mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 23:19:29 +07:00
6d0cc887d5
Now that we have EFI memory region bits that indicate which regions do not need execute permission or read/write permission in the page tables, let's use them. We also check for EFI_NX_PE_DATA and only enforce the restrictive mappings if it's present (to allow us to ignore buggy firmware that sets bits it didn't mean to and to preserve backwards compatibility). Instead of assuming that firmware would set appropriate attributes in memory descriptor like EFI_MEMORY_RO for code and EFI_MEMORY_XP for data, we can expect some firmware out there which might only set *type* in memory descriptor to be EFI_RUNTIME_SERVICES_CODE or EFI_RUNTIME_SERVICES_DATA leaving away attribute. This will lead to improper mappings of EFI runtime regions. In order to avoid it, we check attribute and type of memory descriptor to update mappings and moreover Windows works this way. Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Lee, Chun-Yi <jlee@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Cc: Ricardo Neri <ricardo.neri@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1455712566-16727-13-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
1042 lines
26 KiB
C
1042 lines
26 KiB
C
/*
|
|
* Common EFI (Extensible Firmware Interface) support functions
|
|
* Based on Extensible Firmware Interface Specification version 1.0
|
|
*
|
|
* Copyright (C) 1999 VA Linux Systems
|
|
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
|
* Copyright (C) 1999-2002 Hewlett-Packard Co.
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
* Copyright (C) 2005-2008 Intel Co.
|
|
* Fenghua Yu <fenghua.yu@intel.com>
|
|
* Bibo Mao <bibo.mao@intel.com>
|
|
* Chandramouli Narayanan <mouli@linux.intel.com>
|
|
* Huang Ying <ying.huang@intel.com>
|
|
* Copyright (C) 2013 SuSE Labs
|
|
* Borislav Petkov <bp@suse.de> - runtime services VA mapping
|
|
*
|
|
* Copied from efi_32.c to eliminate the duplicated code between EFI
|
|
* 32/64 support code. --ying 2007-10-26
|
|
*
|
|
* All EFI Runtime Services are not implemented yet as EFI only
|
|
* supports physical mode addressing on SoftSDV. This is to be fixed
|
|
* in a future version. --drummond 1999-07-20
|
|
*
|
|
* Implemented EFI runtime services and virtual mode calls. --davidm
|
|
*
|
|
* Goutham Rao: <goutham.rao@intel.com>
|
|
* Skip non-WB memory and ignore empty memory ranges.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/efi-bgrt.h>
|
|
#include <linux/export.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/time.h>
|
|
#include <linux/io.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/bcd.h>
|
|
|
|
#include <asm/setup.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/time.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/x86_init.h>
|
|
#include <asm/rtc.h>
|
|
#include <asm/uv/uv.h>
|
|
|
|
#define EFI_DEBUG
|
|
|
|
struct efi_memory_map memmap;
|
|
|
|
static struct efi efi_phys __initdata;
|
|
static efi_system_table_t efi_systab __initdata;
|
|
|
|
static efi_config_table_type_t arch_tables[] __initdata = {
|
|
#ifdef CONFIG_X86_UV
|
|
{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
|
|
#endif
|
|
{NULL_GUID, NULL, NULL},
|
|
};
|
|
|
|
u64 efi_setup; /* efi setup_data physical address */
|
|
|
|
static int add_efi_memmap __initdata;
|
|
static int __init setup_add_efi_memmap(char *arg)
|
|
{
|
|
add_efi_memmap = 1;
|
|
return 0;
|
|
}
|
|
early_param("add_efi_memmap", setup_add_efi_memmap);
|
|
|
|
static efi_status_t __init phys_efi_set_virtual_address_map(
|
|
unsigned long memory_map_size,
|
|
unsigned long descriptor_size,
|
|
u32 descriptor_version,
|
|
efi_memory_desc_t *virtual_map)
|
|
{
|
|
efi_status_t status;
|
|
unsigned long flags;
|
|
pgd_t *save_pgd;
|
|
|
|
save_pgd = efi_call_phys_prolog();
|
|
|
|
/* Disable interrupts around EFI calls: */
|
|
local_irq_save(flags);
|
|
status = efi_call_phys(efi_phys.set_virtual_address_map,
|
|
memory_map_size, descriptor_size,
|
|
descriptor_version, virtual_map);
|
|
local_irq_restore(flags);
|
|
|
|
efi_call_phys_epilog(save_pgd);
|
|
|
|
return status;
|
|
}
|
|
|
|
void efi_get_time(struct timespec *now)
|
|
{
|
|
efi_status_t status;
|
|
efi_time_t eft;
|
|
efi_time_cap_t cap;
|
|
|
|
status = efi.get_time(&eft, &cap);
|
|
if (status != EFI_SUCCESS)
|
|
pr_err("Oops: efitime: can't read time!\n");
|
|
|
|
now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
|
|
eft.minute, eft.second);
|
|
now->tv_nsec = 0;
|
|
}
|
|
|
|
void __init efi_find_mirror(void)
|
|
{
|
|
void *p;
|
|
u64 mirror_size = 0, total_size = 0;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
efi_memory_desc_t *md = p;
|
|
unsigned long long start = md->phys_addr;
|
|
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
total_size += size;
|
|
if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
|
|
memblock_mark_mirror(start, size);
|
|
mirror_size += size;
|
|
}
|
|
}
|
|
if (mirror_size)
|
|
pr_info("Memory: %lldM/%lldM mirrored memory\n",
|
|
mirror_size>>20, total_size>>20);
|
|
}
|
|
|
|
/*
|
|
* Tell the kernel about the EFI memory map. This might include
|
|
* more than the max 128 entries that can fit in the e820 legacy
|
|
* (zeropage) memory map.
|
|
*/
|
|
|
|
static void __init do_add_efi_memmap(void)
|
|
{
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
efi_memory_desc_t *md = p;
|
|
unsigned long long start = md->phys_addr;
|
|
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
|
|
int e820_type;
|
|
|
|
switch (md->type) {
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
if (md->attribute & EFI_MEMORY_WB)
|
|
e820_type = E820_RAM;
|
|
else
|
|
e820_type = E820_RESERVED;
|
|
break;
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
e820_type = E820_ACPI;
|
|
break;
|
|
case EFI_ACPI_MEMORY_NVS:
|
|
e820_type = E820_NVS;
|
|
break;
|
|
case EFI_UNUSABLE_MEMORY:
|
|
e820_type = E820_UNUSABLE;
|
|
break;
|
|
case EFI_PERSISTENT_MEMORY:
|
|
e820_type = E820_PMEM;
|
|
break;
|
|
default:
|
|
/*
|
|
* EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
|
|
* EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
|
|
* EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
|
|
*/
|
|
e820_type = E820_RESERVED;
|
|
break;
|
|
}
|
|
e820_add_region(start, size, e820_type);
|
|
}
|
|
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
|
|
}
|
|
|
|
int __init efi_memblock_x86_reserve_range(void)
|
|
{
|
|
struct efi_info *e = &boot_params.efi_info;
|
|
phys_addr_t pmap;
|
|
|
|
if (efi_enabled(EFI_PARAVIRT))
|
|
return 0;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* Can't handle data above 4GB at this time */
|
|
if (e->efi_memmap_hi) {
|
|
pr_err("Memory map is above 4GB, disabling EFI.\n");
|
|
return -EINVAL;
|
|
}
|
|
pmap = e->efi_memmap;
|
|
#else
|
|
pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
|
|
#endif
|
|
memmap.phys_map = pmap;
|
|
memmap.nr_map = e->efi_memmap_size /
|
|
e->efi_memdesc_size;
|
|
memmap.desc_size = e->efi_memdesc_size;
|
|
memmap.desc_version = e->efi_memdesc_version;
|
|
|
|
memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
|
|
|
|
efi.memmap = &memmap;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init efi_print_memmap(void)
|
|
{
|
|
#ifdef EFI_DEBUG
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
int i;
|
|
|
|
for (p = memmap.map, i = 0;
|
|
p < memmap.map_end;
|
|
p += memmap.desc_size, i++) {
|
|
char buf[64];
|
|
|
|
md = p;
|
|
pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
|
|
i, efi_md_typeattr_format(buf, sizeof(buf), md),
|
|
md->phys_addr,
|
|
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
|
|
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
|
|
}
|
|
#endif /* EFI_DEBUG */
|
|
}
|
|
|
|
void __init efi_unmap_memmap(void)
|
|
{
|
|
clear_bit(EFI_MEMMAP, &efi.flags);
|
|
if (memmap.map) {
|
|
early_memunmap(memmap.map, memmap.nr_map * memmap.desc_size);
|
|
memmap.map = NULL;
|
|
}
|
|
}
|
|
|
|
static int __init efi_systab_init(void *phys)
|
|
{
|
|
if (efi_enabled(EFI_64BIT)) {
|
|
efi_system_table_64_t *systab64;
|
|
struct efi_setup_data *data = NULL;
|
|
u64 tmp = 0;
|
|
|
|
if (efi_setup) {
|
|
data = early_memremap(efi_setup, sizeof(*data));
|
|
if (!data)
|
|
return -ENOMEM;
|
|
}
|
|
systab64 = early_memremap((unsigned long)phys,
|
|
sizeof(*systab64));
|
|
if (systab64 == NULL) {
|
|
pr_err("Couldn't map the system table!\n");
|
|
if (data)
|
|
early_memunmap(data, sizeof(*data));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
efi_systab.hdr = systab64->hdr;
|
|
efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
|
|
systab64->fw_vendor;
|
|
tmp |= data ? data->fw_vendor : systab64->fw_vendor;
|
|
efi_systab.fw_revision = systab64->fw_revision;
|
|
efi_systab.con_in_handle = systab64->con_in_handle;
|
|
tmp |= systab64->con_in_handle;
|
|
efi_systab.con_in = systab64->con_in;
|
|
tmp |= systab64->con_in;
|
|
efi_systab.con_out_handle = systab64->con_out_handle;
|
|
tmp |= systab64->con_out_handle;
|
|
efi_systab.con_out = systab64->con_out;
|
|
tmp |= systab64->con_out;
|
|
efi_systab.stderr_handle = systab64->stderr_handle;
|
|
tmp |= systab64->stderr_handle;
|
|
efi_systab.stderr = systab64->stderr;
|
|
tmp |= systab64->stderr;
|
|
efi_systab.runtime = data ?
|
|
(void *)(unsigned long)data->runtime :
|
|
(void *)(unsigned long)systab64->runtime;
|
|
tmp |= data ? data->runtime : systab64->runtime;
|
|
efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
|
|
tmp |= systab64->boottime;
|
|
efi_systab.nr_tables = systab64->nr_tables;
|
|
efi_systab.tables = data ? (unsigned long)data->tables :
|
|
systab64->tables;
|
|
tmp |= data ? data->tables : systab64->tables;
|
|
|
|
early_memunmap(systab64, sizeof(*systab64));
|
|
if (data)
|
|
early_memunmap(data, sizeof(*data));
|
|
#ifdef CONFIG_X86_32
|
|
if (tmp >> 32) {
|
|
pr_err("EFI data located above 4GB, disabling EFI.\n");
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
} else {
|
|
efi_system_table_32_t *systab32;
|
|
|
|
systab32 = early_memremap((unsigned long)phys,
|
|
sizeof(*systab32));
|
|
if (systab32 == NULL) {
|
|
pr_err("Couldn't map the system table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
efi_systab.hdr = systab32->hdr;
|
|
efi_systab.fw_vendor = systab32->fw_vendor;
|
|
efi_systab.fw_revision = systab32->fw_revision;
|
|
efi_systab.con_in_handle = systab32->con_in_handle;
|
|
efi_systab.con_in = systab32->con_in;
|
|
efi_systab.con_out_handle = systab32->con_out_handle;
|
|
efi_systab.con_out = systab32->con_out;
|
|
efi_systab.stderr_handle = systab32->stderr_handle;
|
|
efi_systab.stderr = systab32->stderr;
|
|
efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
|
|
efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
|
|
efi_systab.nr_tables = systab32->nr_tables;
|
|
efi_systab.tables = systab32->tables;
|
|
|
|
early_memunmap(systab32, sizeof(*systab32));
|
|
}
|
|
|
|
efi.systab = &efi_systab;
|
|
|
|
/*
|
|
* Verify the EFI Table
|
|
*/
|
|
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
|
|
pr_err("System table signature incorrect!\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((efi.systab->hdr.revision >> 16) == 0)
|
|
pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff);
|
|
|
|
set_bit(EFI_SYSTEM_TABLES, &efi.flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init efi_runtime_init32(void)
|
|
{
|
|
efi_runtime_services_32_t *runtime;
|
|
|
|
runtime = early_memremap((unsigned long)efi.systab->runtime,
|
|
sizeof(efi_runtime_services_32_t));
|
|
if (!runtime) {
|
|
pr_err("Could not map the runtime service table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* We will only need *early* access to the SetVirtualAddressMap
|
|
* EFI runtime service. All other runtime services will be called
|
|
* via the virtual mapping.
|
|
*/
|
|
efi_phys.set_virtual_address_map =
|
|
(efi_set_virtual_address_map_t *)
|
|
(unsigned long)runtime->set_virtual_address_map;
|
|
early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init efi_runtime_init64(void)
|
|
{
|
|
efi_runtime_services_64_t *runtime;
|
|
|
|
runtime = early_memremap((unsigned long)efi.systab->runtime,
|
|
sizeof(efi_runtime_services_64_t));
|
|
if (!runtime) {
|
|
pr_err("Could not map the runtime service table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* We will only need *early* access to the SetVirtualAddressMap
|
|
* EFI runtime service. All other runtime services will be called
|
|
* via the virtual mapping.
|
|
*/
|
|
efi_phys.set_virtual_address_map =
|
|
(efi_set_virtual_address_map_t *)
|
|
(unsigned long)runtime->set_virtual_address_map;
|
|
early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init efi_runtime_init(void)
|
|
{
|
|
int rv;
|
|
|
|
/*
|
|
* Check out the runtime services table. We need to map
|
|
* the runtime services table so that we can grab the physical
|
|
* address of several of the EFI runtime functions, needed to
|
|
* set the firmware into virtual mode.
|
|
*
|
|
* When EFI_PARAVIRT is in force then we could not map runtime
|
|
* service memory region because we do not have direct access to it.
|
|
* However, runtime services are available through proxy functions
|
|
* (e.g. in case of Xen dom0 EFI implementation they call special
|
|
* hypercall which executes relevant EFI functions) and that is why
|
|
* they are always enabled.
|
|
*/
|
|
|
|
if (!efi_enabled(EFI_PARAVIRT)) {
|
|
if (efi_enabled(EFI_64BIT))
|
|
rv = efi_runtime_init64();
|
|
else
|
|
rv = efi_runtime_init32();
|
|
|
|
if (rv)
|
|
return rv;
|
|
}
|
|
|
|
set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init efi_memmap_init(void)
|
|
{
|
|
if (efi_enabled(EFI_PARAVIRT))
|
|
return 0;
|
|
|
|
/* Map the EFI memory map */
|
|
memmap.map = early_memremap((unsigned long)memmap.phys_map,
|
|
memmap.nr_map * memmap.desc_size);
|
|
if (memmap.map == NULL) {
|
|
pr_err("Could not map the memory map!\n");
|
|
return -ENOMEM;
|
|
}
|
|
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
|
|
|
|
if (add_efi_memmap)
|
|
do_add_efi_memmap();
|
|
|
|
set_bit(EFI_MEMMAP, &efi.flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init efi_init(void)
|
|
{
|
|
efi_char16_t *c16;
|
|
char vendor[100] = "unknown";
|
|
int i = 0;
|
|
void *tmp;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
if (boot_params.efi_info.efi_systab_hi ||
|
|
boot_params.efi_info.efi_memmap_hi) {
|
|
pr_info("Table located above 4GB, disabling EFI.\n");
|
|
return;
|
|
}
|
|
efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
|
|
#else
|
|
efi_phys.systab = (efi_system_table_t *)
|
|
(boot_params.efi_info.efi_systab |
|
|
((__u64)boot_params.efi_info.efi_systab_hi<<32));
|
|
#endif
|
|
|
|
if (efi_systab_init(efi_phys.systab))
|
|
return;
|
|
|
|
efi.config_table = (unsigned long)efi.systab->tables;
|
|
efi.fw_vendor = (unsigned long)efi.systab->fw_vendor;
|
|
efi.runtime = (unsigned long)efi.systab->runtime;
|
|
|
|
/*
|
|
* Show what we know for posterity
|
|
*/
|
|
c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
|
|
if (c16) {
|
|
for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
|
|
vendor[i] = *c16++;
|
|
vendor[i] = '\0';
|
|
} else
|
|
pr_err("Could not map the firmware vendor!\n");
|
|
early_memunmap(tmp, 2);
|
|
|
|
pr_info("EFI v%u.%.02u by %s\n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff, vendor);
|
|
|
|
if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
|
|
return;
|
|
|
|
if (efi_config_init(arch_tables))
|
|
return;
|
|
|
|
/*
|
|
* Note: We currently don't support runtime services on an EFI
|
|
* that doesn't match the kernel 32/64-bit mode.
|
|
*/
|
|
|
|
if (!efi_runtime_supported())
|
|
pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
|
|
else {
|
|
if (efi_runtime_disabled() || efi_runtime_init())
|
|
return;
|
|
}
|
|
if (efi_memmap_init())
|
|
return;
|
|
|
|
if (efi_enabled(EFI_DBG))
|
|
efi_print_memmap();
|
|
|
|
efi_esrt_init();
|
|
}
|
|
|
|
void __init efi_late_init(void)
|
|
{
|
|
efi_bgrt_init();
|
|
}
|
|
|
|
void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
|
|
{
|
|
u64 addr, npages;
|
|
|
|
addr = md->virt_addr;
|
|
npages = md->num_pages;
|
|
|
|
memrange_efi_to_native(&addr, &npages);
|
|
|
|
if (executable)
|
|
set_memory_x(addr, npages);
|
|
else
|
|
set_memory_nx(addr, npages);
|
|
}
|
|
|
|
void __init runtime_code_page_mkexec(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
/* Make EFI runtime service code area executable */
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
|
|
if (md->type != EFI_RUNTIME_SERVICES_CODE)
|
|
continue;
|
|
|
|
efi_set_executable(md, true);
|
|
}
|
|
}
|
|
|
|
void __init efi_memory_uc(u64 addr, unsigned long size)
|
|
{
|
|
unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
|
|
u64 npages;
|
|
|
|
npages = round_up(size, page_shift) / page_shift;
|
|
memrange_efi_to_native(&addr, &npages);
|
|
set_memory_uc(addr, npages);
|
|
}
|
|
|
|
void __init old_map_region(efi_memory_desc_t *md)
|
|
{
|
|
u64 start_pfn, end_pfn, end;
|
|
unsigned long size;
|
|
void *va;
|
|
|
|
start_pfn = PFN_DOWN(md->phys_addr);
|
|
size = md->num_pages << PAGE_SHIFT;
|
|
end = md->phys_addr + size;
|
|
end_pfn = PFN_UP(end);
|
|
|
|
if (pfn_range_is_mapped(start_pfn, end_pfn)) {
|
|
va = __va(md->phys_addr);
|
|
|
|
if (!(md->attribute & EFI_MEMORY_WB))
|
|
efi_memory_uc((u64)(unsigned long)va, size);
|
|
} else
|
|
va = efi_ioremap(md->phys_addr, size,
|
|
md->type, md->attribute);
|
|
|
|
md->virt_addr = (u64) (unsigned long) va;
|
|
if (!va)
|
|
pr_err("ioremap of 0x%llX failed!\n",
|
|
(unsigned long long)md->phys_addr);
|
|
}
|
|
|
|
/* Merge contiguous regions of the same type and attribute */
|
|
static void __init efi_merge_regions(void)
|
|
{
|
|
void *p;
|
|
efi_memory_desc_t *md, *prev_md = NULL;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
u64 prev_size;
|
|
md = p;
|
|
|
|
if (!prev_md) {
|
|
prev_md = md;
|
|
continue;
|
|
}
|
|
|
|
if (prev_md->type != md->type ||
|
|
prev_md->attribute != md->attribute) {
|
|
prev_md = md;
|
|
continue;
|
|
}
|
|
|
|
prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
|
|
prev_md->num_pages += md->num_pages;
|
|
md->type = EFI_RESERVED_TYPE;
|
|
md->attribute = 0;
|
|
continue;
|
|
}
|
|
prev_md = md;
|
|
}
|
|
}
|
|
|
|
static void __init get_systab_virt_addr(efi_memory_desc_t *md)
|
|
{
|
|
unsigned long size;
|
|
u64 end, systab;
|
|
|
|
size = md->num_pages << EFI_PAGE_SHIFT;
|
|
end = md->phys_addr + size;
|
|
systab = (u64)(unsigned long)efi_phys.systab;
|
|
if (md->phys_addr <= systab && systab < end) {
|
|
systab += md->virt_addr - md->phys_addr;
|
|
efi.systab = (efi_system_table_t *)(unsigned long)systab;
|
|
}
|
|
}
|
|
|
|
static void __init save_runtime_map(void)
|
|
{
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
efi_memory_desc_t *md;
|
|
void *tmp, *p, *q = NULL;
|
|
int count = 0;
|
|
|
|
if (efi_enabled(EFI_OLD_MEMMAP))
|
|
return;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
|
|
(md->type == EFI_BOOT_SERVICES_CODE) ||
|
|
(md->type == EFI_BOOT_SERVICES_DATA))
|
|
continue;
|
|
tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
|
|
if (!tmp)
|
|
goto out;
|
|
q = tmp;
|
|
|
|
memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
|
|
count++;
|
|
}
|
|
|
|
efi_runtime_map_setup(q, count, memmap.desc_size);
|
|
return;
|
|
|
|
out:
|
|
kfree(q);
|
|
pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
|
|
#endif
|
|
}
|
|
|
|
static void *realloc_pages(void *old_memmap, int old_shift)
|
|
{
|
|
void *ret;
|
|
|
|
ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
|
|
if (!ret)
|
|
goto out;
|
|
|
|
/*
|
|
* A first-time allocation doesn't have anything to copy.
|
|
*/
|
|
if (!old_memmap)
|
|
return ret;
|
|
|
|
memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
|
|
|
|
out:
|
|
free_pages((unsigned long)old_memmap, old_shift);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Iterate the EFI memory map in reverse order because the regions
|
|
* will be mapped top-down. The end result is the same as if we had
|
|
* mapped things forward, but doesn't require us to change the
|
|
* existing implementation of efi_map_region().
|
|
*/
|
|
static inline void *efi_map_next_entry_reverse(void *entry)
|
|
{
|
|
/* Initial call */
|
|
if (!entry)
|
|
return memmap.map_end - memmap.desc_size;
|
|
|
|
entry -= memmap.desc_size;
|
|
if (entry < memmap.map)
|
|
return NULL;
|
|
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* efi_map_next_entry - Return the next EFI memory map descriptor
|
|
* @entry: Previous EFI memory map descriptor
|
|
*
|
|
* This is a helper function to iterate over the EFI memory map, which
|
|
* we do in different orders depending on the current configuration.
|
|
*
|
|
* To begin traversing the memory map @entry must be %NULL.
|
|
*
|
|
* Returns %NULL when we reach the end of the memory map.
|
|
*/
|
|
static void *efi_map_next_entry(void *entry)
|
|
{
|
|
if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
|
|
/*
|
|
* Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
|
|
* config table feature requires us to map all entries
|
|
* in the same order as they appear in the EFI memory
|
|
* map. That is to say, entry N must have a lower
|
|
* virtual address than entry N+1. This is because the
|
|
* firmware toolchain leaves relative references in
|
|
* the code/data sections, which are split and become
|
|
* separate EFI memory regions. Mapping things
|
|
* out-of-order leads to the firmware accessing
|
|
* unmapped addresses.
|
|
*
|
|
* Since we need to map things this way whether or not
|
|
* the kernel actually makes use of
|
|
* EFI_PROPERTIES_TABLE, let's just switch to this
|
|
* scheme by default for 64-bit.
|
|
*/
|
|
return efi_map_next_entry_reverse(entry);
|
|
}
|
|
|
|
/* Initial call */
|
|
if (!entry)
|
|
return memmap.map;
|
|
|
|
entry += memmap.desc_size;
|
|
if (entry >= memmap.map_end)
|
|
return NULL;
|
|
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Map the efi memory ranges of the runtime services and update new_mmap with
|
|
* virtual addresses.
|
|
*/
|
|
static void * __init efi_map_regions(int *count, int *pg_shift)
|
|
{
|
|
void *p, *new_memmap = NULL;
|
|
unsigned long left = 0;
|
|
efi_memory_desc_t *md;
|
|
|
|
p = NULL;
|
|
while ((p = efi_map_next_entry(p))) {
|
|
md = p;
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
|
|
#ifdef CONFIG_X86_64
|
|
if (md->type != EFI_BOOT_SERVICES_CODE &&
|
|
md->type != EFI_BOOT_SERVICES_DATA)
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
efi_map_region(md);
|
|
get_systab_virt_addr(md);
|
|
|
|
if (left < memmap.desc_size) {
|
|
new_memmap = realloc_pages(new_memmap, *pg_shift);
|
|
if (!new_memmap)
|
|
return NULL;
|
|
|
|
left += PAGE_SIZE << *pg_shift;
|
|
(*pg_shift)++;
|
|
}
|
|
|
|
memcpy(new_memmap + (*count * memmap.desc_size), md,
|
|
memmap.desc_size);
|
|
|
|
left -= memmap.desc_size;
|
|
(*count)++;
|
|
}
|
|
|
|
return new_memmap;
|
|
}
|
|
|
|
static void __init kexec_enter_virtual_mode(void)
|
|
{
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
efi_memory_desc_t *md;
|
|
unsigned int num_pages;
|
|
void *p;
|
|
|
|
efi.systab = NULL;
|
|
|
|
/*
|
|
* We don't do virtual mode, since we don't do runtime services, on
|
|
* non-native EFI
|
|
*/
|
|
if (!efi_is_native()) {
|
|
efi_unmap_memmap();
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
if (efi_alloc_page_tables()) {
|
|
pr_err("Failed to allocate EFI page tables\n");
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Map efi regions which were passed via setup_data. The virt_addr is a
|
|
* fixed addr which was used in first kernel of a kexec boot.
|
|
*/
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
efi_map_region_fixed(md); /* FIXME: add error handling */
|
|
get_systab_virt_addr(md);
|
|
}
|
|
|
|
save_runtime_map();
|
|
|
|
BUG_ON(!efi.systab);
|
|
|
|
num_pages = ALIGN(memmap.nr_map * memmap.desc_size, PAGE_SIZE);
|
|
num_pages >>= PAGE_SHIFT;
|
|
|
|
if (efi_setup_page_tables(memmap.phys_map, num_pages)) {
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
efi_sync_low_kernel_mappings();
|
|
|
|
/*
|
|
* Now that EFI is in virtual mode, update the function
|
|
* pointers in the runtime service table to the new virtual addresses.
|
|
*
|
|
* Call EFI services through wrapper functions.
|
|
*/
|
|
efi.runtime_version = efi_systab.hdr.revision;
|
|
|
|
efi_native_runtime_setup();
|
|
|
|
efi.set_virtual_address_map = NULL;
|
|
|
|
if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
|
|
runtime_code_page_mkexec();
|
|
|
|
/* clean DUMMY object */
|
|
efi_delete_dummy_variable();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This function will switch the EFI runtime services to virtual mode.
|
|
* Essentially, we look through the EFI memmap and map every region that
|
|
* has the runtime attribute bit set in its memory descriptor into the
|
|
* efi_pgd page table.
|
|
*
|
|
* The old method which used to update that memory descriptor with the
|
|
* virtual address obtained from ioremap() is still supported when the
|
|
* kernel is booted with efi=old_map on its command line. Same old
|
|
* method enabled the runtime services to be called without having to
|
|
* thunk back into physical mode for every invocation.
|
|
*
|
|
* The new method does a pagetable switch in a preemption-safe manner
|
|
* so that we're in a different address space when calling a runtime
|
|
* function. For function arguments passing we do copy the PUDs of the
|
|
* kernel page table into efi_pgd prior to each call.
|
|
*
|
|
* Specially for kexec boot, efi runtime maps in previous kernel should
|
|
* be passed in via setup_data. In that case runtime ranges will be mapped
|
|
* to the same virtual addresses as the first kernel, see
|
|
* kexec_enter_virtual_mode().
|
|
*/
|
|
static void __init __efi_enter_virtual_mode(void)
|
|
{
|
|
int count = 0, pg_shift = 0;
|
|
void *new_memmap = NULL;
|
|
efi_status_t status;
|
|
|
|
efi.systab = NULL;
|
|
|
|
if (efi_alloc_page_tables()) {
|
|
pr_err("Failed to allocate EFI page tables\n");
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
efi_merge_regions();
|
|
new_memmap = efi_map_regions(&count, &pg_shift);
|
|
if (!new_memmap) {
|
|
pr_err("Error reallocating memory, EFI runtime non-functional!\n");
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
save_runtime_map();
|
|
|
|
BUG_ON(!efi.systab);
|
|
|
|
if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) {
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
efi_sync_low_kernel_mappings();
|
|
|
|
if (efi_is_native()) {
|
|
status = phys_efi_set_virtual_address_map(
|
|
memmap.desc_size * count,
|
|
memmap.desc_size,
|
|
memmap.desc_version,
|
|
(efi_memory_desc_t *)__pa(new_memmap));
|
|
} else {
|
|
status = efi_thunk_set_virtual_address_map(
|
|
efi_phys.set_virtual_address_map,
|
|
memmap.desc_size * count,
|
|
memmap.desc_size,
|
|
memmap.desc_version,
|
|
(efi_memory_desc_t *)__pa(new_memmap));
|
|
}
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
|
|
status);
|
|
panic("EFI call to SetVirtualAddressMap() failed!");
|
|
}
|
|
|
|
/*
|
|
* Now that EFI is in virtual mode, update the function
|
|
* pointers in the runtime service table to the new virtual addresses.
|
|
*
|
|
* Call EFI services through wrapper functions.
|
|
*/
|
|
efi.runtime_version = efi_systab.hdr.revision;
|
|
|
|
if (efi_is_native())
|
|
efi_native_runtime_setup();
|
|
else
|
|
efi_thunk_runtime_setup();
|
|
|
|
efi.set_virtual_address_map = NULL;
|
|
|
|
/*
|
|
* Apply more restrictive page table mapping attributes now that
|
|
* SVAM() has been called and the firmware has performed all
|
|
* necessary relocation fixups for the new virtual addresses.
|
|
*/
|
|
efi_runtime_update_mappings();
|
|
efi_dump_pagetable();
|
|
|
|
/*
|
|
* We mapped the descriptor array into the EFI pagetable above
|
|
* but we're not unmapping it here because if we're running in
|
|
* EFI mixed mode we need all of memory to be accessible when
|
|
* we pass parameters to the EFI runtime services in the
|
|
* thunking code.
|
|
*
|
|
* efi_cleanup_page_tables(__pa(new_memmap), 1 << pg_shift);
|
|
*/
|
|
free_pages((unsigned long)new_memmap, pg_shift);
|
|
|
|
/* clean DUMMY object */
|
|
efi_delete_dummy_variable();
|
|
}
|
|
|
|
void __init efi_enter_virtual_mode(void)
|
|
{
|
|
if (efi_enabled(EFI_PARAVIRT))
|
|
return;
|
|
|
|
if (efi_setup)
|
|
kexec_enter_virtual_mode();
|
|
else
|
|
__efi_enter_virtual_mode();
|
|
}
|
|
|
|
/*
|
|
* Convenience functions to obtain memory types and attributes
|
|
*/
|
|
u32 efi_mem_type(unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return 0;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
if ((md->phys_addr <= phys_addr) &&
|
|
(phys_addr < (md->phys_addr +
|
|
(md->num_pages << EFI_PAGE_SHIFT))))
|
|
return md->type;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init arch_parse_efi_cmdline(char *str)
|
|
{
|
|
if (!str) {
|
|
pr_warn("need at least one option\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (parse_option_str(str, "old_map"))
|
|
set_bit(EFI_OLD_MEMMAP, &efi.flags);
|
|
|
|
return 0;
|
|
}
|
|
early_param("efi", arch_parse_efi_cmdline);
|