mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 08:02:37 +07:00
8c6f803fd6
Avoid function calls in the inner PIO loops. On a Centris 660av this improves throughput for sequential read transfers by about 40% and sequential write by about 10%. Unfortunately it is not possible to have methods like .esp_write8 placed inline so this is always going to be slow, even with LTO. Tested-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Tested-by: Michael Schmitz <schmitzmic@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2913 lines
69 KiB
C
2913 lines
69 KiB
C
/* esp_scsi.c: ESP SCSI driver.
|
|
*
|
|
* Copyright (C) 2007 David S. Miller (davem@davemloft.net)
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/list.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/init.h>
|
|
#include <linux/irqreturn.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/io.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_tcq.h>
|
|
#include <scsi/scsi_dbg.h>
|
|
#include <scsi/scsi_transport_spi.h>
|
|
|
|
#include "esp_scsi.h"
|
|
|
|
#define DRV_MODULE_NAME "esp"
|
|
#define PFX DRV_MODULE_NAME ": "
|
|
#define DRV_VERSION "2.000"
|
|
#define DRV_MODULE_RELDATE "April 19, 2007"
|
|
|
|
/* SCSI bus reset settle time in seconds. */
|
|
static int esp_bus_reset_settle = 3;
|
|
|
|
static u32 esp_debug;
|
|
#define ESP_DEBUG_INTR 0x00000001
|
|
#define ESP_DEBUG_SCSICMD 0x00000002
|
|
#define ESP_DEBUG_RESET 0x00000004
|
|
#define ESP_DEBUG_MSGIN 0x00000008
|
|
#define ESP_DEBUG_MSGOUT 0x00000010
|
|
#define ESP_DEBUG_CMDDONE 0x00000020
|
|
#define ESP_DEBUG_DISCONNECT 0x00000040
|
|
#define ESP_DEBUG_DATASTART 0x00000080
|
|
#define ESP_DEBUG_DATADONE 0x00000100
|
|
#define ESP_DEBUG_RECONNECT 0x00000200
|
|
#define ESP_DEBUG_AUTOSENSE 0x00000400
|
|
#define ESP_DEBUG_EVENT 0x00000800
|
|
#define ESP_DEBUG_COMMAND 0x00001000
|
|
|
|
#define esp_log_intr(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_INTR) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_reset(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_RESET) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_msgin(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_MSGIN) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_msgout(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_MSGOUT) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_cmddone(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_CMDDONE) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_disconnect(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_datastart(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_DATASTART) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_datadone(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_DATADONE) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_reconnect(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_RECONNECT) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_autosense(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_event(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_EVENT) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_log_command(f, a...) \
|
|
do { if (esp_debug & ESP_DEBUG_COMMAND) \
|
|
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
|
|
} while (0)
|
|
|
|
#define esp_read8(REG) esp->ops->esp_read8(esp, REG)
|
|
#define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
|
|
|
|
static void esp_log_fill_regs(struct esp *esp,
|
|
struct esp_event_ent *p)
|
|
{
|
|
p->sreg = esp->sreg;
|
|
p->seqreg = esp->seqreg;
|
|
p->sreg2 = esp->sreg2;
|
|
p->ireg = esp->ireg;
|
|
p->select_state = esp->select_state;
|
|
p->event = esp->event;
|
|
}
|
|
|
|
void scsi_esp_cmd(struct esp *esp, u8 val)
|
|
{
|
|
struct esp_event_ent *p;
|
|
int idx = esp->esp_event_cur;
|
|
|
|
p = &esp->esp_event_log[idx];
|
|
p->type = ESP_EVENT_TYPE_CMD;
|
|
p->val = val;
|
|
esp_log_fill_regs(esp, p);
|
|
|
|
esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
|
|
|
|
esp_log_command("cmd[%02x]\n", val);
|
|
esp_write8(val, ESP_CMD);
|
|
}
|
|
EXPORT_SYMBOL(scsi_esp_cmd);
|
|
|
|
static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
|
|
{
|
|
if (esp->flags & ESP_FLAG_USE_FIFO) {
|
|
int i;
|
|
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
for (i = 0; i < len; i++)
|
|
esp_write8(esp->command_block[i], ESP_FDATA);
|
|
scsi_esp_cmd(esp, cmd);
|
|
} else {
|
|
if (esp->rev == FASHME)
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
cmd |= ESP_CMD_DMA;
|
|
esp->ops->send_dma_cmd(esp, esp->command_block_dma,
|
|
len, max_len, 0, cmd);
|
|
}
|
|
}
|
|
|
|
static void esp_event(struct esp *esp, u8 val)
|
|
{
|
|
struct esp_event_ent *p;
|
|
int idx = esp->esp_event_cur;
|
|
|
|
p = &esp->esp_event_log[idx];
|
|
p->type = ESP_EVENT_TYPE_EVENT;
|
|
p->val = val;
|
|
esp_log_fill_regs(esp, p);
|
|
|
|
esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
|
|
|
|
esp->event = val;
|
|
}
|
|
|
|
static void esp_dump_cmd_log(struct esp *esp)
|
|
{
|
|
int idx = esp->esp_event_cur;
|
|
int stop = idx;
|
|
|
|
shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
|
|
do {
|
|
struct esp_event_ent *p = &esp->esp_event_log[idx];
|
|
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
|
|
"sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
|
|
idx,
|
|
p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
|
|
p->val, p->sreg, p->seqreg,
|
|
p->sreg2, p->ireg, p->select_state, p->event);
|
|
|
|
idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
|
|
} while (idx != stop);
|
|
}
|
|
|
|
static void esp_flush_fifo(struct esp *esp)
|
|
{
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
if (esp->rev == ESP236) {
|
|
int lim = 1000;
|
|
|
|
while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
|
|
if (--lim == 0) {
|
|
shost_printk(KERN_ALERT, esp->host,
|
|
"ESP_FF_BYTES will not clear!\n");
|
|
break;
|
|
}
|
|
udelay(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hme_read_fifo(struct esp *esp)
|
|
{
|
|
int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
|
|
int idx = 0;
|
|
|
|
while (fcnt--) {
|
|
esp->fifo[idx++] = esp_read8(ESP_FDATA);
|
|
esp->fifo[idx++] = esp_read8(ESP_FDATA);
|
|
}
|
|
if (esp->sreg2 & ESP_STAT2_F1BYTE) {
|
|
esp_write8(0, ESP_FDATA);
|
|
esp->fifo[idx++] = esp_read8(ESP_FDATA);
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
}
|
|
esp->fifo_cnt = idx;
|
|
}
|
|
|
|
static void esp_set_all_config3(struct esp *esp, u8 val)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ESP_MAX_TARGET; i++)
|
|
esp->target[i].esp_config3 = val;
|
|
}
|
|
|
|
/* Reset the ESP chip, _not_ the SCSI bus. */
|
|
static void esp_reset_esp(struct esp *esp)
|
|
{
|
|
u8 family_code, version;
|
|
|
|
/* Now reset the ESP chip */
|
|
scsi_esp_cmd(esp, ESP_CMD_RC);
|
|
scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
|
|
if (esp->rev == FAST)
|
|
esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
|
|
scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
|
|
|
|
/* This is the only point at which it is reliable to read
|
|
* the ID-code for a fast ESP chip variants.
|
|
*/
|
|
esp->max_period = ((35 * esp->ccycle) / 1000);
|
|
if (esp->rev == FAST) {
|
|
version = esp_read8(ESP_UID);
|
|
family_code = (version & 0xf8) >> 3;
|
|
if (family_code == 0x02)
|
|
esp->rev = FAS236;
|
|
else if (family_code == 0x0a)
|
|
esp->rev = FASHME; /* Version is usually '5'. */
|
|
else
|
|
esp->rev = FAS100A;
|
|
esp->min_period = ((4 * esp->ccycle) / 1000);
|
|
} else {
|
|
esp->min_period = ((5 * esp->ccycle) / 1000);
|
|
}
|
|
if (esp->rev == FAS236) {
|
|
/*
|
|
* The AM53c974 chip returns the same ID as FAS236;
|
|
* try to configure glitch eater.
|
|
*/
|
|
u8 config4 = ESP_CONFIG4_GE1;
|
|
esp_write8(config4, ESP_CFG4);
|
|
config4 = esp_read8(ESP_CFG4);
|
|
if (config4 & ESP_CONFIG4_GE1) {
|
|
esp->rev = PCSCSI;
|
|
esp_write8(esp->config4, ESP_CFG4);
|
|
}
|
|
}
|
|
esp->max_period = (esp->max_period + 3)>>2;
|
|
esp->min_period = (esp->min_period + 3)>>2;
|
|
|
|
esp_write8(esp->config1, ESP_CFG1);
|
|
switch (esp->rev) {
|
|
case ESP100:
|
|
/* nothing to do */
|
|
break;
|
|
|
|
case ESP100A:
|
|
esp_write8(esp->config2, ESP_CFG2);
|
|
break;
|
|
|
|
case ESP236:
|
|
/* Slow 236 */
|
|
esp_write8(esp->config2, ESP_CFG2);
|
|
esp->prev_cfg3 = esp->target[0].esp_config3;
|
|
esp_write8(esp->prev_cfg3, ESP_CFG3);
|
|
break;
|
|
|
|
case FASHME:
|
|
esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
|
|
/* fallthrough... */
|
|
|
|
case FAS236:
|
|
case PCSCSI:
|
|
/* Fast 236, AM53c974 or HME */
|
|
esp_write8(esp->config2, ESP_CFG2);
|
|
if (esp->rev == FASHME) {
|
|
u8 cfg3 = esp->target[0].esp_config3;
|
|
|
|
cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
|
|
if (esp->scsi_id >= 8)
|
|
cfg3 |= ESP_CONFIG3_IDBIT3;
|
|
esp_set_all_config3(esp, cfg3);
|
|
} else {
|
|
u32 cfg3 = esp->target[0].esp_config3;
|
|
|
|
cfg3 |= ESP_CONFIG3_FCLK;
|
|
esp_set_all_config3(esp, cfg3);
|
|
}
|
|
esp->prev_cfg3 = esp->target[0].esp_config3;
|
|
esp_write8(esp->prev_cfg3, ESP_CFG3);
|
|
if (esp->rev == FASHME) {
|
|
esp->radelay = 80;
|
|
} else {
|
|
if (esp->flags & ESP_FLAG_DIFFERENTIAL)
|
|
esp->radelay = 0;
|
|
else
|
|
esp->radelay = 96;
|
|
}
|
|
break;
|
|
|
|
case FAS100A:
|
|
/* Fast 100a */
|
|
esp_write8(esp->config2, ESP_CFG2);
|
|
esp_set_all_config3(esp,
|
|
(esp->target[0].esp_config3 |
|
|
ESP_CONFIG3_FCLOCK));
|
|
esp->prev_cfg3 = esp->target[0].esp_config3;
|
|
esp_write8(esp->prev_cfg3, ESP_CFG3);
|
|
esp->radelay = 32;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Reload the configuration registers */
|
|
esp_write8(esp->cfact, ESP_CFACT);
|
|
|
|
esp->prev_stp = 0;
|
|
esp_write8(esp->prev_stp, ESP_STP);
|
|
|
|
esp->prev_soff = 0;
|
|
esp_write8(esp->prev_soff, ESP_SOFF);
|
|
|
|
esp_write8(esp->neg_defp, ESP_TIMEO);
|
|
|
|
/* Eat any bitrot in the chip */
|
|
esp_read8(ESP_INTRPT);
|
|
udelay(100);
|
|
}
|
|
|
|
static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
|
|
{
|
|
struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
|
|
struct scatterlist *sg = scsi_sglist(cmd);
|
|
int total = 0, i;
|
|
|
|
if (cmd->sc_data_direction == DMA_NONE)
|
|
return;
|
|
|
|
if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
|
|
/*
|
|
* For pseudo DMA and PIO we need the virtual address instead of
|
|
* a dma address, so perform an identity mapping.
|
|
*/
|
|
spriv->num_sg = scsi_sg_count(cmd);
|
|
for (i = 0; i < spriv->num_sg; i++) {
|
|
sg[i].dma_address = (uintptr_t)sg_virt(&sg[i]);
|
|
total += sg_dma_len(&sg[i]);
|
|
}
|
|
} else {
|
|
spriv->num_sg = scsi_dma_map(cmd);
|
|
for (i = 0; i < spriv->num_sg; i++)
|
|
total += sg_dma_len(&sg[i]);
|
|
}
|
|
spriv->cur_residue = sg_dma_len(sg);
|
|
spriv->cur_sg = sg;
|
|
spriv->tot_residue = total;
|
|
}
|
|
|
|
static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
|
|
struct scsi_cmnd *cmd)
|
|
{
|
|
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
|
|
return ent->sense_dma +
|
|
(ent->sense_ptr - cmd->sense_buffer);
|
|
}
|
|
|
|
return sg_dma_address(p->cur_sg) +
|
|
(sg_dma_len(p->cur_sg) -
|
|
p->cur_residue);
|
|
}
|
|
|
|
static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
|
|
struct scsi_cmnd *cmd)
|
|
{
|
|
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
|
|
return SCSI_SENSE_BUFFERSIZE -
|
|
(ent->sense_ptr - cmd->sense_buffer);
|
|
}
|
|
return p->cur_residue;
|
|
}
|
|
|
|
static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
|
|
struct scsi_cmnd *cmd, unsigned int len)
|
|
{
|
|
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
|
|
ent->sense_ptr += len;
|
|
return;
|
|
}
|
|
|
|
p->cur_residue -= len;
|
|
p->tot_residue -= len;
|
|
if (p->cur_residue < 0 || p->tot_residue < 0) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Data transfer overflow.\n");
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"cur_residue[%d] tot_residue[%d] len[%u]\n",
|
|
p->cur_residue, p->tot_residue, len);
|
|
p->cur_residue = 0;
|
|
p->tot_residue = 0;
|
|
}
|
|
if (!p->cur_residue && p->tot_residue) {
|
|
p->cur_sg++;
|
|
p->cur_residue = sg_dma_len(p->cur_sg);
|
|
}
|
|
}
|
|
|
|
static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
|
|
{
|
|
if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
|
|
scsi_dma_unmap(cmd);
|
|
}
|
|
|
|
static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
|
|
{
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
|
|
ent->saved_sense_ptr = ent->sense_ptr;
|
|
return;
|
|
}
|
|
ent->saved_cur_residue = spriv->cur_residue;
|
|
ent->saved_cur_sg = spriv->cur_sg;
|
|
ent->saved_tot_residue = spriv->tot_residue;
|
|
}
|
|
|
|
static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
|
|
{
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
|
|
ent->sense_ptr = ent->saved_sense_ptr;
|
|
return;
|
|
}
|
|
spriv->cur_residue = ent->saved_cur_residue;
|
|
spriv->cur_sg = ent->saved_cur_sg;
|
|
spriv->tot_residue = ent->saved_tot_residue;
|
|
}
|
|
|
|
static void esp_write_tgt_config3(struct esp *esp, int tgt)
|
|
{
|
|
if (esp->rev > ESP100A) {
|
|
u8 val = esp->target[tgt].esp_config3;
|
|
|
|
if (val != esp->prev_cfg3) {
|
|
esp->prev_cfg3 = val;
|
|
esp_write8(val, ESP_CFG3);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void esp_write_tgt_sync(struct esp *esp, int tgt)
|
|
{
|
|
u8 off = esp->target[tgt].esp_offset;
|
|
u8 per = esp->target[tgt].esp_period;
|
|
|
|
if (off != esp->prev_soff) {
|
|
esp->prev_soff = off;
|
|
esp_write8(off, ESP_SOFF);
|
|
}
|
|
if (per != esp->prev_stp) {
|
|
esp->prev_stp = per;
|
|
esp_write8(per, ESP_STP);
|
|
}
|
|
}
|
|
|
|
static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
|
|
{
|
|
if (esp->rev == FASHME) {
|
|
/* Arbitrary segment boundaries, 24-bit counts. */
|
|
if (dma_len > (1U << 24))
|
|
dma_len = (1U << 24);
|
|
} else {
|
|
u32 base, end;
|
|
|
|
/* ESP chip limits other variants by 16-bits of transfer
|
|
* count. Actually on FAS100A and FAS236 we could get
|
|
* 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
|
|
* in the ESP_CFG2 register but that causes other unwanted
|
|
* changes so we don't use it currently.
|
|
*/
|
|
if (dma_len > (1U << 16))
|
|
dma_len = (1U << 16);
|
|
|
|
/* All of the DMA variants hooked up to these chips
|
|
* cannot handle crossing a 24-bit address boundary.
|
|
*/
|
|
base = dma_addr & ((1U << 24) - 1U);
|
|
end = base + dma_len;
|
|
if (end > (1U << 24))
|
|
end = (1U <<24);
|
|
dma_len = end - base;
|
|
}
|
|
return dma_len;
|
|
}
|
|
|
|
static int esp_need_to_nego_wide(struct esp_target_data *tp)
|
|
{
|
|
struct scsi_target *target = tp->starget;
|
|
|
|
return spi_width(target) != tp->nego_goal_width;
|
|
}
|
|
|
|
static int esp_need_to_nego_sync(struct esp_target_data *tp)
|
|
{
|
|
struct scsi_target *target = tp->starget;
|
|
|
|
/* When offset is zero, period is "don't care". */
|
|
if (!spi_offset(target) && !tp->nego_goal_offset)
|
|
return 0;
|
|
|
|
if (spi_offset(target) == tp->nego_goal_offset &&
|
|
spi_period(target) == tp->nego_goal_period)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
|
|
struct esp_lun_data *lp)
|
|
{
|
|
if (!ent->orig_tag[0]) {
|
|
/* Non-tagged, slot already taken? */
|
|
if (lp->non_tagged_cmd)
|
|
return -EBUSY;
|
|
|
|
if (lp->hold) {
|
|
/* We are being held by active tagged
|
|
* commands.
|
|
*/
|
|
if (lp->num_tagged)
|
|
return -EBUSY;
|
|
|
|
/* Tagged commands completed, we can unplug
|
|
* the queue and run this untagged command.
|
|
*/
|
|
lp->hold = 0;
|
|
} else if (lp->num_tagged) {
|
|
/* Plug the queue until num_tagged decreases
|
|
* to zero in esp_free_lun_tag.
|
|
*/
|
|
lp->hold = 1;
|
|
return -EBUSY;
|
|
}
|
|
|
|
lp->non_tagged_cmd = ent;
|
|
return 0;
|
|
}
|
|
|
|
/* Tagged command. Check that it isn't blocked by a non-tagged one. */
|
|
if (lp->non_tagged_cmd || lp->hold)
|
|
return -EBUSY;
|
|
|
|
BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
|
|
|
|
lp->tagged_cmds[ent->orig_tag[1]] = ent;
|
|
lp->num_tagged++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void esp_free_lun_tag(struct esp_cmd_entry *ent,
|
|
struct esp_lun_data *lp)
|
|
{
|
|
if (ent->orig_tag[0]) {
|
|
BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
|
|
lp->tagged_cmds[ent->orig_tag[1]] = NULL;
|
|
lp->num_tagged--;
|
|
} else {
|
|
BUG_ON(lp->non_tagged_cmd != ent);
|
|
lp->non_tagged_cmd = NULL;
|
|
}
|
|
}
|
|
|
|
static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent)
|
|
{
|
|
ent->sense_ptr = ent->cmd->sense_buffer;
|
|
if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
|
|
ent->sense_dma = (uintptr_t)ent->sense_ptr;
|
|
return;
|
|
}
|
|
|
|
ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr,
|
|
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent)
|
|
{
|
|
if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
|
|
dma_unmap_single(esp->dev, ent->sense_dma,
|
|
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
|
|
ent->sense_ptr = NULL;
|
|
}
|
|
|
|
/* When a contingent allegiance conditon is created, we force feed a
|
|
* REQUEST_SENSE command to the device to fetch the sense data. I
|
|
* tried many other schemes, relying on the scsi error handling layer
|
|
* to send out the REQUEST_SENSE automatically, but this was difficult
|
|
* to get right especially in the presence of applications like smartd
|
|
* which use SG_IO to send out their own REQUEST_SENSE commands.
|
|
*/
|
|
static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
|
|
{
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
struct scsi_device *dev = cmd->device;
|
|
int tgt, lun;
|
|
u8 *p, val;
|
|
|
|
tgt = dev->id;
|
|
lun = dev->lun;
|
|
|
|
|
|
if (!ent->sense_ptr) {
|
|
esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
|
|
tgt, lun);
|
|
esp_map_sense(esp, ent);
|
|
}
|
|
ent->saved_sense_ptr = ent->sense_ptr;
|
|
|
|
esp->active_cmd = ent;
|
|
|
|
p = esp->command_block;
|
|
esp->msg_out_len = 0;
|
|
|
|
*p++ = IDENTIFY(0, lun);
|
|
*p++ = REQUEST_SENSE;
|
|
*p++ = ((dev->scsi_level <= SCSI_2) ?
|
|
(lun << 5) : 0);
|
|
*p++ = 0;
|
|
*p++ = 0;
|
|
*p++ = SCSI_SENSE_BUFFERSIZE;
|
|
*p++ = 0;
|
|
|
|
esp->select_state = ESP_SELECT_BASIC;
|
|
|
|
val = tgt;
|
|
if (esp->rev == FASHME)
|
|
val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
|
|
esp_write8(val, ESP_BUSID);
|
|
|
|
esp_write_tgt_sync(esp, tgt);
|
|
esp_write_tgt_config3(esp, tgt);
|
|
|
|
val = (p - esp->command_block);
|
|
|
|
esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
|
|
}
|
|
|
|
static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
|
|
{
|
|
struct esp_cmd_entry *ent;
|
|
|
|
list_for_each_entry(ent, &esp->queued_cmds, list) {
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
struct scsi_device *dev = cmd->device;
|
|
struct esp_lun_data *lp = dev->hostdata;
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
|
|
ent->tag[0] = 0;
|
|
ent->tag[1] = 0;
|
|
return ent;
|
|
}
|
|
|
|
if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
|
|
ent->tag[0] = 0;
|
|
ent->tag[1] = 0;
|
|
}
|
|
ent->orig_tag[0] = ent->tag[0];
|
|
ent->orig_tag[1] = ent->tag[1];
|
|
|
|
if (esp_alloc_lun_tag(ent, lp) < 0)
|
|
continue;
|
|
|
|
return ent;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void esp_maybe_execute_command(struct esp *esp)
|
|
{
|
|
struct esp_target_data *tp;
|
|
struct scsi_device *dev;
|
|
struct scsi_cmnd *cmd;
|
|
struct esp_cmd_entry *ent;
|
|
bool select_and_stop = false;
|
|
int tgt, lun, i;
|
|
u32 val, start_cmd;
|
|
u8 *p;
|
|
|
|
if (esp->active_cmd ||
|
|
(esp->flags & ESP_FLAG_RESETTING))
|
|
return;
|
|
|
|
ent = find_and_prep_issuable_command(esp);
|
|
if (!ent)
|
|
return;
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
|
|
esp_autosense(esp, ent);
|
|
return;
|
|
}
|
|
|
|
cmd = ent->cmd;
|
|
dev = cmd->device;
|
|
tgt = dev->id;
|
|
lun = dev->lun;
|
|
tp = &esp->target[tgt];
|
|
|
|
list_move(&ent->list, &esp->active_cmds);
|
|
|
|
esp->active_cmd = ent;
|
|
|
|
esp_map_dma(esp, cmd);
|
|
esp_save_pointers(esp, ent);
|
|
|
|
if (!(cmd->cmd_len == 6 || cmd->cmd_len == 10 || cmd->cmd_len == 12))
|
|
select_and_stop = true;
|
|
|
|
p = esp->command_block;
|
|
|
|
esp->msg_out_len = 0;
|
|
if (tp->flags & ESP_TGT_CHECK_NEGO) {
|
|
/* Need to negotiate. If the target is broken
|
|
* go for synchronous transfers and non-wide.
|
|
*/
|
|
if (tp->flags & ESP_TGT_BROKEN) {
|
|
tp->flags &= ~ESP_TGT_DISCONNECT;
|
|
tp->nego_goal_period = 0;
|
|
tp->nego_goal_offset = 0;
|
|
tp->nego_goal_width = 0;
|
|
tp->nego_goal_tags = 0;
|
|
}
|
|
|
|
/* If the settings are not changing, skip this. */
|
|
if (spi_width(tp->starget) == tp->nego_goal_width &&
|
|
spi_period(tp->starget) == tp->nego_goal_period &&
|
|
spi_offset(tp->starget) == tp->nego_goal_offset) {
|
|
tp->flags &= ~ESP_TGT_CHECK_NEGO;
|
|
goto build_identify;
|
|
}
|
|
|
|
if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
|
|
esp->msg_out_len =
|
|
spi_populate_width_msg(&esp->msg_out[0],
|
|
(tp->nego_goal_width ?
|
|
1 : 0));
|
|
tp->flags |= ESP_TGT_NEGO_WIDE;
|
|
} else if (esp_need_to_nego_sync(tp)) {
|
|
esp->msg_out_len =
|
|
spi_populate_sync_msg(&esp->msg_out[0],
|
|
tp->nego_goal_period,
|
|
tp->nego_goal_offset);
|
|
tp->flags |= ESP_TGT_NEGO_SYNC;
|
|
} else {
|
|
tp->flags &= ~ESP_TGT_CHECK_NEGO;
|
|
}
|
|
|
|
/* If there are multiple message bytes, use Select and Stop */
|
|
if (esp->msg_out_len)
|
|
select_and_stop = true;
|
|
}
|
|
|
|
build_identify:
|
|
*p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun);
|
|
|
|
if (ent->tag[0] && esp->rev == ESP100) {
|
|
/* ESP100 lacks select w/atn3 command, use select
|
|
* and stop instead.
|
|
*/
|
|
select_and_stop = true;
|
|
}
|
|
|
|
if (select_and_stop) {
|
|
esp->cmd_bytes_left = cmd->cmd_len;
|
|
esp->cmd_bytes_ptr = &cmd->cmnd[0];
|
|
|
|
if (ent->tag[0]) {
|
|
for (i = esp->msg_out_len - 1;
|
|
i >= 0; i--)
|
|
esp->msg_out[i + 2] = esp->msg_out[i];
|
|
esp->msg_out[0] = ent->tag[0];
|
|
esp->msg_out[1] = ent->tag[1];
|
|
esp->msg_out_len += 2;
|
|
}
|
|
|
|
start_cmd = ESP_CMD_SELAS;
|
|
esp->select_state = ESP_SELECT_MSGOUT;
|
|
} else {
|
|
start_cmd = ESP_CMD_SELA;
|
|
if (ent->tag[0]) {
|
|
*p++ = ent->tag[0];
|
|
*p++ = ent->tag[1];
|
|
|
|
start_cmd = ESP_CMD_SA3;
|
|
}
|
|
|
|
for (i = 0; i < cmd->cmd_len; i++)
|
|
*p++ = cmd->cmnd[i];
|
|
|
|
esp->select_state = ESP_SELECT_BASIC;
|
|
}
|
|
val = tgt;
|
|
if (esp->rev == FASHME)
|
|
val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
|
|
esp_write8(val, ESP_BUSID);
|
|
|
|
esp_write_tgt_sync(esp, tgt);
|
|
esp_write_tgt_config3(esp, tgt);
|
|
|
|
val = (p - esp->command_block);
|
|
|
|
if (esp_debug & ESP_DEBUG_SCSICMD) {
|
|
printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
|
|
for (i = 0; i < cmd->cmd_len; i++)
|
|
printk("%02x ", cmd->cmnd[i]);
|
|
printk("]\n");
|
|
}
|
|
|
|
esp_send_dma_cmd(esp, val, 16, start_cmd);
|
|
}
|
|
|
|
static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
|
|
{
|
|
struct list_head *head = &esp->esp_cmd_pool;
|
|
struct esp_cmd_entry *ret;
|
|
|
|
if (list_empty(head)) {
|
|
ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
|
|
} else {
|
|
ret = list_entry(head->next, struct esp_cmd_entry, list);
|
|
list_del(&ret->list);
|
|
memset(ret, 0, sizeof(*ret));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
|
|
{
|
|
list_add(&ent->list, &esp->esp_cmd_pool);
|
|
}
|
|
|
|
static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
|
|
struct scsi_cmnd *cmd, unsigned int result)
|
|
{
|
|
struct scsi_device *dev = cmd->device;
|
|
int tgt = dev->id;
|
|
int lun = dev->lun;
|
|
|
|
esp->active_cmd = NULL;
|
|
esp_unmap_dma(esp, cmd);
|
|
esp_free_lun_tag(ent, dev->hostdata);
|
|
cmd->result = result;
|
|
|
|
if (ent->eh_done) {
|
|
complete(ent->eh_done);
|
|
ent->eh_done = NULL;
|
|
}
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
|
|
esp_unmap_sense(esp, ent);
|
|
|
|
/* Restore the message/status bytes to what we actually
|
|
* saw originally. Also, report that we are providing
|
|
* the sense data.
|
|
*/
|
|
cmd->result = ((DRIVER_SENSE << 24) |
|
|
(DID_OK << 16) |
|
|
(COMMAND_COMPLETE << 8) |
|
|
(SAM_STAT_CHECK_CONDITION << 0));
|
|
|
|
ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
|
|
if (esp_debug & ESP_DEBUG_AUTOSENSE) {
|
|
int i;
|
|
|
|
printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
|
|
esp->host->unique_id, tgt, lun);
|
|
for (i = 0; i < 18; i++)
|
|
printk("%02x ", cmd->sense_buffer[i]);
|
|
printk("]\n");
|
|
}
|
|
}
|
|
|
|
cmd->scsi_done(cmd);
|
|
|
|
list_del(&ent->list);
|
|
esp_put_ent(esp, ent);
|
|
|
|
esp_maybe_execute_command(esp);
|
|
}
|
|
|
|
static unsigned int compose_result(unsigned int status, unsigned int message,
|
|
unsigned int driver_code)
|
|
{
|
|
return (status | (message << 8) | (driver_code << 16));
|
|
}
|
|
|
|
static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
|
|
{
|
|
struct scsi_device *dev = ent->cmd->device;
|
|
struct esp_lun_data *lp = dev->hostdata;
|
|
|
|
scsi_track_queue_full(dev, lp->num_tagged - 1);
|
|
}
|
|
|
|
static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
|
|
{
|
|
struct scsi_device *dev = cmd->device;
|
|
struct esp *esp = shost_priv(dev->host);
|
|
struct esp_cmd_priv *spriv;
|
|
struct esp_cmd_entry *ent;
|
|
|
|
ent = esp_get_ent(esp);
|
|
if (!ent)
|
|
return SCSI_MLQUEUE_HOST_BUSY;
|
|
|
|
ent->cmd = cmd;
|
|
|
|
cmd->scsi_done = done;
|
|
|
|
spriv = ESP_CMD_PRIV(cmd);
|
|
spriv->num_sg = 0;
|
|
|
|
list_add_tail(&ent->list, &esp->queued_cmds);
|
|
|
|
esp_maybe_execute_command(esp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DEF_SCSI_QCMD(esp_queuecommand)
|
|
|
|
static int esp_check_gross_error(struct esp *esp)
|
|
{
|
|
if (esp->sreg & ESP_STAT_SPAM) {
|
|
/* Gross Error, could be one of:
|
|
* - top of fifo overwritten
|
|
* - top of command register overwritten
|
|
* - DMA programmed with wrong direction
|
|
* - improper phase change
|
|
*/
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Gross error sreg[%02x]\n", esp->sreg);
|
|
/* XXX Reset the chip. XXX */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int esp_check_spur_intr(struct esp *esp)
|
|
{
|
|
switch (esp->rev) {
|
|
case ESP100:
|
|
case ESP100A:
|
|
/* The interrupt pending bit of the status register cannot
|
|
* be trusted on these revisions.
|
|
*/
|
|
esp->sreg &= ~ESP_STAT_INTR;
|
|
break;
|
|
|
|
default:
|
|
if (!(esp->sreg & ESP_STAT_INTR)) {
|
|
if (esp->ireg & ESP_INTR_SR)
|
|
return 1;
|
|
|
|
/* If the DMA is indicating interrupt pending and the
|
|
* ESP is not, the only possibility is a DMA error.
|
|
*/
|
|
if (!esp->ops->dma_error(esp)) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Spurious irq, sreg=%02x.\n",
|
|
esp->sreg);
|
|
return -1;
|
|
}
|
|
|
|
shost_printk(KERN_ERR, esp->host, "DMA error\n");
|
|
|
|
/* XXX Reset the chip. XXX */
|
|
return -1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void esp_schedule_reset(struct esp *esp)
|
|
{
|
|
esp_log_reset("esp_schedule_reset() from %pf\n",
|
|
__builtin_return_address(0));
|
|
esp->flags |= ESP_FLAG_RESETTING;
|
|
esp_event(esp, ESP_EVENT_RESET);
|
|
}
|
|
|
|
/* In order to avoid having to add a special half-reconnected state
|
|
* into the driver we just sit here and poll through the rest of
|
|
* the reselection process to get the tag message bytes.
|
|
*/
|
|
static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
|
|
struct esp_lun_data *lp)
|
|
{
|
|
struct esp_cmd_entry *ent;
|
|
int i;
|
|
|
|
if (!lp->num_tagged) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Reconnect w/num_tagged==0\n");
|
|
return NULL;
|
|
}
|
|
|
|
esp_log_reconnect("reconnect tag, ");
|
|
|
|
for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
|
|
if (esp->ops->irq_pending(esp))
|
|
break;
|
|
}
|
|
if (i == ESP_QUICKIRQ_LIMIT) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Reconnect IRQ1 timeout\n");
|
|
return NULL;
|
|
}
|
|
|
|
esp->sreg = esp_read8(ESP_STATUS);
|
|
esp->ireg = esp_read8(ESP_INTRPT);
|
|
|
|
esp_log_reconnect("IRQ(%d:%x:%x), ",
|
|
i, esp->ireg, esp->sreg);
|
|
|
|
if (esp->ireg & ESP_INTR_DC) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Reconnect, got disconnect.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Reconnect, not MIP sreg[%02x].\n", esp->sreg);
|
|
return NULL;
|
|
}
|
|
|
|
/* DMA in the tag bytes... */
|
|
esp->command_block[0] = 0xff;
|
|
esp->command_block[1] = 0xff;
|
|
esp->ops->send_dma_cmd(esp, esp->command_block_dma,
|
|
2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
|
|
|
|
/* ACK the message. */
|
|
scsi_esp_cmd(esp, ESP_CMD_MOK);
|
|
|
|
for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
|
|
if (esp->ops->irq_pending(esp)) {
|
|
esp->sreg = esp_read8(ESP_STATUS);
|
|
esp->ireg = esp_read8(ESP_INTRPT);
|
|
if (esp->ireg & ESP_INTR_FDONE)
|
|
break;
|
|
}
|
|
udelay(1);
|
|
}
|
|
if (i == ESP_RESELECT_TAG_LIMIT) {
|
|
shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
|
|
return NULL;
|
|
}
|
|
esp->ops->dma_drain(esp);
|
|
esp->ops->dma_invalidate(esp);
|
|
|
|
esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
|
|
i, esp->ireg, esp->sreg,
|
|
esp->command_block[0],
|
|
esp->command_block[1]);
|
|
|
|
if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
|
|
esp->command_block[0] > ORDERED_QUEUE_TAG) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Reconnect, bad tag type %02x.\n",
|
|
esp->command_block[0]);
|
|
return NULL;
|
|
}
|
|
|
|
ent = lp->tagged_cmds[esp->command_block[1]];
|
|
if (!ent) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Reconnect, no entry for tag %02x.\n",
|
|
esp->command_block[1]);
|
|
return NULL;
|
|
}
|
|
|
|
return ent;
|
|
}
|
|
|
|
static int esp_reconnect(struct esp *esp)
|
|
{
|
|
struct esp_cmd_entry *ent;
|
|
struct esp_target_data *tp;
|
|
struct esp_lun_data *lp;
|
|
struct scsi_device *dev;
|
|
int target, lun;
|
|
|
|
BUG_ON(esp->active_cmd);
|
|
if (esp->rev == FASHME) {
|
|
/* FASHME puts the target and lun numbers directly
|
|
* into the fifo.
|
|
*/
|
|
target = esp->fifo[0];
|
|
lun = esp->fifo[1] & 0x7;
|
|
} else {
|
|
u8 bits = esp_read8(ESP_FDATA);
|
|
|
|
/* Older chips put the lun directly into the fifo, but
|
|
* the target is given as a sample of the arbitration
|
|
* lines on the bus at reselection time. So we should
|
|
* see the ID of the ESP and the one reconnecting target
|
|
* set in the bitmap.
|
|
*/
|
|
if (!(bits & esp->scsi_id_mask))
|
|
goto do_reset;
|
|
bits &= ~esp->scsi_id_mask;
|
|
if (!bits || (bits & (bits - 1)))
|
|
goto do_reset;
|
|
|
|
target = ffs(bits) - 1;
|
|
lun = (esp_read8(ESP_FDATA) & 0x7);
|
|
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
if (esp->rev == ESP100) {
|
|
u8 ireg = esp_read8(ESP_INTRPT);
|
|
/* This chip has a bug during reselection that can
|
|
* cause a spurious illegal-command interrupt, which
|
|
* we simply ACK here. Another possibility is a bus
|
|
* reset so we must check for that.
|
|
*/
|
|
if (ireg & ESP_INTR_SR)
|
|
goto do_reset;
|
|
}
|
|
scsi_esp_cmd(esp, ESP_CMD_NULL);
|
|
}
|
|
|
|
esp_write_tgt_sync(esp, target);
|
|
esp_write_tgt_config3(esp, target);
|
|
|
|
scsi_esp_cmd(esp, ESP_CMD_MOK);
|
|
|
|
if (esp->rev == FASHME)
|
|
esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
|
|
ESP_BUSID);
|
|
|
|
tp = &esp->target[target];
|
|
dev = __scsi_device_lookup_by_target(tp->starget, lun);
|
|
if (!dev) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Reconnect, no lp tgt[%u] lun[%u]\n",
|
|
target, lun);
|
|
goto do_reset;
|
|
}
|
|
lp = dev->hostdata;
|
|
|
|
ent = lp->non_tagged_cmd;
|
|
if (!ent) {
|
|
ent = esp_reconnect_with_tag(esp, lp);
|
|
if (!ent)
|
|
goto do_reset;
|
|
}
|
|
|
|
esp->active_cmd = ent;
|
|
|
|
esp_event(esp, ESP_EVENT_CHECK_PHASE);
|
|
esp_restore_pointers(esp, ent);
|
|
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
|
|
return 1;
|
|
|
|
do_reset:
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
|
|
static int esp_finish_select(struct esp *esp)
|
|
{
|
|
struct esp_cmd_entry *ent;
|
|
struct scsi_cmnd *cmd;
|
|
|
|
/* No longer selecting. */
|
|
esp->select_state = ESP_SELECT_NONE;
|
|
|
|
esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
|
|
ent = esp->active_cmd;
|
|
cmd = ent->cmd;
|
|
|
|
if (esp->ops->dma_error(esp)) {
|
|
/* If we see a DMA error during or as a result of selection,
|
|
* all bets are off.
|
|
*/
|
|
esp_schedule_reset(esp);
|
|
esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
|
|
return 0;
|
|
}
|
|
|
|
esp->ops->dma_invalidate(esp);
|
|
|
|
if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
|
|
struct esp_target_data *tp = &esp->target[cmd->device->id];
|
|
|
|
/* Carefully back out of the selection attempt. Release
|
|
* resources (such as DMA mapping & TAG) and reset state (such
|
|
* as message out and command delivery variables).
|
|
*/
|
|
if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
|
|
esp_unmap_dma(esp, cmd);
|
|
esp_free_lun_tag(ent, cmd->device->hostdata);
|
|
tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
|
|
esp->cmd_bytes_ptr = NULL;
|
|
esp->cmd_bytes_left = 0;
|
|
} else {
|
|
esp_unmap_sense(esp, ent);
|
|
}
|
|
|
|
/* Now that the state is unwound properly, put back onto
|
|
* the issue queue. This command is no longer active.
|
|
*/
|
|
list_move(&ent->list, &esp->queued_cmds);
|
|
esp->active_cmd = NULL;
|
|
|
|
/* Return value ignored by caller, it directly invokes
|
|
* esp_reconnect().
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (esp->ireg == ESP_INTR_DC) {
|
|
struct scsi_device *dev = cmd->device;
|
|
|
|
/* Disconnect. Make sure we re-negotiate sync and
|
|
* wide parameters if this target starts responding
|
|
* again in the future.
|
|
*/
|
|
esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
|
|
|
|
scsi_esp_cmd(esp, ESP_CMD_ESEL);
|
|
esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
|
|
return 1;
|
|
}
|
|
|
|
if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
|
|
/* Selection successful. On pre-FAST chips we have
|
|
* to do a NOP and possibly clean out the FIFO.
|
|
*/
|
|
if (esp->rev <= ESP236) {
|
|
int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
|
|
|
|
scsi_esp_cmd(esp, ESP_CMD_NULL);
|
|
|
|
if (!fcnt &&
|
|
(!esp->prev_soff ||
|
|
((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
|
|
esp_flush_fifo(esp);
|
|
}
|
|
|
|
/* If we are doing a Select And Stop command, negotiation, etc.
|
|
* we'll do the right thing as we transition to the next phase.
|
|
*/
|
|
esp_event(esp, ESP_EVENT_CHECK_PHASE);
|
|
return 0;
|
|
}
|
|
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"Unexpected selection completion ireg[%x]\n", esp->ireg);
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
|
|
static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
|
|
struct scsi_cmnd *cmd)
|
|
{
|
|
int fifo_cnt, ecount, bytes_sent, flush_fifo;
|
|
|
|
fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
|
|
if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
|
|
fifo_cnt <<= 1;
|
|
|
|
ecount = 0;
|
|
if (!(esp->sreg & ESP_STAT_TCNT)) {
|
|
ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
|
|
(((unsigned int)esp_read8(ESP_TCMED)) << 8));
|
|
if (esp->rev == FASHME)
|
|
ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
|
|
if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
|
|
ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
|
|
}
|
|
|
|
bytes_sent = esp->data_dma_len;
|
|
bytes_sent -= ecount;
|
|
bytes_sent -= esp->send_cmd_residual;
|
|
|
|
/*
|
|
* The am53c974 has a DMA 'pecularity'. The doc states:
|
|
* In some odd byte conditions, one residual byte will
|
|
* be left in the SCSI FIFO, and the FIFO Flags will
|
|
* never count to '0 '. When this happens, the residual
|
|
* byte should be retrieved via PIO following completion
|
|
* of the BLAST operation.
|
|
*/
|
|
if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
|
|
size_t count = 1;
|
|
size_t offset = bytes_sent;
|
|
u8 bval = esp_read8(ESP_FDATA);
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
|
|
ent->sense_ptr[bytes_sent] = bval;
|
|
else {
|
|
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
|
|
u8 *ptr;
|
|
|
|
ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg,
|
|
&offset, &count);
|
|
if (likely(ptr)) {
|
|
*(ptr + offset) = bval;
|
|
scsi_kunmap_atomic_sg(ptr);
|
|
}
|
|
}
|
|
bytes_sent += fifo_cnt;
|
|
ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
|
|
}
|
|
if (!(ent->flags & ESP_CMD_FLAG_WRITE))
|
|
bytes_sent -= fifo_cnt;
|
|
|
|
flush_fifo = 0;
|
|
if (!esp->prev_soff) {
|
|
/* Synchronous data transfer, always flush fifo. */
|
|
flush_fifo = 1;
|
|
} else {
|
|
if (esp->rev == ESP100) {
|
|
u32 fflags, phase;
|
|
|
|
/* ESP100 has a chip bug where in the synchronous data
|
|
* phase it can mistake a final long REQ pulse from the
|
|
* target as an extra data byte. Fun.
|
|
*
|
|
* To detect this case we resample the status register
|
|
* and fifo flags. If we're still in a data phase and
|
|
* we see spurious chunks in the fifo, we return error
|
|
* to the caller which should reset and set things up
|
|
* such that we only try future transfers to this
|
|
* target in synchronous mode.
|
|
*/
|
|
esp->sreg = esp_read8(ESP_STATUS);
|
|
phase = esp->sreg & ESP_STAT_PMASK;
|
|
fflags = esp_read8(ESP_FFLAGS);
|
|
|
|
if ((phase == ESP_DOP &&
|
|
(fflags & ESP_FF_ONOTZERO)) ||
|
|
(phase == ESP_DIP &&
|
|
(fflags & ESP_FF_FBYTES)))
|
|
return -1;
|
|
}
|
|
if (!(ent->flags & ESP_CMD_FLAG_WRITE))
|
|
flush_fifo = 1;
|
|
}
|
|
|
|
if (flush_fifo)
|
|
esp_flush_fifo(esp);
|
|
|
|
return bytes_sent;
|
|
}
|
|
|
|
static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
|
|
u8 scsi_period, u8 scsi_offset,
|
|
u8 esp_stp, u8 esp_soff)
|
|
{
|
|
spi_period(tp->starget) = scsi_period;
|
|
spi_offset(tp->starget) = scsi_offset;
|
|
spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
|
|
|
|
if (esp_soff) {
|
|
esp_stp &= 0x1f;
|
|
esp_soff |= esp->radelay;
|
|
if (esp->rev >= FAS236) {
|
|
u8 bit = ESP_CONFIG3_FSCSI;
|
|
if (esp->rev >= FAS100A)
|
|
bit = ESP_CONFIG3_FAST;
|
|
|
|
if (scsi_period < 50) {
|
|
if (esp->rev == FASHME)
|
|
esp_soff &= ~esp->radelay;
|
|
tp->esp_config3 |= bit;
|
|
} else {
|
|
tp->esp_config3 &= ~bit;
|
|
}
|
|
esp->prev_cfg3 = tp->esp_config3;
|
|
esp_write8(esp->prev_cfg3, ESP_CFG3);
|
|
}
|
|
}
|
|
|
|
tp->esp_period = esp->prev_stp = esp_stp;
|
|
tp->esp_offset = esp->prev_soff = esp_soff;
|
|
|
|
esp_write8(esp_soff, ESP_SOFF);
|
|
esp_write8(esp_stp, ESP_STP);
|
|
|
|
tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
|
|
|
|
spi_display_xfer_agreement(tp->starget);
|
|
}
|
|
|
|
static void esp_msgin_reject(struct esp *esp)
|
|
{
|
|
struct esp_cmd_entry *ent = esp->active_cmd;
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
struct esp_target_data *tp;
|
|
int tgt;
|
|
|
|
tgt = cmd->device->id;
|
|
tp = &esp->target[tgt];
|
|
|
|
if (tp->flags & ESP_TGT_NEGO_WIDE) {
|
|
tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
|
|
|
|
if (!esp_need_to_nego_sync(tp)) {
|
|
tp->flags &= ~ESP_TGT_CHECK_NEGO;
|
|
scsi_esp_cmd(esp, ESP_CMD_RATN);
|
|
} else {
|
|
esp->msg_out_len =
|
|
spi_populate_sync_msg(&esp->msg_out[0],
|
|
tp->nego_goal_period,
|
|
tp->nego_goal_offset);
|
|
tp->flags |= ESP_TGT_NEGO_SYNC;
|
|
scsi_esp_cmd(esp, ESP_CMD_SATN);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (tp->flags & ESP_TGT_NEGO_SYNC) {
|
|
tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
|
|
tp->esp_period = 0;
|
|
tp->esp_offset = 0;
|
|
esp_setsync(esp, tp, 0, 0, 0, 0);
|
|
scsi_esp_cmd(esp, ESP_CMD_RATN);
|
|
return;
|
|
}
|
|
|
|
shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n");
|
|
esp_schedule_reset(esp);
|
|
}
|
|
|
|
static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
|
|
{
|
|
u8 period = esp->msg_in[3];
|
|
u8 offset = esp->msg_in[4];
|
|
u8 stp;
|
|
|
|
if (!(tp->flags & ESP_TGT_NEGO_SYNC))
|
|
goto do_reject;
|
|
|
|
if (offset > 15)
|
|
goto do_reject;
|
|
|
|
if (offset) {
|
|
int one_clock;
|
|
|
|
if (period > esp->max_period) {
|
|
period = offset = 0;
|
|
goto do_sdtr;
|
|
}
|
|
if (period < esp->min_period)
|
|
goto do_reject;
|
|
|
|
one_clock = esp->ccycle / 1000;
|
|
stp = DIV_ROUND_UP(period << 2, one_clock);
|
|
if (stp && esp->rev >= FAS236) {
|
|
if (stp >= 50)
|
|
stp--;
|
|
}
|
|
} else {
|
|
stp = 0;
|
|
}
|
|
|
|
esp_setsync(esp, tp, period, offset, stp, offset);
|
|
return;
|
|
|
|
do_reject:
|
|
esp->msg_out[0] = MESSAGE_REJECT;
|
|
esp->msg_out_len = 1;
|
|
scsi_esp_cmd(esp, ESP_CMD_SATN);
|
|
return;
|
|
|
|
do_sdtr:
|
|
tp->nego_goal_period = period;
|
|
tp->nego_goal_offset = offset;
|
|
esp->msg_out_len =
|
|
spi_populate_sync_msg(&esp->msg_out[0],
|
|
tp->nego_goal_period,
|
|
tp->nego_goal_offset);
|
|
scsi_esp_cmd(esp, ESP_CMD_SATN);
|
|
}
|
|
|
|
static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
|
|
{
|
|
int size = 8 << esp->msg_in[3];
|
|
u8 cfg3;
|
|
|
|
if (esp->rev != FASHME)
|
|
goto do_reject;
|
|
|
|
if (size != 8 && size != 16)
|
|
goto do_reject;
|
|
|
|
if (!(tp->flags & ESP_TGT_NEGO_WIDE))
|
|
goto do_reject;
|
|
|
|
cfg3 = tp->esp_config3;
|
|
if (size == 16) {
|
|
tp->flags |= ESP_TGT_WIDE;
|
|
cfg3 |= ESP_CONFIG3_EWIDE;
|
|
} else {
|
|
tp->flags &= ~ESP_TGT_WIDE;
|
|
cfg3 &= ~ESP_CONFIG3_EWIDE;
|
|
}
|
|
tp->esp_config3 = cfg3;
|
|
esp->prev_cfg3 = cfg3;
|
|
esp_write8(cfg3, ESP_CFG3);
|
|
|
|
tp->flags &= ~ESP_TGT_NEGO_WIDE;
|
|
|
|
spi_period(tp->starget) = 0;
|
|
spi_offset(tp->starget) = 0;
|
|
if (!esp_need_to_nego_sync(tp)) {
|
|
tp->flags &= ~ESP_TGT_CHECK_NEGO;
|
|
scsi_esp_cmd(esp, ESP_CMD_RATN);
|
|
} else {
|
|
esp->msg_out_len =
|
|
spi_populate_sync_msg(&esp->msg_out[0],
|
|
tp->nego_goal_period,
|
|
tp->nego_goal_offset);
|
|
tp->flags |= ESP_TGT_NEGO_SYNC;
|
|
scsi_esp_cmd(esp, ESP_CMD_SATN);
|
|
}
|
|
return;
|
|
|
|
do_reject:
|
|
esp->msg_out[0] = MESSAGE_REJECT;
|
|
esp->msg_out_len = 1;
|
|
scsi_esp_cmd(esp, ESP_CMD_SATN);
|
|
}
|
|
|
|
static void esp_msgin_extended(struct esp *esp)
|
|
{
|
|
struct esp_cmd_entry *ent = esp->active_cmd;
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
struct esp_target_data *tp;
|
|
int tgt = cmd->device->id;
|
|
|
|
tp = &esp->target[tgt];
|
|
if (esp->msg_in[2] == EXTENDED_SDTR) {
|
|
esp_msgin_sdtr(esp, tp);
|
|
return;
|
|
}
|
|
if (esp->msg_in[2] == EXTENDED_WDTR) {
|
|
esp_msgin_wdtr(esp, tp);
|
|
return;
|
|
}
|
|
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"Unexpected extended msg type %x\n", esp->msg_in[2]);
|
|
|
|
esp->msg_out[0] = MESSAGE_REJECT;
|
|
esp->msg_out_len = 1;
|
|
scsi_esp_cmd(esp, ESP_CMD_SATN);
|
|
}
|
|
|
|
/* Analyze msgin bytes received from target so far. Return non-zero
|
|
* if there are more bytes needed to complete the message.
|
|
*/
|
|
static int esp_msgin_process(struct esp *esp)
|
|
{
|
|
u8 msg0 = esp->msg_in[0];
|
|
int len = esp->msg_in_len;
|
|
|
|
if (msg0 & 0x80) {
|
|
/* Identify */
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"Unexpected msgin identify\n");
|
|
return 0;
|
|
}
|
|
|
|
switch (msg0) {
|
|
case EXTENDED_MESSAGE:
|
|
if (len == 1)
|
|
return 1;
|
|
if (len < esp->msg_in[1] + 2)
|
|
return 1;
|
|
esp_msgin_extended(esp);
|
|
return 0;
|
|
|
|
case IGNORE_WIDE_RESIDUE: {
|
|
struct esp_cmd_entry *ent;
|
|
struct esp_cmd_priv *spriv;
|
|
if (len == 1)
|
|
return 1;
|
|
|
|
if (esp->msg_in[1] != 1)
|
|
goto do_reject;
|
|
|
|
ent = esp->active_cmd;
|
|
spriv = ESP_CMD_PRIV(ent->cmd);
|
|
|
|
if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
|
|
spriv->cur_sg--;
|
|
spriv->cur_residue = 1;
|
|
} else
|
|
spriv->cur_residue++;
|
|
spriv->tot_residue++;
|
|
return 0;
|
|
}
|
|
case NOP:
|
|
return 0;
|
|
case RESTORE_POINTERS:
|
|
esp_restore_pointers(esp, esp->active_cmd);
|
|
return 0;
|
|
case SAVE_POINTERS:
|
|
esp_save_pointers(esp, esp->active_cmd);
|
|
return 0;
|
|
|
|
case COMMAND_COMPLETE:
|
|
case DISCONNECT: {
|
|
struct esp_cmd_entry *ent = esp->active_cmd;
|
|
|
|
ent->message = msg0;
|
|
esp_event(esp, ESP_EVENT_FREE_BUS);
|
|
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
|
|
return 0;
|
|
}
|
|
case MESSAGE_REJECT:
|
|
esp_msgin_reject(esp);
|
|
return 0;
|
|
|
|
default:
|
|
do_reject:
|
|
esp->msg_out[0] = MESSAGE_REJECT;
|
|
esp->msg_out_len = 1;
|
|
scsi_esp_cmd(esp, ESP_CMD_SATN);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int esp_process_event(struct esp *esp)
|
|
{
|
|
int write, i;
|
|
|
|
again:
|
|
write = 0;
|
|
esp_log_event("process event %d phase %x\n",
|
|
esp->event, esp->sreg & ESP_STAT_PMASK);
|
|
switch (esp->event) {
|
|
case ESP_EVENT_CHECK_PHASE:
|
|
switch (esp->sreg & ESP_STAT_PMASK) {
|
|
case ESP_DOP:
|
|
esp_event(esp, ESP_EVENT_DATA_OUT);
|
|
break;
|
|
case ESP_DIP:
|
|
esp_event(esp, ESP_EVENT_DATA_IN);
|
|
break;
|
|
case ESP_STATP:
|
|
esp_flush_fifo(esp);
|
|
scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
|
|
esp_event(esp, ESP_EVENT_STATUS);
|
|
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
|
|
return 1;
|
|
|
|
case ESP_MOP:
|
|
esp_event(esp, ESP_EVENT_MSGOUT);
|
|
break;
|
|
|
|
case ESP_MIP:
|
|
esp_event(esp, ESP_EVENT_MSGIN);
|
|
break;
|
|
|
|
case ESP_CMDP:
|
|
esp_event(esp, ESP_EVENT_CMD_START);
|
|
break;
|
|
|
|
default:
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"Unexpected phase, sreg=%02x\n",
|
|
esp->sreg);
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
goto again;
|
|
|
|
case ESP_EVENT_DATA_IN:
|
|
write = 1;
|
|
/* fallthru */
|
|
|
|
case ESP_EVENT_DATA_OUT: {
|
|
struct esp_cmd_entry *ent = esp->active_cmd;
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
|
|
unsigned int dma_len = esp_cur_dma_len(ent, cmd);
|
|
|
|
if (esp->rev == ESP100)
|
|
scsi_esp_cmd(esp, ESP_CMD_NULL);
|
|
|
|
if (write)
|
|
ent->flags |= ESP_CMD_FLAG_WRITE;
|
|
else
|
|
ent->flags &= ~ESP_CMD_FLAG_WRITE;
|
|
|
|
if (esp->ops->dma_length_limit)
|
|
dma_len = esp->ops->dma_length_limit(esp, dma_addr,
|
|
dma_len);
|
|
else
|
|
dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
|
|
|
|
esp->data_dma_len = dma_len;
|
|
|
|
if (!dma_len) {
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"DMA length is zero!\n");
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"cur adr[%08llx] len[%08x]\n",
|
|
(unsigned long long)esp_cur_dma_addr(ent, cmd),
|
|
esp_cur_dma_len(ent, cmd));
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
|
|
esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
|
|
(unsigned long long)dma_addr, dma_len, write);
|
|
|
|
esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
|
|
write, ESP_CMD_DMA | ESP_CMD_TI);
|
|
esp_event(esp, ESP_EVENT_DATA_DONE);
|
|
break;
|
|
}
|
|
case ESP_EVENT_DATA_DONE: {
|
|
struct esp_cmd_entry *ent = esp->active_cmd;
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
int bytes_sent;
|
|
|
|
if (esp->ops->dma_error(esp)) {
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"data done, DMA error, resetting\n");
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_WRITE) {
|
|
/* XXX parity errors, etc. XXX */
|
|
|
|
esp->ops->dma_drain(esp);
|
|
}
|
|
esp->ops->dma_invalidate(esp);
|
|
|
|
if (esp->ireg != ESP_INTR_BSERV) {
|
|
/* We should always see exactly a bus-service
|
|
* interrupt at the end of a successful transfer.
|
|
*/
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"data done, not BSERV, resetting\n");
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
|
|
bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
|
|
|
|
esp_log_datadone("data done flgs[%x] sent[%d]\n",
|
|
ent->flags, bytes_sent);
|
|
|
|
if (bytes_sent < 0) {
|
|
/* XXX force sync mode for this target XXX */
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
|
|
esp_advance_dma(esp, ent, cmd, bytes_sent);
|
|
esp_event(esp, ESP_EVENT_CHECK_PHASE);
|
|
goto again;
|
|
}
|
|
|
|
case ESP_EVENT_STATUS: {
|
|
struct esp_cmd_entry *ent = esp->active_cmd;
|
|
|
|
if (esp->ireg & ESP_INTR_FDONE) {
|
|
ent->status = esp_read8(ESP_FDATA);
|
|
ent->message = esp_read8(ESP_FDATA);
|
|
scsi_esp_cmd(esp, ESP_CMD_MOK);
|
|
} else if (esp->ireg == ESP_INTR_BSERV) {
|
|
ent->status = esp_read8(ESP_FDATA);
|
|
ent->message = 0xff;
|
|
esp_event(esp, ESP_EVENT_MSGIN);
|
|
return 0;
|
|
}
|
|
|
|
if (ent->message != COMMAND_COMPLETE) {
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"Unexpected message %x in status\n",
|
|
ent->message);
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
|
|
esp_event(esp, ESP_EVENT_FREE_BUS);
|
|
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
|
|
break;
|
|
}
|
|
case ESP_EVENT_FREE_BUS: {
|
|
struct esp_cmd_entry *ent = esp->active_cmd;
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
|
|
if (ent->message == COMMAND_COMPLETE ||
|
|
ent->message == DISCONNECT)
|
|
scsi_esp_cmd(esp, ESP_CMD_ESEL);
|
|
|
|
if (ent->message == COMMAND_COMPLETE) {
|
|
esp_log_cmddone("Command done status[%x] message[%x]\n",
|
|
ent->status, ent->message);
|
|
if (ent->status == SAM_STAT_TASK_SET_FULL)
|
|
esp_event_queue_full(esp, ent);
|
|
|
|
if (ent->status == SAM_STAT_CHECK_CONDITION &&
|
|
!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
|
|
ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
|
|
esp_autosense(esp, ent);
|
|
} else {
|
|
esp_cmd_is_done(esp, ent, cmd,
|
|
compose_result(ent->status,
|
|
ent->message,
|
|
DID_OK));
|
|
}
|
|
} else if (ent->message == DISCONNECT) {
|
|
esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
|
|
cmd->device->id,
|
|
ent->tag[0], ent->tag[1]);
|
|
|
|
esp->active_cmd = NULL;
|
|
esp_maybe_execute_command(esp);
|
|
} else {
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"Unexpected message %x in freebus\n",
|
|
ent->message);
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
if (esp->active_cmd)
|
|
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
|
|
break;
|
|
}
|
|
case ESP_EVENT_MSGOUT: {
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
|
|
if (esp_debug & ESP_DEBUG_MSGOUT) {
|
|
int i;
|
|
printk("ESP: Sending message [ ");
|
|
for (i = 0; i < esp->msg_out_len; i++)
|
|
printk("%02x ", esp->msg_out[i]);
|
|
printk("]\n");
|
|
}
|
|
|
|
if (esp->rev == FASHME) {
|
|
int i;
|
|
|
|
/* Always use the fifo. */
|
|
for (i = 0; i < esp->msg_out_len; i++) {
|
|
esp_write8(esp->msg_out[i], ESP_FDATA);
|
|
esp_write8(0, ESP_FDATA);
|
|
}
|
|
scsi_esp_cmd(esp, ESP_CMD_TI);
|
|
} else {
|
|
if (esp->msg_out_len == 1) {
|
|
esp_write8(esp->msg_out[0], ESP_FDATA);
|
|
scsi_esp_cmd(esp, ESP_CMD_TI);
|
|
} else if (esp->flags & ESP_FLAG_USE_FIFO) {
|
|
for (i = 0; i < esp->msg_out_len; i++)
|
|
esp_write8(esp->msg_out[i], ESP_FDATA);
|
|
scsi_esp_cmd(esp, ESP_CMD_TI);
|
|
} else {
|
|
/* Use DMA. */
|
|
memcpy(esp->command_block,
|
|
esp->msg_out,
|
|
esp->msg_out_len);
|
|
|
|
esp->ops->send_dma_cmd(esp,
|
|
esp->command_block_dma,
|
|
esp->msg_out_len,
|
|
esp->msg_out_len,
|
|
0,
|
|
ESP_CMD_DMA|ESP_CMD_TI);
|
|
}
|
|
}
|
|
esp_event(esp, ESP_EVENT_MSGOUT_DONE);
|
|
break;
|
|
}
|
|
case ESP_EVENT_MSGOUT_DONE:
|
|
if (esp->rev == FASHME) {
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
} else {
|
|
if (esp->msg_out_len > 1)
|
|
esp->ops->dma_invalidate(esp);
|
|
|
|
/* XXX if the chip went into disconnected mode,
|
|
* we can't run the phase state machine anyway.
|
|
*/
|
|
if (!(esp->ireg & ESP_INTR_DC))
|
|
scsi_esp_cmd(esp, ESP_CMD_NULL);
|
|
}
|
|
|
|
esp->msg_out_len = 0;
|
|
|
|
esp_event(esp, ESP_EVENT_CHECK_PHASE);
|
|
goto again;
|
|
case ESP_EVENT_MSGIN:
|
|
if (esp->ireg & ESP_INTR_BSERV) {
|
|
if (esp->rev == FASHME) {
|
|
if (!(esp_read8(ESP_STATUS2) &
|
|
ESP_STAT2_FEMPTY))
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
} else {
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
if (esp->rev == ESP100)
|
|
scsi_esp_cmd(esp, ESP_CMD_NULL);
|
|
}
|
|
scsi_esp_cmd(esp, ESP_CMD_TI);
|
|
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
|
|
return 1;
|
|
}
|
|
if (esp->ireg & ESP_INTR_FDONE) {
|
|
u8 val;
|
|
|
|
if (esp->rev == FASHME)
|
|
val = esp->fifo[0];
|
|
else
|
|
val = esp_read8(ESP_FDATA);
|
|
esp->msg_in[esp->msg_in_len++] = val;
|
|
|
|
esp_log_msgin("Got msgin byte %x\n", val);
|
|
|
|
if (!esp_msgin_process(esp))
|
|
esp->msg_in_len = 0;
|
|
|
|
if (esp->rev == FASHME)
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
|
|
scsi_esp_cmd(esp, ESP_CMD_MOK);
|
|
|
|
/* Check whether a bus reset is to be done next */
|
|
if (esp->event == ESP_EVENT_RESET)
|
|
return 0;
|
|
|
|
if (esp->event != ESP_EVENT_FREE_BUS)
|
|
esp_event(esp, ESP_EVENT_CHECK_PHASE);
|
|
} else {
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"MSGIN neither BSERV not FDON, resetting");
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
break;
|
|
case ESP_EVENT_CMD_START:
|
|
memcpy(esp->command_block, esp->cmd_bytes_ptr,
|
|
esp->cmd_bytes_left);
|
|
esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
|
|
esp_event(esp, ESP_EVENT_CMD_DONE);
|
|
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
|
|
break;
|
|
case ESP_EVENT_CMD_DONE:
|
|
esp->ops->dma_invalidate(esp);
|
|
if (esp->ireg & ESP_INTR_BSERV) {
|
|
esp_event(esp, ESP_EVENT_CHECK_PHASE);
|
|
goto again;
|
|
}
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
|
|
case ESP_EVENT_RESET:
|
|
scsi_esp_cmd(esp, ESP_CMD_RS);
|
|
break;
|
|
|
|
default:
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"Unexpected event %x, resetting\n", esp->event);
|
|
esp_schedule_reset(esp);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
|
|
{
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
|
|
esp_unmap_dma(esp, cmd);
|
|
esp_free_lun_tag(ent, cmd->device->hostdata);
|
|
cmd->result = DID_RESET << 16;
|
|
|
|
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
|
|
esp_unmap_sense(esp, ent);
|
|
|
|
cmd->scsi_done(cmd);
|
|
list_del(&ent->list);
|
|
esp_put_ent(esp, ent);
|
|
}
|
|
|
|
static void esp_clear_hold(struct scsi_device *dev, void *data)
|
|
{
|
|
struct esp_lun_data *lp = dev->hostdata;
|
|
|
|
BUG_ON(lp->num_tagged);
|
|
lp->hold = 0;
|
|
}
|
|
|
|
static void esp_reset_cleanup(struct esp *esp)
|
|
{
|
|
struct esp_cmd_entry *ent, *tmp;
|
|
int i;
|
|
|
|
list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
|
|
struct scsi_cmnd *cmd = ent->cmd;
|
|
|
|
list_del(&ent->list);
|
|
cmd->result = DID_RESET << 16;
|
|
cmd->scsi_done(cmd);
|
|
esp_put_ent(esp, ent);
|
|
}
|
|
|
|
list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
|
|
if (ent == esp->active_cmd)
|
|
esp->active_cmd = NULL;
|
|
esp_reset_cleanup_one(esp, ent);
|
|
}
|
|
|
|
BUG_ON(esp->active_cmd != NULL);
|
|
|
|
/* Force renegotiation of sync/wide transfers. */
|
|
for (i = 0; i < ESP_MAX_TARGET; i++) {
|
|
struct esp_target_data *tp = &esp->target[i];
|
|
|
|
tp->esp_period = 0;
|
|
tp->esp_offset = 0;
|
|
tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
|
|
ESP_CONFIG3_FSCSI |
|
|
ESP_CONFIG3_FAST);
|
|
tp->flags &= ~ESP_TGT_WIDE;
|
|
tp->flags |= ESP_TGT_CHECK_NEGO;
|
|
|
|
if (tp->starget)
|
|
__starget_for_each_device(tp->starget, NULL,
|
|
esp_clear_hold);
|
|
}
|
|
esp->flags &= ~ESP_FLAG_RESETTING;
|
|
}
|
|
|
|
/* Runs under host->lock */
|
|
static void __esp_interrupt(struct esp *esp)
|
|
{
|
|
int finish_reset, intr_done;
|
|
u8 phase;
|
|
|
|
/*
|
|
* Once INTRPT is read STATUS and SSTEP are cleared.
|
|
*/
|
|
esp->sreg = esp_read8(ESP_STATUS);
|
|
esp->seqreg = esp_read8(ESP_SSTEP);
|
|
esp->ireg = esp_read8(ESP_INTRPT);
|
|
|
|
if (esp->flags & ESP_FLAG_RESETTING) {
|
|
finish_reset = 1;
|
|
} else {
|
|
if (esp_check_gross_error(esp))
|
|
return;
|
|
|
|
finish_reset = esp_check_spur_intr(esp);
|
|
if (finish_reset < 0)
|
|
return;
|
|
}
|
|
|
|
if (esp->ireg & ESP_INTR_SR)
|
|
finish_reset = 1;
|
|
|
|
if (finish_reset) {
|
|
esp_reset_cleanup(esp);
|
|
if (esp->eh_reset) {
|
|
complete(esp->eh_reset);
|
|
esp->eh_reset = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
phase = (esp->sreg & ESP_STAT_PMASK);
|
|
if (esp->rev == FASHME) {
|
|
if (((phase != ESP_DIP && phase != ESP_DOP) &&
|
|
esp->select_state == ESP_SELECT_NONE &&
|
|
esp->event != ESP_EVENT_STATUS &&
|
|
esp->event != ESP_EVENT_DATA_DONE) ||
|
|
(esp->ireg & ESP_INTR_RSEL)) {
|
|
esp->sreg2 = esp_read8(ESP_STATUS2);
|
|
if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
|
|
(esp->sreg2 & ESP_STAT2_F1BYTE))
|
|
hme_read_fifo(esp);
|
|
}
|
|
}
|
|
|
|
esp_log_intr("intr sreg[%02x] seqreg[%02x] "
|
|
"sreg2[%02x] ireg[%02x]\n",
|
|
esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
|
|
|
|
intr_done = 0;
|
|
|
|
if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
|
|
shost_printk(KERN_INFO, esp->host,
|
|
"unexpected IREG %02x\n", esp->ireg);
|
|
if (esp->ireg & ESP_INTR_IC)
|
|
esp_dump_cmd_log(esp);
|
|
|
|
esp_schedule_reset(esp);
|
|
} else {
|
|
if (esp->ireg & ESP_INTR_RSEL) {
|
|
if (esp->active_cmd)
|
|
(void) esp_finish_select(esp);
|
|
intr_done = esp_reconnect(esp);
|
|
} else {
|
|
/* Some combination of FDONE, BSERV, DC. */
|
|
if (esp->select_state != ESP_SELECT_NONE)
|
|
intr_done = esp_finish_select(esp);
|
|
}
|
|
}
|
|
while (!intr_done)
|
|
intr_done = esp_process_event(esp);
|
|
}
|
|
|
|
irqreturn_t scsi_esp_intr(int irq, void *dev_id)
|
|
{
|
|
struct esp *esp = dev_id;
|
|
unsigned long flags;
|
|
irqreturn_t ret;
|
|
|
|
spin_lock_irqsave(esp->host->host_lock, flags);
|
|
ret = IRQ_NONE;
|
|
if (esp->ops->irq_pending(esp)) {
|
|
ret = IRQ_HANDLED;
|
|
for (;;) {
|
|
int i;
|
|
|
|
__esp_interrupt(esp);
|
|
if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
|
|
break;
|
|
esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
|
|
|
|
for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
|
|
if (esp->ops->irq_pending(esp))
|
|
break;
|
|
}
|
|
if (i == ESP_QUICKIRQ_LIMIT)
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(esp->host->host_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(scsi_esp_intr);
|
|
|
|
static void esp_get_revision(struct esp *esp)
|
|
{
|
|
u8 val;
|
|
|
|
esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
|
|
if (esp->config2 == 0) {
|
|
esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
|
|
esp_write8(esp->config2, ESP_CFG2);
|
|
|
|
val = esp_read8(ESP_CFG2);
|
|
val &= ~ESP_CONFIG2_MAGIC;
|
|
|
|
esp->config2 = 0;
|
|
if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
|
|
/*
|
|
* If what we write to cfg2 does not come back,
|
|
* cfg2 is not implemented.
|
|
* Therefore this must be a plain esp100.
|
|
*/
|
|
esp->rev = ESP100;
|
|
return;
|
|
}
|
|
}
|
|
|
|
esp_set_all_config3(esp, 5);
|
|
esp->prev_cfg3 = 5;
|
|
esp_write8(esp->config2, ESP_CFG2);
|
|
esp_write8(0, ESP_CFG3);
|
|
esp_write8(esp->prev_cfg3, ESP_CFG3);
|
|
|
|
val = esp_read8(ESP_CFG3);
|
|
if (val != 5) {
|
|
/* The cfg2 register is implemented, however
|
|
* cfg3 is not, must be esp100a.
|
|
*/
|
|
esp->rev = ESP100A;
|
|
} else {
|
|
esp_set_all_config3(esp, 0);
|
|
esp->prev_cfg3 = 0;
|
|
esp_write8(esp->prev_cfg3, ESP_CFG3);
|
|
|
|
/* All of cfg{1,2,3} implemented, must be one of
|
|
* the fas variants, figure out which one.
|
|
*/
|
|
if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
|
|
esp->rev = FAST;
|
|
esp->sync_defp = SYNC_DEFP_FAST;
|
|
} else {
|
|
esp->rev = ESP236;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void esp_init_swstate(struct esp *esp)
|
|
{
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(&esp->queued_cmds);
|
|
INIT_LIST_HEAD(&esp->active_cmds);
|
|
INIT_LIST_HEAD(&esp->esp_cmd_pool);
|
|
|
|
/* Start with a clear state, domain validation (via ->slave_configure,
|
|
* spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
|
|
* commands.
|
|
*/
|
|
for (i = 0 ; i < ESP_MAX_TARGET; i++) {
|
|
esp->target[i].flags = 0;
|
|
esp->target[i].nego_goal_period = 0;
|
|
esp->target[i].nego_goal_offset = 0;
|
|
esp->target[i].nego_goal_width = 0;
|
|
esp->target[i].nego_goal_tags = 0;
|
|
}
|
|
}
|
|
|
|
/* This places the ESP into a known state at boot time. */
|
|
static void esp_bootup_reset(struct esp *esp)
|
|
{
|
|
u8 val;
|
|
|
|
/* Reset the DMA */
|
|
esp->ops->reset_dma(esp);
|
|
|
|
/* Reset the ESP */
|
|
esp_reset_esp(esp);
|
|
|
|
/* Reset the SCSI bus, but tell ESP not to generate an irq */
|
|
val = esp_read8(ESP_CFG1);
|
|
val |= ESP_CONFIG1_SRRDISAB;
|
|
esp_write8(val, ESP_CFG1);
|
|
|
|
scsi_esp_cmd(esp, ESP_CMD_RS);
|
|
udelay(400);
|
|
|
|
esp_write8(esp->config1, ESP_CFG1);
|
|
|
|
/* Eat any bitrot in the chip and we are done... */
|
|
esp_read8(ESP_INTRPT);
|
|
}
|
|
|
|
static void esp_set_clock_params(struct esp *esp)
|
|
{
|
|
int fhz;
|
|
u8 ccf;
|
|
|
|
/* This is getting messy but it has to be done correctly or else
|
|
* you get weird behavior all over the place. We are trying to
|
|
* basically figure out three pieces of information.
|
|
*
|
|
* a) Clock Conversion Factor
|
|
*
|
|
* This is a representation of the input crystal clock frequency
|
|
* going into the ESP on this machine. Any operation whose timing
|
|
* is longer than 400ns depends on this value being correct. For
|
|
* example, you'll get blips for arbitration/selection during high
|
|
* load or with multiple targets if this is not set correctly.
|
|
*
|
|
* b) Selection Time-Out
|
|
*
|
|
* The ESP isn't very bright and will arbitrate for the bus and try
|
|
* to select a target forever if you let it. This value tells the
|
|
* ESP when it has taken too long to negotiate and that it should
|
|
* interrupt the CPU so we can see what happened. The value is
|
|
* computed as follows (from NCR/Symbios chip docs).
|
|
*
|
|
* (Time Out Period) * (Input Clock)
|
|
* STO = ----------------------------------
|
|
* (8192) * (Clock Conversion Factor)
|
|
*
|
|
* We use a time out period of 250ms (ESP_BUS_TIMEOUT).
|
|
*
|
|
* c) Imperical constants for synchronous offset and transfer period
|
|
* register values
|
|
*
|
|
* This entails the smallest and largest sync period we could ever
|
|
* handle on this ESP.
|
|
*/
|
|
fhz = esp->cfreq;
|
|
|
|
ccf = ((fhz / 1000000) + 4) / 5;
|
|
if (ccf == 1)
|
|
ccf = 2;
|
|
|
|
/* If we can't find anything reasonable, just assume 20MHZ.
|
|
* This is the clock frequency of the older sun4c's where I've
|
|
* been unable to find the clock-frequency PROM property. All
|
|
* other machines provide useful values it seems.
|
|
*/
|
|
if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
|
|
fhz = 20000000;
|
|
ccf = 4;
|
|
}
|
|
|
|
esp->cfact = (ccf == 8 ? 0 : ccf);
|
|
esp->cfreq = fhz;
|
|
esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
|
|
esp->ctick = ESP_TICK(ccf, esp->ccycle);
|
|
esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
|
|
esp->sync_defp = SYNC_DEFP_SLOW;
|
|
}
|
|
|
|
static const char *esp_chip_names[] = {
|
|
"ESP100",
|
|
"ESP100A",
|
|
"ESP236",
|
|
"FAS236",
|
|
"FAS100A",
|
|
"FAST",
|
|
"FASHME",
|
|
"AM53C974",
|
|
};
|
|
|
|
static struct scsi_transport_template *esp_transport_template;
|
|
|
|
int scsi_esp_register(struct esp *esp)
|
|
{
|
|
static int instance;
|
|
int err;
|
|
|
|
if (!esp->num_tags)
|
|
esp->num_tags = ESP_DEFAULT_TAGS;
|
|
esp->host->transportt = esp_transport_template;
|
|
esp->host->max_lun = ESP_MAX_LUN;
|
|
esp->host->cmd_per_lun = 2;
|
|
esp->host->unique_id = instance;
|
|
|
|
esp_set_clock_params(esp);
|
|
|
|
esp_get_revision(esp);
|
|
|
|
esp_init_swstate(esp);
|
|
|
|
esp_bootup_reset(esp);
|
|
|
|
dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
|
|
esp->host->unique_id, esp->regs, esp->dma_regs,
|
|
esp->host->irq);
|
|
dev_printk(KERN_INFO, esp->dev,
|
|
"esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
|
|
esp->host->unique_id, esp_chip_names[esp->rev],
|
|
esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
|
|
|
|
/* Let the SCSI bus reset settle. */
|
|
ssleep(esp_bus_reset_settle);
|
|
|
|
err = scsi_add_host(esp->host, esp->dev);
|
|
if (err)
|
|
return err;
|
|
|
|
instance++;
|
|
|
|
scsi_scan_host(esp->host);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(scsi_esp_register);
|
|
|
|
void scsi_esp_unregister(struct esp *esp)
|
|
{
|
|
scsi_remove_host(esp->host);
|
|
}
|
|
EXPORT_SYMBOL(scsi_esp_unregister);
|
|
|
|
static int esp_target_alloc(struct scsi_target *starget)
|
|
{
|
|
struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
|
|
struct esp_target_data *tp = &esp->target[starget->id];
|
|
|
|
tp->starget = starget;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void esp_target_destroy(struct scsi_target *starget)
|
|
{
|
|
struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
|
|
struct esp_target_data *tp = &esp->target[starget->id];
|
|
|
|
tp->starget = NULL;
|
|
}
|
|
|
|
static int esp_slave_alloc(struct scsi_device *dev)
|
|
{
|
|
struct esp *esp = shost_priv(dev->host);
|
|
struct esp_target_data *tp = &esp->target[dev->id];
|
|
struct esp_lun_data *lp;
|
|
|
|
lp = kzalloc(sizeof(*lp), GFP_KERNEL);
|
|
if (!lp)
|
|
return -ENOMEM;
|
|
dev->hostdata = lp;
|
|
|
|
spi_min_period(tp->starget) = esp->min_period;
|
|
spi_max_offset(tp->starget) = 15;
|
|
|
|
if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
|
|
spi_max_width(tp->starget) = 1;
|
|
else
|
|
spi_max_width(tp->starget) = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int esp_slave_configure(struct scsi_device *dev)
|
|
{
|
|
struct esp *esp = shost_priv(dev->host);
|
|
struct esp_target_data *tp = &esp->target[dev->id];
|
|
|
|
if (dev->tagged_supported)
|
|
scsi_change_queue_depth(dev, esp->num_tags);
|
|
|
|
tp->flags |= ESP_TGT_DISCONNECT;
|
|
|
|
if (!spi_initial_dv(dev->sdev_target))
|
|
spi_dv_device(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void esp_slave_destroy(struct scsi_device *dev)
|
|
{
|
|
struct esp_lun_data *lp = dev->hostdata;
|
|
|
|
kfree(lp);
|
|
dev->hostdata = NULL;
|
|
}
|
|
|
|
static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
|
|
{
|
|
struct esp *esp = shost_priv(cmd->device->host);
|
|
struct esp_cmd_entry *ent, *tmp;
|
|
struct completion eh_done;
|
|
unsigned long flags;
|
|
|
|
/* XXX This helps a lot with debugging but might be a bit
|
|
* XXX much for the final driver.
|
|
*/
|
|
spin_lock_irqsave(esp->host->host_lock, flags);
|
|
shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
|
|
cmd, cmd->cmnd[0]);
|
|
ent = esp->active_cmd;
|
|
if (ent)
|
|
shost_printk(KERN_ERR, esp->host,
|
|
"Current command [%p:%02x]\n",
|
|
ent->cmd, ent->cmd->cmnd[0]);
|
|
list_for_each_entry(ent, &esp->queued_cmds, list) {
|
|
shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
|
|
ent->cmd, ent->cmd->cmnd[0]);
|
|
}
|
|
list_for_each_entry(ent, &esp->active_cmds, list) {
|
|
shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
|
|
ent->cmd, ent->cmd->cmnd[0]);
|
|
}
|
|
esp_dump_cmd_log(esp);
|
|
spin_unlock_irqrestore(esp->host->host_lock, flags);
|
|
|
|
spin_lock_irqsave(esp->host->host_lock, flags);
|
|
|
|
ent = NULL;
|
|
list_for_each_entry(tmp, &esp->queued_cmds, list) {
|
|
if (tmp->cmd == cmd) {
|
|
ent = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ent) {
|
|
/* Easiest case, we didn't even issue the command
|
|
* yet so it is trivial to abort.
|
|
*/
|
|
list_del(&ent->list);
|
|
|
|
cmd->result = DID_ABORT << 16;
|
|
cmd->scsi_done(cmd);
|
|
|
|
esp_put_ent(esp, ent);
|
|
|
|
goto out_success;
|
|
}
|
|
|
|
init_completion(&eh_done);
|
|
|
|
ent = esp->active_cmd;
|
|
if (ent && ent->cmd == cmd) {
|
|
/* Command is the currently active command on
|
|
* the bus. If we already have an output message
|
|
* pending, no dice.
|
|
*/
|
|
if (esp->msg_out_len)
|
|
goto out_failure;
|
|
|
|
/* Send out an abort, encouraging the target to
|
|
* go to MSGOUT phase by asserting ATN.
|
|
*/
|
|
esp->msg_out[0] = ABORT_TASK_SET;
|
|
esp->msg_out_len = 1;
|
|
ent->eh_done = &eh_done;
|
|
|
|
scsi_esp_cmd(esp, ESP_CMD_SATN);
|
|
} else {
|
|
/* The command is disconnected. This is not easy to
|
|
* abort. For now we fail and let the scsi error
|
|
* handling layer go try a scsi bus reset or host
|
|
* reset.
|
|
*
|
|
* What we could do is put together a scsi command
|
|
* solely for the purpose of sending an abort message
|
|
* to the target. Coming up with all the code to
|
|
* cook up scsi commands, special case them everywhere,
|
|
* etc. is for questionable gain and it would be better
|
|
* if the generic scsi error handling layer could do at
|
|
* least some of that for us.
|
|
*
|
|
* Anyways this is an area for potential future improvement
|
|
* in this driver.
|
|
*/
|
|
goto out_failure;
|
|
}
|
|
|
|
spin_unlock_irqrestore(esp->host->host_lock, flags);
|
|
|
|
if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
|
|
spin_lock_irqsave(esp->host->host_lock, flags);
|
|
ent->eh_done = NULL;
|
|
spin_unlock_irqrestore(esp->host->host_lock, flags);
|
|
|
|
return FAILED;
|
|
}
|
|
|
|
return SUCCESS;
|
|
|
|
out_success:
|
|
spin_unlock_irqrestore(esp->host->host_lock, flags);
|
|
return SUCCESS;
|
|
|
|
out_failure:
|
|
/* XXX This might be a good location to set ESP_TGT_BROKEN
|
|
* XXX since we know which target/lun in particular is
|
|
* XXX causing trouble.
|
|
*/
|
|
spin_unlock_irqrestore(esp->host->host_lock, flags);
|
|
return FAILED;
|
|
}
|
|
|
|
static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
|
|
{
|
|
struct esp *esp = shost_priv(cmd->device->host);
|
|
struct completion eh_reset;
|
|
unsigned long flags;
|
|
|
|
init_completion(&eh_reset);
|
|
|
|
spin_lock_irqsave(esp->host->host_lock, flags);
|
|
|
|
esp->eh_reset = &eh_reset;
|
|
|
|
/* XXX This is too simple... We should add lots of
|
|
* XXX checks here so that if we find that the chip is
|
|
* XXX very wedged we return failure immediately so
|
|
* XXX that we can perform a full chip reset.
|
|
*/
|
|
esp->flags |= ESP_FLAG_RESETTING;
|
|
scsi_esp_cmd(esp, ESP_CMD_RS);
|
|
|
|
spin_unlock_irqrestore(esp->host->host_lock, flags);
|
|
|
|
ssleep(esp_bus_reset_settle);
|
|
|
|
if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
|
|
spin_lock_irqsave(esp->host->host_lock, flags);
|
|
esp->eh_reset = NULL;
|
|
spin_unlock_irqrestore(esp->host->host_lock, flags);
|
|
|
|
return FAILED;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* All bets are off, reset the entire device. */
|
|
static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
|
|
{
|
|
struct esp *esp = shost_priv(cmd->device->host);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(esp->host->host_lock, flags);
|
|
esp_bootup_reset(esp);
|
|
esp_reset_cleanup(esp);
|
|
spin_unlock_irqrestore(esp->host->host_lock, flags);
|
|
|
|
ssleep(esp_bus_reset_settle);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static const char *esp_info(struct Scsi_Host *host)
|
|
{
|
|
return "esp";
|
|
}
|
|
|
|
struct scsi_host_template scsi_esp_template = {
|
|
.module = THIS_MODULE,
|
|
.name = "esp",
|
|
.info = esp_info,
|
|
.queuecommand = esp_queuecommand,
|
|
.target_alloc = esp_target_alloc,
|
|
.target_destroy = esp_target_destroy,
|
|
.slave_alloc = esp_slave_alloc,
|
|
.slave_configure = esp_slave_configure,
|
|
.slave_destroy = esp_slave_destroy,
|
|
.eh_abort_handler = esp_eh_abort_handler,
|
|
.eh_bus_reset_handler = esp_eh_bus_reset_handler,
|
|
.eh_host_reset_handler = esp_eh_host_reset_handler,
|
|
.can_queue = 7,
|
|
.this_id = 7,
|
|
.sg_tablesize = SG_ALL,
|
|
.use_clustering = ENABLE_CLUSTERING,
|
|
.max_sectors = 0xffff,
|
|
.skip_settle_delay = 1,
|
|
};
|
|
EXPORT_SYMBOL(scsi_esp_template);
|
|
|
|
static void esp_get_signalling(struct Scsi_Host *host)
|
|
{
|
|
struct esp *esp = shost_priv(host);
|
|
enum spi_signal_type type;
|
|
|
|
if (esp->flags & ESP_FLAG_DIFFERENTIAL)
|
|
type = SPI_SIGNAL_HVD;
|
|
else
|
|
type = SPI_SIGNAL_SE;
|
|
|
|
spi_signalling(host) = type;
|
|
}
|
|
|
|
static void esp_set_offset(struct scsi_target *target, int offset)
|
|
{
|
|
struct Scsi_Host *host = dev_to_shost(target->dev.parent);
|
|
struct esp *esp = shost_priv(host);
|
|
struct esp_target_data *tp = &esp->target[target->id];
|
|
|
|
if (esp->flags & ESP_FLAG_DISABLE_SYNC)
|
|
tp->nego_goal_offset = 0;
|
|
else
|
|
tp->nego_goal_offset = offset;
|
|
tp->flags |= ESP_TGT_CHECK_NEGO;
|
|
}
|
|
|
|
static void esp_set_period(struct scsi_target *target, int period)
|
|
{
|
|
struct Scsi_Host *host = dev_to_shost(target->dev.parent);
|
|
struct esp *esp = shost_priv(host);
|
|
struct esp_target_data *tp = &esp->target[target->id];
|
|
|
|
tp->nego_goal_period = period;
|
|
tp->flags |= ESP_TGT_CHECK_NEGO;
|
|
}
|
|
|
|
static void esp_set_width(struct scsi_target *target, int width)
|
|
{
|
|
struct Scsi_Host *host = dev_to_shost(target->dev.parent);
|
|
struct esp *esp = shost_priv(host);
|
|
struct esp_target_data *tp = &esp->target[target->id];
|
|
|
|
tp->nego_goal_width = (width ? 1 : 0);
|
|
tp->flags |= ESP_TGT_CHECK_NEGO;
|
|
}
|
|
|
|
static struct spi_function_template esp_transport_ops = {
|
|
.set_offset = esp_set_offset,
|
|
.show_offset = 1,
|
|
.set_period = esp_set_period,
|
|
.show_period = 1,
|
|
.set_width = esp_set_width,
|
|
.show_width = 1,
|
|
.get_signalling = esp_get_signalling,
|
|
};
|
|
|
|
static int __init esp_init(void)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct scsi_pointer) <
|
|
sizeof(struct esp_cmd_priv));
|
|
|
|
esp_transport_template = spi_attach_transport(&esp_transport_ops);
|
|
if (!esp_transport_template)
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit esp_exit(void)
|
|
{
|
|
spi_release_transport(esp_transport_template);
|
|
}
|
|
|
|
MODULE_DESCRIPTION("ESP SCSI driver core");
|
|
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
module_param(esp_bus_reset_settle, int, 0);
|
|
MODULE_PARM_DESC(esp_bus_reset_settle,
|
|
"ESP scsi bus reset delay in seconds");
|
|
|
|
module_param(esp_debug, int, 0);
|
|
MODULE_PARM_DESC(esp_debug,
|
|
"ESP bitmapped debugging message enable value:\n"
|
|
" 0x00000001 Log interrupt events\n"
|
|
" 0x00000002 Log scsi commands\n"
|
|
" 0x00000004 Log resets\n"
|
|
" 0x00000008 Log message in events\n"
|
|
" 0x00000010 Log message out events\n"
|
|
" 0x00000020 Log command completion\n"
|
|
" 0x00000040 Log disconnects\n"
|
|
" 0x00000080 Log data start\n"
|
|
" 0x00000100 Log data done\n"
|
|
" 0x00000200 Log reconnects\n"
|
|
" 0x00000400 Log auto-sense data\n"
|
|
);
|
|
|
|
module_init(esp_init);
|
|
module_exit(esp_exit);
|
|
|
|
#ifdef CONFIG_SCSI_ESP_PIO
|
|
static inline unsigned int esp_wait_for_fifo(struct esp *esp)
|
|
{
|
|
int i = 500000;
|
|
|
|
do {
|
|
unsigned int fbytes = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
|
|
|
|
if (fbytes)
|
|
return fbytes;
|
|
|
|
udelay(1);
|
|
} while (--i);
|
|
|
|
shost_printk(KERN_ERR, esp->host, "FIFO is empty. sreg [%02x]\n",
|
|
esp_read8(ESP_STATUS));
|
|
return 0;
|
|
}
|
|
|
|
static inline int esp_wait_for_intr(struct esp *esp)
|
|
{
|
|
int i = 500000;
|
|
|
|
do {
|
|
esp->sreg = esp_read8(ESP_STATUS);
|
|
if (esp->sreg & ESP_STAT_INTR)
|
|
return 0;
|
|
|
|
udelay(1);
|
|
} while (--i);
|
|
|
|
shost_printk(KERN_ERR, esp->host, "IRQ timeout. sreg [%02x]\n",
|
|
esp->sreg);
|
|
return 1;
|
|
}
|
|
|
|
#define ESP_FIFO_SIZE 16
|
|
|
|
void esp_send_pio_cmd(struct esp *esp, u32 addr, u32 esp_count,
|
|
u32 dma_count, int write, u8 cmd)
|
|
{
|
|
u8 phase = esp->sreg & ESP_STAT_PMASK;
|
|
|
|
cmd &= ~ESP_CMD_DMA;
|
|
esp->send_cmd_error = 0;
|
|
|
|
if (write) {
|
|
u8 *dst = (u8 *)addr;
|
|
u8 mask = ~(phase == ESP_MIP ? ESP_INTR_FDONE : ESP_INTR_BSERV);
|
|
|
|
scsi_esp_cmd(esp, cmd);
|
|
|
|
while (1) {
|
|
if (!esp_wait_for_fifo(esp))
|
|
break;
|
|
|
|
*dst++ = readb(esp->fifo_reg);
|
|
--esp_count;
|
|
|
|
if (!esp_count)
|
|
break;
|
|
|
|
if (esp_wait_for_intr(esp)) {
|
|
esp->send_cmd_error = 1;
|
|
break;
|
|
}
|
|
|
|
if ((esp->sreg & ESP_STAT_PMASK) != phase)
|
|
break;
|
|
|
|
esp->ireg = esp_read8(ESP_INTRPT);
|
|
if (esp->ireg & mask) {
|
|
esp->send_cmd_error = 1;
|
|
break;
|
|
}
|
|
|
|
if (phase == ESP_MIP)
|
|
esp_write8(ESP_CMD_MOK, ESP_CMD);
|
|
|
|
esp_write8(ESP_CMD_TI, ESP_CMD);
|
|
}
|
|
} else {
|
|
unsigned int n = ESP_FIFO_SIZE;
|
|
u8 *src = (u8 *)addr;
|
|
|
|
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
|
|
|
|
if (n > esp_count)
|
|
n = esp_count;
|
|
writesb(esp->fifo_reg, src, n);
|
|
src += n;
|
|
esp_count -= n;
|
|
|
|
scsi_esp_cmd(esp, cmd);
|
|
|
|
while (esp_count) {
|
|
if (esp_wait_for_intr(esp)) {
|
|
esp->send_cmd_error = 1;
|
|
break;
|
|
}
|
|
|
|
if ((esp->sreg & ESP_STAT_PMASK) != phase)
|
|
break;
|
|
|
|
esp->ireg = esp_read8(ESP_INTRPT);
|
|
if (esp->ireg & ~ESP_INTR_BSERV) {
|
|
esp->send_cmd_error = 1;
|
|
break;
|
|
}
|
|
|
|
n = ESP_FIFO_SIZE -
|
|
(esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES);
|
|
|
|
if (n > esp_count)
|
|
n = esp_count;
|
|
writesb(esp->fifo_reg, src, n);
|
|
src += n;
|
|
esp_count -= n;
|
|
|
|
esp_write8(ESP_CMD_TI, ESP_CMD);
|
|
}
|
|
}
|
|
|
|
esp->send_cmd_residual = esp_count;
|
|
}
|
|
EXPORT_SYMBOL(esp_send_pio_cmd);
|
|
#endif
|