) ||
payload->size < 1 || payload->size > FSCRYPT_MAX_KEY_SIZE) {
fscrypt_warn(NULL,
"key with description '%s' has invalid payload",
key->description);
goto invalid;
}
if (payload->size < min_keysize) {
fscrypt_warn(NULL,
"key with description '%s' is too short (got %u bytes, need %u+ bytes)",
key->description, payload->size, min_keysize);
goto invalid;
}
*payload_ret = payload;
return key;
invalid:
up_read(&key->sem);
key_put(key);
return ERR_PTR(-ENOKEY);
}
/* Master key referenced by DIRECT_KEY policy */
struct fscrypt_direct_key {
struct hlist_node dk_node;
refcount_t dk_refcount;
const struct fscrypt_mode *dk_mode;
struct crypto_skcipher *dk_ctfm;
u8 dk_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
u8 dk_raw[FSCRYPT_MAX_KEY_SIZE];
};
static void free_direct_key(struct fscrypt_direct_key *dk)
{
if (dk) {
crypto_free_skcipher(dk->dk_ctfm);
kzfree(dk);
}
}
void fscrypt_put_direct_key(struct fscrypt_direct_key *dk)
{
if (!refcount_dec_and_lock(&dk->dk_refcount, &fscrypt_direct_keys_lock))
return;
hash_del(&dk->dk_node);
spin_unlock(&fscrypt_direct_keys_lock);
free_direct_key(dk);
}
/*
* Find/insert the given key into the fscrypt_direct_keys table. If found, it
* is returned with elevated refcount, and 'to_insert' is freed if non-NULL. If
* not found, 'to_insert' is inserted and returned if it's non-NULL; otherwise
* NULL is returned.
*/
static struct fscrypt_direct_key *
find_or_insert_direct_key(struct fscrypt_direct_key *to_insert,
const u8 *raw_key, const struct fscrypt_info *ci)
{
unsigned long hash_key;
struct fscrypt_direct_key *dk;
/*
* Careful: to avoid potentially leaking secret key bytes via timing
* information, we must key the hash table by descriptor rather than by
* raw key, and use crypto_memneq() when comparing raw keys.
*/
BUILD_BUG_ON(sizeof(hash_key) > FSCRYPT_KEY_DESCRIPTOR_SIZE);
memcpy(&hash_key, ci->ci_policy.v1.master_key_descriptor,
sizeof(hash_key));
spin_lock(&fscrypt_direct_keys_lock);
hash_for_each_possible(fscrypt_direct_keys, dk, dk_node, hash_key) {
if (memcmp(ci->ci_policy.v1.master_key_descriptor,
dk->dk_descriptor, FSCRYPT_KEY_DESCRIPTOR_SIZE) != 0)
continue;
if (ci->ci_mode != dk->dk_mode)
continue;
if (crypto_memneq(raw_key, dk->dk_raw, ci->ci_mode->keysize))
continue;
/* using existing tfm with same (descriptor, mode, raw_key) */
refcount_inc(&dk->dk_refcount);
spin_unlock(&fscrypt_direct_keys_lock);
free_direct_key(to_insert);
return dk;
}
if (to_insert)
hash_add(fscrypt_direct_keys, &to_insert->dk_node, hash_key);
spin_unlock(&fscrypt_direct_keys_lock);
return to_insert;
}
/* Prepare to encrypt directly using the master key in the given mode */
static struct fscrypt_direct_key *
fscrypt_get_direct_key(const struct fscrypt_info *ci, const u8 *raw_key)
{
struct fscrypt_direct_key *dk;
int err;
/* Is there already a tfm for this key? */
dk = find_or_insert_direct_key(NULL, raw_key, ci);
if (dk)
return dk;
/* Nope, allocate one. */
dk = kzalloc(sizeof(*dk), GFP_NOFS);
if (!dk)
return ERR_PTR(-ENOMEM);
refcount_set(&dk->dk_refcount, 1);
dk->dk_mode = ci->ci_mode;
dk->dk_ctfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key,
ci->ci_inode);
if (IS_ERR(dk->dk_ctfm)) {
err = PTR_ERR(dk->dk_ctfm);
dk->dk_ctfm = NULL;
goto err_free_dk;
}
memcpy(dk->dk_descriptor, ci->ci_policy.v1.master_key_descriptor,
FSCRYPT_KEY_DESCRIPTOR_SIZE);
memcpy(dk->dk_raw, raw_key, ci->ci_mode->keysize);
return find_or_insert_direct_key(dk, raw_key, ci);
err_free_dk:
free_direct_key(dk);
return ERR_PTR(err);
}
/* v1 policy, DIRECT_KEY: use the master key directly */
static int setup_v1_file_key_direct(struct fscrypt_info *ci,
const u8 *raw_master_key)
{
const struct fscrypt_mode *mode = ci->ci_mode;
struct fscrypt_direct_key *dk;
if (!fscrypt_mode_supports_direct_key(mode)) {
fscrypt_warn(ci->ci_inode,
"Direct key mode not allowed with %s",
mode->friendly_name);
return -EINVAL;
}
if (ci->ci_policy.v1.contents_encryption_mode !=
ci->ci_policy.v1.filenames_encryption_mode) {
fscrypt_warn(ci->ci_inode,
"Direct key mode not allowed with different contents and filenames modes");
return -EINVAL;
}
dk = fscrypt_get_direct_key(ci, raw_master_key);
if (IS_ERR(dk))
return PTR_ERR(dk);
ci->ci_direct_key = dk;
ci->ci_ctfm = dk->dk_ctfm;
return 0;
}
/* v1 policy, !DIRECT_KEY: derive the file's encryption key */
static int setup_v1_file_key_derived(struct fscrypt_info *ci,
const u8 *raw_master_key)
{
u8 *derived_key;
int err;
/*
* This cannot be a stack buffer because it will be passed to the
* scatterlist crypto API during derive_key_aes().
*/
derived_key = kmalloc(ci->ci_mode->keysize, GFP_NOFS);
if (!derived_key)
return -ENOMEM;
err = derive_key_aes(raw_master_key, ci->ci_nonce,
derived_key, ci->ci_mode->keysize);
if (err)
goto out;
err = fscrypt_set_derived_key(ci, derived_key);
out:
kzfree(derived_key);
return err;
}
int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, const u8 *raw_master_key)
{
if (ci->ci_policy.v1.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
return setup_v1_file_key_direct(ci, raw_master_key);
else
return setup_v1_file_key_derived(ci, raw_master_key);
}
int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci)
{
struct key *key;
const struct fscrypt_key *payload;
int err;
key = find_and_lock_process_key(FSCRYPT_KEY_DESC_PREFIX,
ci->ci_policy.v1.master_key_descriptor,
ci->ci_mode->keysize, &payload);
if (key == ERR_PTR(-ENOKEY) && ci->ci_inode->i_sb->s_cop->key_prefix) {
key = find_and_lock_process_key(ci->ci_inode->i_sb->s_cop->key_prefix,
ci->ci_policy.v1.master_key_descriptor,
ci->ci_mode->keysize, &payload);
}
if (IS_ERR(key))
return PTR_ERR(key);
err = fscrypt_setup_v1_file_key(ci, payload->raw);
up_read(&key->sem);
key_put(key);
return err;
}