mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
f5a7d445ff
Subsystems that want to register CPU hotplug callbacks, as well as perform initialization for the CPUs that are already online, often do it as shown below: get_online_cpus(); for_each_online_cpu(cpu) init_cpu(cpu); register_cpu_notifier(&foobar_cpu_notifier); put_online_cpus(); This is wrong, since it is prone to ABBA deadlocks involving the cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently with CPU hotplug operations). Instead, the correct and race-free way of performing the callback registration is: cpu_notifier_register_begin(); for_each_online_cpu(cpu) init_cpu(cpu); /* Note the use of the double underscored version of the API */ __register_cpu_notifier(&foobar_cpu_notifier); cpu_notifier_register_done(); Fix the topology code in ia64 by using this latter form of callback registration. Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
473 lines
11 KiB
C
473 lines
11 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* This file contains NUMA specific variables and functions which can
|
|
* be split away from DISCONTIGMEM and are used on NUMA machines with
|
|
* contiguous memory.
|
|
* 2002/08/07 Erich Focht <efocht@ess.nec.de>
|
|
* Populate cpu entries in sysfs for non-numa systems as well
|
|
* Intel Corporation - Ashok Raj
|
|
* 02/27/2006 Zhang, Yanmin
|
|
* Populate cpu cache entries in sysfs for cpu cache info
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/node.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/export.h>
|
|
#include <asm/mmzone.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/cpu.h>
|
|
|
|
static struct ia64_cpu *sysfs_cpus;
|
|
|
|
void arch_fix_phys_package_id(int num, u32 slot)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (cpu_data(num)->socket_id == -1)
|
|
cpu_data(num)->socket_id = slot;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
|
|
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
int __ref arch_register_cpu(int num)
|
|
{
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* If CPEI can be re-targeted or if this is not
|
|
* CPEI target, then it is hotpluggable
|
|
*/
|
|
if (can_cpei_retarget() || !is_cpu_cpei_target(num))
|
|
sysfs_cpus[num].cpu.hotpluggable = 1;
|
|
map_cpu_to_node(num, node_cpuid[num].nid);
|
|
#endif
|
|
return register_cpu(&sysfs_cpus[num].cpu, num);
|
|
}
|
|
EXPORT_SYMBOL(arch_register_cpu);
|
|
|
|
void __ref arch_unregister_cpu(int num)
|
|
{
|
|
unregister_cpu(&sysfs_cpus[num].cpu);
|
|
#ifdef CONFIG_ACPI
|
|
unmap_cpu_from_node(num, cpu_to_node(num));
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(arch_unregister_cpu);
|
|
#else
|
|
static int __init arch_register_cpu(int num)
|
|
{
|
|
return register_cpu(&sysfs_cpus[num].cpu, num);
|
|
}
|
|
#endif /*CONFIG_HOTPLUG_CPU*/
|
|
|
|
|
|
static int __init topology_init(void)
|
|
{
|
|
int i, err = 0;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
|
|
*/
|
|
for_each_online_node(i) {
|
|
if ((err = register_one_node(i)))
|
|
goto out;
|
|
}
|
|
#endif
|
|
|
|
sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
|
|
if (!sysfs_cpus)
|
|
panic("kzalloc in topology_init failed - NR_CPUS too big?");
|
|
|
|
for_each_present_cpu(i) {
|
|
if((err = arch_register_cpu(i)))
|
|
goto out;
|
|
}
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
subsys_initcall(topology_init);
|
|
|
|
|
|
/*
|
|
* Export cpu cache information through sysfs
|
|
*/
|
|
|
|
/*
|
|
* A bunch of string array to get pretty printing
|
|
*/
|
|
static const char *cache_types[] = {
|
|
"", /* not used */
|
|
"Instruction",
|
|
"Data",
|
|
"Unified" /* unified */
|
|
};
|
|
|
|
static const char *cache_mattrib[]={
|
|
"WriteThrough",
|
|
"WriteBack",
|
|
"", /* reserved */
|
|
"" /* reserved */
|
|
};
|
|
|
|
struct cache_info {
|
|
pal_cache_config_info_t cci;
|
|
cpumask_t shared_cpu_map;
|
|
int level;
|
|
int type;
|
|
struct kobject kobj;
|
|
};
|
|
|
|
struct cpu_cache_info {
|
|
struct cache_info *cache_leaves;
|
|
int num_cache_leaves;
|
|
struct kobject kobj;
|
|
};
|
|
|
|
static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
|
|
#define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void cache_shared_cpu_map_setup(unsigned int cpu,
|
|
struct cache_info * this_leaf)
|
|
{
|
|
pal_cache_shared_info_t csi;
|
|
int num_shared, i = 0;
|
|
unsigned int j;
|
|
|
|
if (cpu_data(cpu)->threads_per_core <= 1 &&
|
|
cpu_data(cpu)->cores_per_socket <= 1) {
|
|
cpu_set(cpu, this_leaf->shared_cpu_map);
|
|
return;
|
|
}
|
|
|
|
if (ia64_pal_cache_shared_info(this_leaf->level,
|
|
this_leaf->type,
|
|
0,
|
|
&csi) != PAL_STATUS_SUCCESS)
|
|
return;
|
|
|
|
num_shared = (int) csi.num_shared;
|
|
do {
|
|
for_each_possible_cpu(j)
|
|
if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
|
|
&& cpu_data(j)->core_id == csi.log1_cid
|
|
&& cpu_data(j)->thread_id == csi.log1_tid)
|
|
cpu_set(j, this_leaf->shared_cpu_map);
|
|
|
|
i++;
|
|
} while (i < num_shared &&
|
|
ia64_pal_cache_shared_info(this_leaf->level,
|
|
this_leaf->type,
|
|
i,
|
|
&csi) == PAL_STATUS_SUCCESS);
|
|
}
|
|
#else
|
|
static void cache_shared_cpu_map_setup(unsigned int cpu,
|
|
struct cache_info * this_leaf)
|
|
{
|
|
cpu_set(cpu, this_leaf->shared_cpu_map);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
|
|
}
|
|
|
|
static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
|
|
}
|
|
|
|
static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
|
|
{
|
|
return sprintf(buf,
|
|
"%s\n",
|
|
cache_mattrib[this_leaf->cci.pcci_cache_attr]);
|
|
}
|
|
|
|
static ssize_t show_size(struct cache_info *this_leaf, char *buf)
|
|
{
|
|
return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
|
|
}
|
|
|
|
static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
|
|
{
|
|
unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
|
|
number_of_sets /= this_leaf->cci.pcci_assoc;
|
|
number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
|
|
|
|
return sprintf(buf, "%u\n", number_of_sets);
|
|
}
|
|
|
|
static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
|
|
{
|
|
ssize_t len;
|
|
cpumask_t shared_cpu_map;
|
|
|
|
cpumask_and(&shared_cpu_map,
|
|
&this_leaf->shared_cpu_map, cpu_online_mask);
|
|
len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
|
|
len += sprintf(buf+len, "\n");
|
|
return len;
|
|
}
|
|
|
|
static ssize_t show_type(struct cache_info *this_leaf, char *buf)
|
|
{
|
|
int type = this_leaf->type + this_leaf->cci.pcci_unified;
|
|
return sprintf(buf, "%s\n", cache_types[type]);
|
|
}
|
|
|
|
static ssize_t show_level(struct cache_info *this_leaf, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", this_leaf->level);
|
|
}
|
|
|
|
struct cache_attr {
|
|
struct attribute attr;
|
|
ssize_t (*show)(struct cache_info *, char *);
|
|
ssize_t (*store)(struct cache_info *, const char *, size_t count);
|
|
};
|
|
|
|
#ifdef define_one_ro
|
|
#undef define_one_ro
|
|
#endif
|
|
#define define_one_ro(_name) \
|
|
static struct cache_attr _name = \
|
|
__ATTR(_name, 0444, show_##_name, NULL)
|
|
|
|
define_one_ro(level);
|
|
define_one_ro(type);
|
|
define_one_ro(coherency_line_size);
|
|
define_one_ro(ways_of_associativity);
|
|
define_one_ro(size);
|
|
define_one_ro(number_of_sets);
|
|
define_one_ro(shared_cpu_map);
|
|
define_one_ro(attributes);
|
|
|
|
static struct attribute * cache_default_attrs[] = {
|
|
&type.attr,
|
|
&level.attr,
|
|
&coherency_line_size.attr,
|
|
&ways_of_associativity.attr,
|
|
&attributes.attr,
|
|
&size.attr,
|
|
&number_of_sets.attr,
|
|
&shared_cpu_map.attr,
|
|
NULL
|
|
};
|
|
|
|
#define to_object(k) container_of(k, struct cache_info, kobj)
|
|
#define to_attr(a) container_of(a, struct cache_attr, attr)
|
|
|
|
static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
|
|
{
|
|
struct cache_attr *fattr = to_attr(attr);
|
|
struct cache_info *this_leaf = to_object(kobj);
|
|
ssize_t ret;
|
|
|
|
ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
|
|
return ret;
|
|
}
|
|
|
|
static const struct sysfs_ops cache_sysfs_ops = {
|
|
.show = ia64_cache_show
|
|
};
|
|
|
|
static struct kobj_type cache_ktype = {
|
|
.sysfs_ops = &cache_sysfs_ops,
|
|
.default_attrs = cache_default_attrs,
|
|
};
|
|
|
|
static struct kobj_type cache_ktype_percpu_entry = {
|
|
.sysfs_ops = &cache_sysfs_ops,
|
|
};
|
|
|
|
static void cpu_cache_sysfs_exit(unsigned int cpu)
|
|
{
|
|
kfree(all_cpu_cache_info[cpu].cache_leaves);
|
|
all_cpu_cache_info[cpu].cache_leaves = NULL;
|
|
all_cpu_cache_info[cpu].num_cache_leaves = 0;
|
|
memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
|
|
return;
|
|
}
|
|
|
|
static int cpu_cache_sysfs_init(unsigned int cpu)
|
|
{
|
|
unsigned long i, levels, unique_caches;
|
|
pal_cache_config_info_t cci;
|
|
int j;
|
|
long status;
|
|
struct cache_info *this_cache;
|
|
int num_cache_leaves = 0;
|
|
|
|
if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
|
|
printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
|
|
return -1;
|
|
}
|
|
|
|
this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
|
|
GFP_KERNEL);
|
|
if (this_cache == NULL)
|
|
return -ENOMEM;
|
|
|
|
for (i=0; i < levels; i++) {
|
|
for (j=2; j >0 ; j--) {
|
|
if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
|
|
PAL_STATUS_SUCCESS)
|
|
continue;
|
|
|
|
this_cache[num_cache_leaves].cci = cci;
|
|
this_cache[num_cache_leaves].level = i + 1;
|
|
this_cache[num_cache_leaves].type = j;
|
|
|
|
cache_shared_cpu_map_setup(cpu,
|
|
&this_cache[num_cache_leaves]);
|
|
num_cache_leaves ++;
|
|
}
|
|
}
|
|
|
|
all_cpu_cache_info[cpu].cache_leaves = this_cache;
|
|
all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
|
|
|
|
memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add cache interface for CPU device */
|
|
static int cache_add_dev(struct device *sys_dev)
|
|
{
|
|
unsigned int cpu = sys_dev->id;
|
|
unsigned long i, j;
|
|
struct cache_info *this_object;
|
|
int retval = 0;
|
|
cpumask_t oldmask;
|
|
|
|
if (all_cpu_cache_info[cpu].kobj.parent)
|
|
return 0;
|
|
|
|
oldmask = current->cpus_allowed;
|
|
retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
|
if (unlikely(retval))
|
|
return retval;
|
|
|
|
retval = cpu_cache_sysfs_init(cpu);
|
|
set_cpus_allowed_ptr(current, &oldmask);
|
|
if (unlikely(retval < 0))
|
|
return retval;
|
|
|
|
retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
|
|
&cache_ktype_percpu_entry, &sys_dev->kobj,
|
|
"%s", "cache");
|
|
if (unlikely(retval < 0)) {
|
|
cpu_cache_sysfs_exit(cpu);
|
|
return retval;
|
|
}
|
|
|
|
for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
|
|
this_object = LEAF_KOBJECT_PTR(cpu,i);
|
|
retval = kobject_init_and_add(&(this_object->kobj),
|
|
&cache_ktype,
|
|
&all_cpu_cache_info[cpu].kobj,
|
|
"index%1lu", i);
|
|
if (unlikely(retval)) {
|
|
for (j = 0; j < i; j++) {
|
|
kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
|
|
}
|
|
kobject_put(&all_cpu_cache_info[cpu].kobj);
|
|
cpu_cache_sysfs_exit(cpu);
|
|
return retval;
|
|
}
|
|
kobject_uevent(&(this_object->kobj), KOBJ_ADD);
|
|
}
|
|
kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
|
|
return retval;
|
|
}
|
|
|
|
/* Remove cache interface for CPU device */
|
|
static int cache_remove_dev(struct device *sys_dev)
|
|
{
|
|
unsigned int cpu = sys_dev->id;
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
|
|
kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
|
|
|
|
if (all_cpu_cache_info[cpu].kobj.parent) {
|
|
kobject_put(&all_cpu_cache_info[cpu].kobj);
|
|
memset(&all_cpu_cache_info[cpu].kobj,
|
|
0,
|
|
sizeof(struct kobject));
|
|
}
|
|
|
|
cpu_cache_sysfs_exit(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When a cpu is hot-plugged, do a check and initiate
|
|
* cache kobject if necessary
|
|
*/
|
|
static int cache_cpu_callback(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned long)hcpu;
|
|
struct device *sys_dev;
|
|
|
|
sys_dev = get_cpu_device(cpu);
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
cache_add_dev(sys_dev);
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
cache_remove_dev(sys_dev);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block cache_cpu_notifier =
|
|
{
|
|
.notifier_call = cache_cpu_callback
|
|
};
|
|
|
|
static int __init cache_sysfs_init(void)
|
|
{
|
|
int i;
|
|
|
|
cpu_notifier_register_begin();
|
|
|
|
for_each_online_cpu(i) {
|
|
struct device *sys_dev = get_cpu_device((unsigned int)i);
|
|
cache_add_dev(sys_dev);
|
|
}
|
|
|
|
__register_hotcpu_notifier(&cache_cpu_notifier);
|
|
|
|
cpu_notifier_register_done();
|
|
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(cache_sysfs_init);
|
|
|