mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 23:46:41 +07:00
fcb762f5de
Freed extents are unconditionally discarded when online discard is enabled. Define XFS_BMAPI_NODISCARD to allow callers to bypass discards when unnecessary. For example, this will be useful for eofblocks trimming. This patch does not change behavior. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
559 lines
15 KiB
C
559 lines
15 KiB
C
/*
|
|
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_extfree_item.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_rmap.h"
|
|
|
|
|
|
kmem_zone_t *xfs_efi_zone;
|
|
kmem_zone_t *xfs_efd_zone;
|
|
|
|
static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_efi_log_item, efi_item);
|
|
}
|
|
|
|
void
|
|
xfs_efi_item_free(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
kmem_free(efip->efi_item.li_lv_shadow);
|
|
if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
|
|
kmem_free(efip);
|
|
else
|
|
kmem_zone_free(xfs_efi_zone, efip);
|
|
}
|
|
|
|
/*
|
|
* Freeing the efi requires that we remove it from the AIL if it has already
|
|
* been placed there. However, the EFI may not yet have been placed in the AIL
|
|
* when called by xfs_efi_release() from EFD processing due to the ordering of
|
|
* committed vs unpin operations in bulk insert operations. Hence the reference
|
|
* count to ensure only the last caller frees the EFI.
|
|
*/
|
|
void
|
|
xfs_efi_release(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
ASSERT(atomic_read(&efip->efi_refcount) > 0);
|
|
if (atomic_dec_and_test(&efip->efi_refcount)) {
|
|
xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
|
|
xfs_efi_item_free(efip);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given efi item.
|
|
* We only need 1 iovec for an efi item. It just logs the efi_log_format
|
|
* structure.
|
|
*/
|
|
static inline int
|
|
xfs_efi_item_sizeof(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
return sizeof(struct xfs_efi_log_format) +
|
|
(efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efi_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
*nvecs += 1;
|
|
*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efi log item. We use only 1 iovec, and we point that
|
|
* at the efi_log_format structure embedded in the efi item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efi item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(atomic_read(&efip->efi_next_extent) ==
|
|
efip->efi_format.efi_nextents);
|
|
|
|
efip->efi_format.efi_type = XFS_LI_EFI;
|
|
efip->efi_format.efi_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
|
|
&efip->efi_format,
|
|
xfs_efi_item_sizeof(efip));
|
|
}
|
|
|
|
|
|
/*
|
|
* Pinning has no meaning for an efi item, so just return.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* The unpin operation is the last place an EFI is manipulated in the log. It is
|
|
* either inserted in the AIL or aborted in the event of a log I/O error. In
|
|
* either case, the EFI transaction has been successfully committed to make it
|
|
* this far. Therefore, we expect whoever committed the EFI to either construct
|
|
* and commit the EFD or drop the EFD's reference in the event of error. Simply
|
|
* drop the log's EFI reference now that the log is done with it.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
xfs_efi_release(efip);
|
|
}
|
|
|
|
/*
|
|
* Efi items have no locking or pushing. However, since EFIs are pulled from
|
|
* the AIL when their corresponding EFDs are committed to disk, their situation
|
|
* is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
|
|
* will eventually flush the log. This should help in getting the EFI out of
|
|
* the AIL.
|
|
*/
|
|
STATIC uint
|
|
xfs_efi_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
{
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
/*
|
|
* The EFI has been either committed or aborted if the transaction has been
|
|
* cancelled. If the transaction was cancelled, an EFD isn't going to be
|
|
* constructed and thus we free the EFI here directly.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_unlock(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
|
|
xfs_efi_release(EFI_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* The EFI is logged only once and cannot be moved in the log, so simply return
|
|
* the lsn at which it's been logged.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_efi_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
return lsn;
|
|
}
|
|
|
|
/*
|
|
* The EFI dependency tracking op doesn't do squat. It can't because
|
|
* it doesn't know where the free extent is coming from. The dependency
|
|
* tracking has to be handled by the "enclosing" metadata object. For
|
|
* example, for inodes, the inode is locked throughout the extent freeing
|
|
* so the dependency should be recorded there.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all efi log items.
|
|
*/
|
|
static const struct xfs_item_ops xfs_efi_item_ops = {
|
|
.iop_size = xfs_efi_item_size,
|
|
.iop_format = xfs_efi_item_format,
|
|
.iop_pin = xfs_efi_item_pin,
|
|
.iop_unpin = xfs_efi_item_unpin,
|
|
.iop_unlock = xfs_efi_item_unlock,
|
|
.iop_committed = xfs_efi_item_committed,
|
|
.iop_push = xfs_efi_item_push,
|
|
.iop_committing = xfs_efi_item_committing
|
|
};
|
|
|
|
|
|
/*
|
|
* Allocate and initialize an efi item with the given number of extents.
|
|
*/
|
|
struct xfs_efi_log_item *
|
|
xfs_efi_init(
|
|
struct xfs_mount *mp,
|
|
uint nextents)
|
|
|
|
{
|
|
struct xfs_efi_log_item *efip;
|
|
uint size;
|
|
|
|
ASSERT(nextents > 0);
|
|
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
|
|
size = (uint)(sizeof(xfs_efi_log_item_t) +
|
|
((nextents - 1) * sizeof(xfs_extent_t)));
|
|
efip = kmem_zalloc(size, KM_SLEEP);
|
|
} else {
|
|
efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
|
|
}
|
|
|
|
xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
|
|
efip->efi_format.efi_nextents = nextents;
|
|
efip->efi_format.efi_id = (uintptr_t)(void *)efip;
|
|
atomic_set(&efip->efi_next_extent, 0);
|
|
atomic_set(&efip->efi_refcount, 2);
|
|
|
|
return efip;
|
|
}
|
|
|
|
/*
|
|
* Copy an EFI format buffer from the given buf, and into the destination
|
|
* EFI format structure.
|
|
* The given buffer can be in 32 bit or 64 bit form (which has different padding),
|
|
* one of which will be the native format for this kernel.
|
|
* It will handle the conversion of formats if necessary.
|
|
*/
|
|
int
|
|
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
|
|
{
|
|
xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
|
|
uint i;
|
|
uint len = sizeof(xfs_efi_log_format_t) +
|
|
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
|
|
uint len32 = sizeof(xfs_efi_log_format_32_t) +
|
|
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
|
|
uint len64 = sizeof(xfs_efi_log_format_64_t) +
|
|
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
|
|
|
|
if (buf->i_len == len) {
|
|
memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
|
|
return 0;
|
|
} else if (buf->i_len == len32) {
|
|
xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_32->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_32->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
} else if (buf->i_len == len64) {
|
|
xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_64->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_64->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
}
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_efd_log_item, efd_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_free(struct xfs_efd_log_item *efdp)
|
|
{
|
|
kmem_free(efdp->efd_item.li_lv_shadow);
|
|
if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
|
|
kmem_free(efdp);
|
|
else
|
|
kmem_zone_free(xfs_efd_zone, efdp);
|
|
}
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given efd item.
|
|
* We only need 1 iovec for an efd item. It just logs the efd_log_format
|
|
* structure.
|
|
*/
|
|
static inline int
|
|
xfs_efd_item_sizeof(
|
|
struct xfs_efd_log_item *efdp)
|
|
{
|
|
return sizeof(xfs_efd_log_format_t) +
|
|
(efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
*nvecs += 1;
|
|
*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efd log item. We use only 1 iovec, and we point that
|
|
* at the efd_log_format structure embedded in the efd item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efd item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
|
|
|
|
efdp->efd_format.efd_type = XFS_LI_EFD;
|
|
efdp->efd_format.efd_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
|
|
&efdp->efd_format,
|
|
xfs_efd_item_sizeof(efdp));
|
|
}
|
|
|
|
/*
|
|
* Pinning has no meaning for an efd item, so just return.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Since pinning has no meaning for an efd item, unpinning does
|
|
* not either.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* There isn't much you can do to push on an efd item. It is simply stuck
|
|
* waiting for the log to be flushed to disk.
|
|
*/
|
|
STATIC uint
|
|
xfs_efd_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
{
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
/*
|
|
* The EFD is either committed or aborted if the transaction is cancelled. If
|
|
* the transaction is cancelled, drop our reference to the EFI and free the EFD.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_unlock(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
|
|
if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
|
|
xfs_efi_release(efdp->efd_efip);
|
|
xfs_efd_item_free(efdp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When the efd item is committed to disk, all we need to do is delete our
|
|
* reference to our partner efi item and then free ourselves. Since we're
|
|
* freeing ourselves we must return -1 to keep the transaction code from further
|
|
* referencing this item.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_efd_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
|
|
/*
|
|
* Drop the EFI reference regardless of whether the EFD has been
|
|
* aborted. Once the EFD transaction is constructed, it is the sole
|
|
* responsibility of the EFD to release the EFI (even if the EFI is
|
|
* aborted due to log I/O error).
|
|
*/
|
|
xfs_efi_release(efdp->efd_efip);
|
|
xfs_efd_item_free(efdp);
|
|
|
|
return (xfs_lsn_t)-1;
|
|
}
|
|
|
|
/*
|
|
* The EFD dependency tracking op doesn't do squat. It can't because
|
|
* it doesn't know where the free extent is coming from. The dependency
|
|
* tracking has to be handled by the "enclosing" metadata object. For
|
|
* example, for inodes, the inode is locked throughout the extent freeing
|
|
* so the dependency should be recorded there.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all efd log items.
|
|
*/
|
|
static const struct xfs_item_ops xfs_efd_item_ops = {
|
|
.iop_size = xfs_efd_item_size,
|
|
.iop_format = xfs_efd_item_format,
|
|
.iop_pin = xfs_efd_item_pin,
|
|
.iop_unpin = xfs_efd_item_unpin,
|
|
.iop_unlock = xfs_efd_item_unlock,
|
|
.iop_committed = xfs_efd_item_committed,
|
|
.iop_push = xfs_efd_item_push,
|
|
.iop_committing = xfs_efd_item_committing
|
|
};
|
|
|
|
/*
|
|
* Allocate and initialize an efd item with the given number of extents.
|
|
*/
|
|
struct xfs_efd_log_item *
|
|
xfs_efd_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_efi_log_item *efip,
|
|
uint nextents)
|
|
|
|
{
|
|
struct xfs_efd_log_item *efdp;
|
|
uint size;
|
|
|
|
ASSERT(nextents > 0);
|
|
if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
|
|
size = (uint)(sizeof(xfs_efd_log_item_t) +
|
|
((nextents - 1) * sizeof(xfs_extent_t)));
|
|
efdp = kmem_zalloc(size, KM_SLEEP);
|
|
} else {
|
|
efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
|
|
}
|
|
|
|
xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
|
|
efdp->efd_efip = efip;
|
|
efdp->efd_format.efd_nextents = nextents;
|
|
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
|
|
|
|
return efdp;
|
|
}
|
|
|
|
/*
|
|
* Process an extent free intent item that was recovered from
|
|
* the log. We need to free the extents that it describes.
|
|
*/
|
|
int
|
|
xfs_efi_recover(
|
|
struct xfs_mount *mp,
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
struct xfs_efd_log_item *efdp;
|
|
struct xfs_trans *tp;
|
|
int i;
|
|
int error = 0;
|
|
xfs_extent_t *extp;
|
|
xfs_fsblock_t startblock_fsb;
|
|
struct xfs_owner_info oinfo;
|
|
|
|
ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
|
|
|
|
/*
|
|
* First check the validity of the extents described by the
|
|
* EFI. If any are bad, then assume that all are bad and
|
|
* just toss the EFI.
|
|
*/
|
|
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
|
|
extp = &efip->efi_format.efi_extents[i];
|
|
startblock_fsb = XFS_BB_TO_FSB(mp,
|
|
XFS_FSB_TO_DADDR(mp, extp->ext_start));
|
|
if (startblock_fsb == 0 ||
|
|
extp->ext_len == 0 ||
|
|
startblock_fsb >= mp->m_sb.sb_dblocks ||
|
|
extp->ext_len >= mp->m_sb.sb_agblocks) {
|
|
/*
|
|
* This will pull the EFI from the AIL and
|
|
* free the memory associated with it.
|
|
*/
|
|
set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
|
|
xfs_efi_release(efip);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
|
|
if (error)
|
|
return error;
|
|
efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
|
|
|
|
xfs_rmap_any_owner_update(&oinfo);
|
|
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
|
|
extp = &efip->efi_format.efi_extents[i];
|
|
error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
|
|
extp->ext_len, &oinfo, false);
|
|
if (error)
|
|
goto abort_error;
|
|
|
|
}
|
|
|
|
set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
|
|
error = xfs_trans_commit(tp);
|
|
return error;
|
|
|
|
abort_error:
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|