linux_dsm_epyc7002/net/sched/cls_rsvp.h
Daniel Borkmann d936377414 net, sched: respect rcu grace period on cls destruction
Roi reported a crash in flower where tp->root was NULL in ->classify()
callbacks. Reason is that in ->destroy() tp->root is set to NULL via
RCU_INIT_POINTER(). It's problematic for some of the classifiers, because
this doesn't respect RCU grace period for them, and as a result, still
outstanding readers from tc_classify() will try to blindly dereference
a NULL tp->root.

The tp->root object is strictly private to the classifier implementation
and holds internal data the core such as tc_ctl_tfilter() doesn't know
about. Within some classifiers, such as cls_bpf, cls_basic, etc, tp->root
is only checked for NULL in ->get() callback, but nowhere else. This is
misleading and seemed to be copied from old classifier code that was not
cleaned up properly. For example, d3fa76ee6b ("[NET_SCHED]: cls_basic:
fix NULL pointer dereference") moved tp->root initialization into ->init()
routine, where before it was part of ->change(), so ->get() had to deal
with tp->root being NULL back then, so that was indeed a valid case, after
d3fa76ee6b, not really anymore. We used to set tp->root to NULL long
ago in ->destroy(), see 47a1a1d4be ("pkt_sched: remove unnecessary xchg()
in packet classifiers"); but the NULLifying was reintroduced with the
RCUification, but it's not correct for every classifier implementation.

In the cases that are fixed here with one exception of cls_cgroup, tp->root
object is allocated and initialized inside ->init() callback, which is always
performed at a point in time after we allocate a new tp, which means tp and
thus tp->root was not globally visible in the tp chain yet (see tc_ctl_tfilter()).
Also, on destruction tp->root is strictly kfree_rcu()'ed in ->destroy()
handler, same for the tp which is kfree_rcu()'ed right when we return
from ->destroy() in tcf_destroy(). This means, the head object's lifetime
for such classifiers is always tied to the tp lifetime. The RCU callback
invocation for the two kfree_rcu() could be out of order, but that's fine
since both are independent.

Dropping the RCU_INIT_POINTER(tp->root, NULL) for these classifiers here
means that 1) we don't need a useless NULL check in fast-path and, 2) that
outstanding readers of that tp in tc_classify() can still execute under
respect with RCU grace period as it is actually expected.

Things that haven't been touched here: cls_fw and cls_route. They each
handle tp->root being NULL in ->classify() path for historic reasons, so
their ->destroy() implementation can stay as is. If someone actually
cares, they could get cleaned up at some point to avoid the test in fast
path. cls_u32 doesn't set tp->root to NULL. For cls_rsvp, I just added a
!head should anyone actually be using/testing it, so it at least aligns with
cls_fw and cls_route. For cls_flower we additionally need to defer rhashtable
destruction (to a sleepable context) after RCU grace period as concurrent
readers might still access it. (Note that in this case we need to hold module
reference to keep work callback address intact, since we only wait on module
unload for all call_rcu()s to finish.)

This fixes one race to bring RCU grace period guarantees back. Next step
as worked on by Cong however is to fix 1e052be69d ("net_sched: destroy
proto tp when all filters are gone") to get the order of unlinking the tp
in tc_ctl_tfilter() for the RTM_DELTFILTER case right by moving
RCU_INIT_POINTER() before tcf_destroy() and let the notification for
removal be done through the prior ->delete() callback. Both are independant
issues. Once we have that right, we can then clean tp->root up for a number
of classifiers by not making them RCU pointers, which requires a new callback
(->uninit) that is triggered from tp's RCU callback, where we just kfree()
tp->root from there.

Fixes: 1f947bf151 ("net: sched: rcu'ify cls_bpf")
Fixes: 9888faefe1 ("net: sched: cls_basic use RCU")
Fixes: 70da9f0bf9 ("net: sched: cls_flow use RCU")
Fixes: 77b9900ef5 ("tc: introduce Flower classifier")
Fixes: bf3994d2ed ("net/sched: introduce Match-all classifier")
Fixes: 952313bd62 ("net: sched: cls_cgroup use RCU")
Reported-by: Roi Dayan <roid@mellanox.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Roi Dayan <roid@mellanox.com>
Cc: Jiri Pirko <jiri@mellanox.com>
Acked-by: John Fastabend <john.r.fastabend@intel.com>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-28 10:47:35 -05:00

753 lines
18 KiB
C

/*
* net/sched/cls_rsvp.h Template file for RSVPv[46] classifiers.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*/
/*
Comparing to general packet classification problem,
RSVP needs only sevaral relatively simple rules:
* (dst, protocol) are always specified,
so that we are able to hash them.
* src may be exact, or may be wildcard, so that
we can keep a hash table plus one wildcard entry.
* source port (or flow label) is important only if src is given.
IMPLEMENTATION.
We use a two level hash table: The top level is keyed by
destination address and protocol ID, every bucket contains a list
of "rsvp sessions", identified by destination address, protocol and
DPI(="Destination Port ID"): triple (key, mask, offset).
Every bucket has a smaller hash table keyed by source address
(cf. RSVP flowspec) and one wildcard entry for wildcard reservations.
Every bucket is again a list of "RSVP flows", selected by
source address and SPI(="Source Port ID" here rather than
"security parameter index"): triple (key, mask, offset).
NOTE 1. All the packets with IPv6 extension headers (but AH and ESP)
and all fragmented packets go to the best-effort traffic class.
NOTE 2. Two "port id"'s seems to be redundant, rfc2207 requires
only one "Generalized Port Identifier". So that for classic
ah, esp (and udp,tcp) both *pi should coincide or one of them
should be wildcard.
At first sight, this redundancy is just a waste of CPU
resources. But DPI and SPI add the possibility to assign different
priorities to GPIs. Look also at note 4 about tunnels below.
NOTE 3. One complication is the case of tunneled packets.
We implement it as following: if the first lookup
matches a special session with "tunnelhdr" value not zero,
flowid doesn't contain the true flow ID, but the tunnel ID (1...255).
In this case, we pull tunnelhdr bytes and restart lookup
with tunnel ID added to the list of keys. Simple and stupid 8)8)
It's enough for PIMREG and IPIP.
NOTE 4. Two GPIs make it possible to parse even GRE packets.
F.e. DPI can select ETH_P_IP (and necessary flags to make
tunnelhdr correct) in GRE protocol field and SPI matches
GRE key. Is it not nice? 8)8)
Well, as result, despite its simplicity, we get a pretty
powerful classification engine. */
struct rsvp_head {
u32 tmap[256/32];
u32 hgenerator;
u8 tgenerator;
struct rsvp_session __rcu *ht[256];
struct rcu_head rcu;
};
struct rsvp_session {
struct rsvp_session __rcu *next;
__be32 dst[RSVP_DST_LEN];
struct tc_rsvp_gpi dpi;
u8 protocol;
u8 tunnelid;
/* 16 (src,sport) hash slots, and one wildcard source slot */
struct rsvp_filter __rcu *ht[16 + 1];
struct rcu_head rcu;
};
struct rsvp_filter {
struct rsvp_filter __rcu *next;
__be32 src[RSVP_DST_LEN];
struct tc_rsvp_gpi spi;
u8 tunnelhdr;
struct tcf_result res;
struct tcf_exts exts;
u32 handle;
struct rsvp_session *sess;
struct rcu_head rcu;
};
static inline unsigned int hash_dst(__be32 *dst, u8 protocol, u8 tunnelid)
{
unsigned int h = (__force __u32)dst[RSVP_DST_LEN - 1];
h ^= h>>16;
h ^= h>>8;
return (h ^ protocol ^ tunnelid) & 0xFF;
}
static inline unsigned int hash_src(__be32 *src)
{
unsigned int h = (__force __u32)src[RSVP_DST_LEN-1];
h ^= h>>16;
h ^= h>>8;
h ^= h>>4;
return h & 0xF;
}
#define RSVP_APPLY_RESULT() \
{ \
int r = tcf_exts_exec(skb, &f->exts, res); \
if (r < 0) \
continue; \
else if (r > 0) \
return r; \
}
static int rsvp_classify(struct sk_buff *skb, const struct tcf_proto *tp,
struct tcf_result *res)
{
struct rsvp_head *head = rcu_dereference_bh(tp->root);
struct rsvp_session *s;
struct rsvp_filter *f;
unsigned int h1, h2;
__be32 *dst, *src;
u8 protocol;
u8 tunnelid = 0;
u8 *xprt;
#if RSVP_DST_LEN == 4
struct ipv6hdr *nhptr;
if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
return -1;
nhptr = ipv6_hdr(skb);
#else
struct iphdr *nhptr;
if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
return -1;
nhptr = ip_hdr(skb);
#endif
if (unlikely(!head))
return -1;
restart:
#if RSVP_DST_LEN == 4
src = &nhptr->saddr.s6_addr32[0];
dst = &nhptr->daddr.s6_addr32[0];
protocol = nhptr->nexthdr;
xprt = ((u8 *)nhptr) + sizeof(struct ipv6hdr);
#else
src = &nhptr->saddr;
dst = &nhptr->daddr;
protocol = nhptr->protocol;
xprt = ((u8 *)nhptr) + (nhptr->ihl<<2);
if (ip_is_fragment(nhptr))
return -1;
#endif
h1 = hash_dst(dst, protocol, tunnelid);
h2 = hash_src(src);
for (s = rcu_dereference_bh(head->ht[h1]); s;
s = rcu_dereference_bh(s->next)) {
if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN - 1] &&
protocol == s->protocol &&
!(s->dpi.mask &
(*(u32 *)(xprt + s->dpi.offset) ^ s->dpi.key)) &&
#if RSVP_DST_LEN == 4
dst[0] == s->dst[0] &&
dst[1] == s->dst[1] &&
dst[2] == s->dst[2] &&
#endif
tunnelid == s->tunnelid) {
for (f = rcu_dereference_bh(s->ht[h2]); f;
f = rcu_dereference_bh(f->next)) {
if (src[RSVP_DST_LEN-1] == f->src[RSVP_DST_LEN - 1] &&
!(f->spi.mask & (*(u32 *)(xprt + f->spi.offset) ^ f->spi.key))
#if RSVP_DST_LEN == 4
&&
src[0] == f->src[0] &&
src[1] == f->src[1] &&
src[2] == f->src[2]
#endif
) {
*res = f->res;
RSVP_APPLY_RESULT();
matched:
if (f->tunnelhdr == 0)
return 0;
tunnelid = f->res.classid;
nhptr = (void *)(xprt + f->tunnelhdr - sizeof(*nhptr));
goto restart;
}
}
/* And wildcard bucket... */
for (f = rcu_dereference_bh(s->ht[16]); f;
f = rcu_dereference_bh(f->next)) {
*res = f->res;
RSVP_APPLY_RESULT();
goto matched;
}
return -1;
}
}
return -1;
}
static void rsvp_replace(struct tcf_proto *tp, struct rsvp_filter *n, u32 h)
{
struct rsvp_head *head = rtnl_dereference(tp->root);
struct rsvp_session *s;
struct rsvp_filter __rcu **ins;
struct rsvp_filter *pins;
unsigned int h1 = h & 0xFF;
unsigned int h2 = (h >> 8) & 0xFF;
for (s = rtnl_dereference(head->ht[h1]); s;
s = rtnl_dereference(s->next)) {
for (ins = &s->ht[h2], pins = rtnl_dereference(*ins); ;
ins = &pins->next, pins = rtnl_dereference(*ins)) {
if (pins->handle == h) {
RCU_INIT_POINTER(n->next, pins->next);
rcu_assign_pointer(*ins, n);
return;
}
}
}
/* Something went wrong if we are trying to replace a non-existant
* node. Mind as well halt instead of silently failing.
*/
BUG_ON(1);
}
static unsigned long rsvp_get(struct tcf_proto *tp, u32 handle)
{
struct rsvp_head *head = rtnl_dereference(tp->root);
struct rsvp_session *s;
struct rsvp_filter *f;
unsigned int h1 = handle & 0xFF;
unsigned int h2 = (handle >> 8) & 0xFF;
if (h2 > 16)
return 0;
for (s = rtnl_dereference(head->ht[h1]); s;
s = rtnl_dereference(s->next)) {
for (f = rtnl_dereference(s->ht[h2]); f;
f = rtnl_dereference(f->next)) {
if (f->handle == handle)
return (unsigned long)f;
}
}
return 0;
}
static int rsvp_init(struct tcf_proto *tp)
{
struct rsvp_head *data;
data = kzalloc(sizeof(struct rsvp_head), GFP_KERNEL);
if (data) {
rcu_assign_pointer(tp->root, data);
return 0;
}
return -ENOBUFS;
}
static void rsvp_delete_filter_rcu(struct rcu_head *head)
{
struct rsvp_filter *f = container_of(head, struct rsvp_filter, rcu);
tcf_exts_destroy(&f->exts);
kfree(f);
}
static void rsvp_delete_filter(struct tcf_proto *tp, struct rsvp_filter *f)
{
tcf_unbind_filter(tp, &f->res);
/* all classifiers are required to call tcf_exts_destroy() after rcu
* grace period, since converted-to-rcu actions are relying on that
* in cleanup() callback
*/
call_rcu(&f->rcu, rsvp_delete_filter_rcu);
}
static bool rsvp_destroy(struct tcf_proto *tp, bool force)
{
struct rsvp_head *data = rtnl_dereference(tp->root);
int h1, h2;
if (data == NULL)
return true;
if (!force) {
for (h1 = 0; h1 < 256; h1++) {
if (rcu_access_pointer(data->ht[h1]))
return false;
}
}
RCU_INIT_POINTER(tp->root, NULL);
for (h1 = 0; h1 < 256; h1++) {
struct rsvp_session *s;
while ((s = rtnl_dereference(data->ht[h1])) != NULL) {
RCU_INIT_POINTER(data->ht[h1], s->next);
for (h2 = 0; h2 <= 16; h2++) {
struct rsvp_filter *f;
while ((f = rtnl_dereference(s->ht[h2])) != NULL) {
rcu_assign_pointer(s->ht[h2], f->next);
rsvp_delete_filter(tp, f);
}
}
kfree_rcu(s, rcu);
}
}
kfree_rcu(data, rcu);
return true;
}
static int rsvp_delete(struct tcf_proto *tp, unsigned long arg)
{
struct rsvp_head *head = rtnl_dereference(tp->root);
struct rsvp_filter *nfp, *f = (struct rsvp_filter *)arg;
struct rsvp_filter __rcu **fp;
unsigned int h = f->handle;
struct rsvp_session __rcu **sp;
struct rsvp_session *nsp, *s = f->sess;
int i;
fp = &s->ht[(h >> 8) & 0xFF];
for (nfp = rtnl_dereference(*fp); nfp;
fp = &nfp->next, nfp = rtnl_dereference(*fp)) {
if (nfp == f) {
RCU_INIT_POINTER(*fp, f->next);
rsvp_delete_filter(tp, f);
/* Strip tree */
for (i = 0; i <= 16; i++)
if (s->ht[i])
return 0;
/* OK, session has no flows */
sp = &head->ht[h & 0xFF];
for (nsp = rtnl_dereference(*sp); nsp;
sp = &nsp->next, nsp = rtnl_dereference(*sp)) {
if (nsp == s) {
RCU_INIT_POINTER(*sp, s->next);
kfree_rcu(s, rcu);
return 0;
}
}
return 0;
}
}
return 0;
}
static unsigned int gen_handle(struct tcf_proto *tp, unsigned salt)
{
struct rsvp_head *data = rtnl_dereference(tp->root);
int i = 0xFFFF;
while (i-- > 0) {
u32 h;
if ((data->hgenerator += 0x10000) == 0)
data->hgenerator = 0x10000;
h = data->hgenerator|salt;
if (rsvp_get(tp, h) == 0)
return h;
}
return 0;
}
static int tunnel_bts(struct rsvp_head *data)
{
int n = data->tgenerator >> 5;
u32 b = 1 << (data->tgenerator & 0x1F);
if (data->tmap[n] & b)
return 0;
data->tmap[n] |= b;
return 1;
}
static void tunnel_recycle(struct rsvp_head *data)
{
struct rsvp_session __rcu **sht = data->ht;
u32 tmap[256/32];
int h1, h2;
memset(tmap, 0, sizeof(tmap));
for (h1 = 0; h1 < 256; h1++) {
struct rsvp_session *s;
for (s = rtnl_dereference(sht[h1]); s;
s = rtnl_dereference(s->next)) {
for (h2 = 0; h2 <= 16; h2++) {
struct rsvp_filter *f;
for (f = rtnl_dereference(s->ht[h2]); f;
f = rtnl_dereference(f->next)) {
if (f->tunnelhdr == 0)
continue;
data->tgenerator = f->res.classid;
tunnel_bts(data);
}
}
}
}
memcpy(data->tmap, tmap, sizeof(tmap));
}
static u32 gen_tunnel(struct rsvp_head *data)
{
int i, k;
for (k = 0; k < 2; k++) {
for (i = 255; i > 0; i--) {
if (++data->tgenerator == 0)
data->tgenerator = 1;
if (tunnel_bts(data))
return data->tgenerator;
}
tunnel_recycle(data);
}
return 0;
}
static const struct nla_policy rsvp_policy[TCA_RSVP_MAX + 1] = {
[TCA_RSVP_CLASSID] = { .type = NLA_U32 },
[TCA_RSVP_DST] = { .type = NLA_BINARY,
.len = RSVP_DST_LEN * sizeof(u32) },
[TCA_RSVP_SRC] = { .type = NLA_BINARY,
.len = RSVP_DST_LEN * sizeof(u32) },
[TCA_RSVP_PINFO] = { .len = sizeof(struct tc_rsvp_pinfo) },
};
static int rsvp_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle,
struct nlattr **tca,
unsigned long *arg, bool ovr)
{
struct rsvp_head *data = rtnl_dereference(tp->root);
struct rsvp_filter *f, *nfp;
struct rsvp_filter __rcu **fp;
struct rsvp_session *nsp, *s;
struct rsvp_session __rcu **sp;
struct tc_rsvp_pinfo *pinfo = NULL;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_RSVP_MAX + 1];
struct tcf_exts e;
unsigned int h1, h2;
__be32 *dst;
int err;
if (opt == NULL)
return handle ? -EINVAL : 0;
err = nla_parse_nested(tb, TCA_RSVP_MAX, opt, rsvp_policy);
if (err < 0)
return err;
err = tcf_exts_init(&e, TCA_RSVP_ACT, TCA_RSVP_POLICE);
if (err < 0)
return err;
err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e, ovr);
if (err < 0)
goto errout2;
f = (struct rsvp_filter *)*arg;
if (f) {
/* Node exists: adjust only classid */
struct rsvp_filter *n;
if (f->handle != handle && handle)
goto errout2;
n = kmemdup(f, sizeof(*f), GFP_KERNEL);
if (!n) {
err = -ENOMEM;
goto errout2;
}
err = tcf_exts_init(&n->exts, TCA_RSVP_ACT, TCA_RSVP_POLICE);
if (err < 0) {
kfree(n);
goto errout2;
}
if (tb[TCA_RSVP_CLASSID]) {
n->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID]);
tcf_bind_filter(tp, &n->res, base);
}
tcf_exts_change(tp, &n->exts, &e);
rsvp_replace(tp, n, handle);
return 0;
}
/* Now more serious part... */
err = -EINVAL;
if (handle)
goto errout2;
if (tb[TCA_RSVP_DST] == NULL)
goto errout2;
err = -ENOBUFS;
f = kzalloc(sizeof(struct rsvp_filter), GFP_KERNEL);
if (f == NULL)
goto errout2;
err = tcf_exts_init(&f->exts, TCA_RSVP_ACT, TCA_RSVP_POLICE);
if (err < 0)
goto errout;
h2 = 16;
if (tb[TCA_RSVP_SRC]) {
memcpy(f->src, nla_data(tb[TCA_RSVP_SRC]), sizeof(f->src));
h2 = hash_src(f->src);
}
if (tb[TCA_RSVP_PINFO]) {
pinfo = nla_data(tb[TCA_RSVP_PINFO]);
f->spi = pinfo->spi;
f->tunnelhdr = pinfo->tunnelhdr;
}
if (tb[TCA_RSVP_CLASSID])
f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID]);
dst = nla_data(tb[TCA_RSVP_DST]);
h1 = hash_dst(dst, pinfo ? pinfo->protocol : 0, pinfo ? pinfo->tunnelid : 0);
err = -ENOMEM;
if ((f->handle = gen_handle(tp, h1 | (h2<<8))) == 0)
goto errout;
if (f->tunnelhdr) {
err = -EINVAL;
if (f->res.classid > 255)
goto errout;
err = -ENOMEM;
if (f->res.classid == 0 &&
(f->res.classid = gen_tunnel(data)) == 0)
goto errout;
}
for (sp = &data->ht[h1];
(s = rtnl_dereference(*sp)) != NULL;
sp = &s->next) {
if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
pinfo && pinfo->protocol == s->protocol &&
memcmp(&pinfo->dpi, &s->dpi, sizeof(s->dpi)) == 0 &&
#if RSVP_DST_LEN == 4
dst[0] == s->dst[0] &&
dst[1] == s->dst[1] &&
dst[2] == s->dst[2] &&
#endif
pinfo->tunnelid == s->tunnelid) {
insert:
/* OK, we found appropriate session */
fp = &s->ht[h2];
f->sess = s;
if (f->tunnelhdr == 0)
tcf_bind_filter(tp, &f->res, base);
tcf_exts_change(tp, &f->exts, &e);
fp = &s->ht[h2];
for (nfp = rtnl_dereference(*fp); nfp;
fp = &nfp->next, nfp = rtnl_dereference(*fp)) {
__u32 mask = nfp->spi.mask & f->spi.mask;
if (mask != f->spi.mask)
break;
}
RCU_INIT_POINTER(f->next, nfp);
rcu_assign_pointer(*fp, f);
*arg = (unsigned long)f;
return 0;
}
}
/* No session found. Create new one. */
err = -ENOBUFS;
s = kzalloc(sizeof(struct rsvp_session), GFP_KERNEL);
if (s == NULL)
goto errout;
memcpy(s->dst, dst, sizeof(s->dst));
if (pinfo) {
s->dpi = pinfo->dpi;
s->protocol = pinfo->protocol;
s->tunnelid = pinfo->tunnelid;
}
sp = &data->ht[h1];
for (nsp = rtnl_dereference(*sp); nsp;
sp = &nsp->next, nsp = rtnl_dereference(*sp)) {
if ((nsp->dpi.mask & s->dpi.mask) != s->dpi.mask)
break;
}
RCU_INIT_POINTER(s->next, nsp);
rcu_assign_pointer(*sp, s);
goto insert;
errout:
tcf_exts_destroy(&f->exts);
kfree(f);
errout2:
tcf_exts_destroy(&e);
return err;
}
static void rsvp_walk(struct tcf_proto *tp, struct tcf_walker *arg)
{
struct rsvp_head *head = rtnl_dereference(tp->root);
unsigned int h, h1;
if (arg->stop)
return;
for (h = 0; h < 256; h++) {
struct rsvp_session *s;
for (s = rtnl_dereference(head->ht[h]); s;
s = rtnl_dereference(s->next)) {
for (h1 = 0; h1 <= 16; h1++) {
struct rsvp_filter *f;
for (f = rtnl_dereference(s->ht[h1]); f;
f = rtnl_dereference(f->next)) {
if (arg->count < arg->skip) {
arg->count++;
continue;
}
if (arg->fn(tp, (unsigned long)f, arg) < 0) {
arg->stop = 1;
return;
}
arg->count++;
}
}
}
}
}
static int rsvp_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
struct sk_buff *skb, struct tcmsg *t)
{
struct rsvp_filter *f = (struct rsvp_filter *)fh;
struct rsvp_session *s;
struct nlattr *nest;
struct tc_rsvp_pinfo pinfo;
if (f == NULL)
return skb->len;
s = f->sess;
t->tcm_handle = f->handle;
nest = nla_nest_start(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (nla_put(skb, TCA_RSVP_DST, sizeof(s->dst), &s->dst))
goto nla_put_failure;
pinfo.dpi = s->dpi;
pinfo.spi = f->spi;
pinfo.protocol = s->protocol;
pinfo.tunnelid = s->tunnelid;
pinfo.tunnelhdr = f->tunnelhdr;
pinfo.pad = 0;
if (nla_put(skb, TCA_RSVP_PINFO, sizeof(pinfo), &pinfo))
goto nla_put_failure;
if (f->res.classid &&
nla_put_u32(skb, TCA_RSVP_CLASSID, f->res.classid))
goto nla_put_failure;
if (((f->handle >> 8) & 0xFF) != 16 &&
nla_put(skb, TCA_RSVP_SRC, sizeof(f->src), f->src))
goto nla_put_failure;
if (tcf_exts_dump(skb, &f->exts) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &f->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static struct tcf_proto_ops RSVP_OPS __read_mostly = {
.kind = RSVP_ID,
.classify = rsvp_classify,
.init = rsvp_init,
.destroy = rsvp_destroy,
.get = rsvp_get,
.change = rsvp_change,
.delete = rsvp_delete,
.walk = rsvp_walk,
.dump = rsvp_dump,
.owner = THIS_MODULE,
};
static int __init init_rsvp(void)
{
return register_tcf_proto_ops(&RSVP_OPS);
}
static void __exit exit_rsvp(void)
{
unregister_tcf_proto_ops(&RSVP_OPS);
}
module_init(init_rsvp)
module_exit(exit_rsvp)