mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 02:36:42 +07:00
9f97da78bf
Disintegrate asm/system.h for ARM. Signed-off-by: David Howells <dhowells@redhat.com> cc: Russell King <linux@arm.linux.org.uk> cc: linux-arm-kernel@lists.infradead.org
579 lines
14 KiB
C
579 lines
14 KiB
C
/*
|
|
* arch/arm/kernel/kprobes-common.c
|
|
*
|
|
* Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
|
|
*
|
|
* Some contents moved here from arch/arm/include/asm/kprobes-arm.c which is
|
|
* Copyright (C) 2006, 2007 Motorola Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/kprobes.h>
|
|
#include <asm/system_info.h>
|
|
|
|
#include "kprobes.h"
|
|
|
|
|
|
#ifndef find_str_pc_offset
|
|
|
|
/*
|
|
* For STR and STM instructions, an ARM core may choose to use either
|
|
* a +8 or a +12 displacement from the current instruction's address.
|
|
* Whichever value is chosen for a given core, it must be the same for
|
|
* both instructions and may not change. This function measures it.
|
|
*/
|
|
|
|
int str_pc_offset;
|
|
|
|
void __init find_str_pc_offset(void)
|
|
{
|
|
int addr, scratch, ret;
|
|
|
|
__asm__ (
|
|
"sub %[ret], pc, #4 \n\t"
|
|
"str pc, %[addr] \n\t"
|
|
"ldr %[scr], %[addr] \n\t"
|
|
"sub %[ret], %[scr], %[ret] \n\t"
|
|
: [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
|
|
|
|
str_pc_offset = ret;
|
|
}
|
|
|
|
#endif /* !find_str_pc_offset */
|
|
|
|
|
|
#ifndef test_load_write_pc_interworking
|
|
|
|
bool load_write_pc_interworks;
|
|
|
|
void __init test_load_write_pc_interworking(void)
|
|
{
|
|
int arch = cpu_architecture();
|
|
BUG_ON(arch == CPU_ARCH_UNKNOWN);
|
|
load_write_pc_interworks = arch >= CPU_ARCH_ARMv5T;
|
|
}
|
|
|
|
#endif /* !test_load_write_pc_interworking */
|
|
|
|
|
|
#ifndef test_alu_write_pc_interworking
|
|
|
|
bool alu_write_pc_interworks;
|
|
|
|
void __init test_alu_write_pc_interworking(void)
|
|
{
|
|
int arch = cpu_architecture();
|
|
BUG_ON(arch == CPU_ARCH_UNKNOWN);
|
|
alu_write_pc_interworks = arch >= CPU_ARCH_ARMv7;
|
|
}
|
|
|
|
#endif /* !test_alu_write_pc_interworking */
|
|
|
|
|
|
void __init arm_kprobe_decode_init(void)
|
|
{
|
|
find_str_pc_offset();
|
|
test_load_write_pc_interworking();
|
|
test_alu_write_pc_interworking();
|
|
}
|
|
|
|
|
|
static unsigned long __kprobes __check_eq(unsigned long cpsr)
|
|
{
|
|
return cpsr & PSR_Z_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_ne(unsigned long cpsr)
|
|
{
|
|
return (~cpsr) & PSR_Z_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_cs(unsigned long cpsr)
|
|
{
|
|
return cpsr & PSR_C_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_cc(unsigned long cpsr)
|
|
{
|
|
return (~cpsr) & PSR_C_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_mi(unsigned long cpsr)
|
|
{
|
|
return cpsr & PSR_N_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_pl(unsigned long cpsr)
|
|
{
|
|
return (~cpsr) & PSR_N_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_vs(unsigned long cpsr)
|
|
{
|
|
return cpsr & PSR_V_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_vc(unsigned long cpsr)
|
|
{
|
|
return (~cpsr) & PSR_V_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_hi(unsigned long cpsr)
|
|
{
|
|
cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
|
|
return cpsr & PSR_C_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_ls(unsigned long cpsr)
|
|
{
|
|
cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
|
|
return (~cpsr) & PSR_C_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_ge(unsigned long cpsr)
|
|
{
|
|
cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
|
|
return (~cpsr) & PSR_N_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_lt(unsigned long cpsr)
|
|
{
|
|
cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
|
|
return cpsr & PSR_N_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_gt(unsigned long cpsr)
|
|
{
|
|
unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
|
|
temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
|
|
return (~temp) & PSR_N_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_le(unsigned long cpsr)
|
|
{
|
|
unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
|
|
temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
|
|
return temp & PSR_N_BIT;
|
|
}
|
|
|
|
static unsigned long __kprobes __check_al(unsigned long cpsr)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
kprobe_check_cc * const kprobe_condition_checks[16] = {
|
|
&__check_eq, &__check_ne, &__check_cs, &__check_cc,
|
|
&__check_mi, &__check_pl, &__check_vs, &__check_vc,
|
|
&__check_hi, &__check_ls, &__check_ge, &__check_lt,
|
|
&__check_gt, &__check_le, &__check_al, &__check_al
|
|
};
|
|
|
|
|
|
void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
}
|
|
|
|
void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
p->ainsn.insn_fn();
|
|
}
|
|
|
|
static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
kprobe_opcode_t insn = p->opcode;
|
|
int rn = (insn >> 16) & 0xf;
|
|
int lbit = insn & (1 << 20);
|
|
int wbit = insn & (1 << 21);
|
|
int ubit = insn & (1 << 23);
|
|
int pbit = insn & (1 << 24);
|
|
long *addr = (long *)regs->uregs[rn];
|
|
int reg_bit_vector;
|
|
int reg_count;
|
|
|
|
reg_count = 0;
|
|
reg_bit_vector = insn & 0xffff;
|
|
while (reg_bit_vector) {
|
|
reg_bit_vector &= (reg_bit_vector - 1);
|
|
++reg_count;
|
|
}
|
|
|
|
if (!ubit)
|
|
addr -= reg_count;
|
|
addr += (!pbit == !ubit);
|
|
|
|
reg_bit_vector = insn & 0xffff;
|
|
while (reg_bit_vector) {
|
|
int reg = __ffs(reg_bit_vector);
|
|
reg_bit_vector &= (reg_bit_vector - 1);
|
|
if (lbit)
|
|
regs->uregs[reg] = *addr++;
|
|
else
|
|
*addr++ = regs->uregs[reg];
|
|
}
|
|
|
|
if (wbit) {
|
|
if (!ubit)
|
|
addr -= reg_count;
|
|
addr -= (!pbit == !ubit);
|
|
regs->uregs[rn] = (long)addr;
|
|
}
|
|
}
|
|
|
|
static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
regs->ARM_pc = (long)p->addr + str_pc_offset;
|
|
simulate_ldm1stm1(p, regs);
|
|
regs->ARM_pc = (long)p->addr + 4;
|
|
}
|
|
|
|
static void __kprobes simulate_ldm1_pc(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
simulate_ldm1stm1(p, regs);
|
|
load_write_pc(regs->ARM_pc, regs);
|
|
}
|
|
|
|
static void __kprobes
|
|
emulate_generic_r0_12_noflags(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
register void *rregs asm("r1") = regs;
|
|
register void *rfn asm("lr") = p->ainsn.insn_fn;
|
|
|
|
__asm__ __volatile__ (
|
|
"stmdb sp!, {%[regs], r11} \n\t"
|
|
"ldmia %[regs], {r0-r12} \n\t"
|
|
#if __LINUX_ARM_ARCH__ >= 6
|
|
"blx %[fn] \n\t"
|
|
#else
|
|
"str %[fn], [sp, #-4]! \n\t"
|
|
"adr lr, 1f \n\t"
|
|
"ldr pc, [sp], #4 \n\t"
|
|
"1: \n\t"
|
|
#endif
|
|
"ldr lr, [sp], #4 \n\t" /* lr = regs */
|
|
"stmia lr, {r0-r12} \n\t"
|
|
"ldr r11, [sp], #4 \n\t"
|
|
: [regs] "=r" (rregs), [fn] "=r" (rfn)
|
|
: "0" (rregs), "1" (rfn)
|
|
: "r0", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r12", "memory", "cc"
|
|
);
|
|
}
|
|
|
|
static void __kprobes
|
|
emulate_generic_r2_14_noflags(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+2));
|
|
}
|
|
|
|
static void __kprobes
|
|
emulate_ldm_r3_15(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+3));
|
|
load_write_pc(regs->ARM_pc, regs);
|
|
}
|
|
|
|
enum kprobe_insn __kprobes
|
|
kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi)
|
|
{
|
|
kprobe_insn_handler_t *handler = 0;
|
|
unsigned reglist = insn & 0xffff;
|
|
int is_ldm = insn & 0x100000;
|
|
int rn = (insn >> 16) & 0xf;
|
|
|
|
if (rn <= 12 && (reglist & 0xe000) == 0) {
|
|
/* Instruction only uses registers in the range R0..R12 */
|
|
handler = emulate_generic_r0_12_noflags;
|
|
|
|
} else if (rn >= 2 && (reglist & 0x8003) == 0) {
|
|
/* Instruction only uses registers in the range R2..R14 */
|
|
rn -= 2;
|
|
reglist >>= 2;
|
|
handler = emulate_generic_r2_14_noflags;
|
|
|
|
} else if (rn >= 3 && (reglist & 0x0007) == 0) {
|
|
/* Instruction only uses registers in the range R3..R15 */
|
|
if (is_ldm && (reglist & 0x8000)) {
|
|
rn -= 3;
|
|
reglist >>= 3;
|
|
handler = emulate_ldm_r3_15;
|
|
}
|
|
}
|
|
|
|
if (handler) {
|
|
/* We can emulate the instruction in (possibly) modified form */
|
|
asi->insn[0] = (insn & 0xfff00000) | (rn << 16) | reglist;
|
|
asi->insn_handler = handler;
|
|
return INSN_GOOD;
|
|
}
|
|
|
|
/* Fallback to slower simulation... */
|
|
if (reglist & 0x8000)
|
|
handler = is_ldm ? simulate_ldm1_pc : simulate_stm1_pc;
|
|
else
|
|
handler = simulate_ldm1stm1;
|
|
asi->insn_handler = handler;
|
|
return INSN_GOOD_NO_SLOT;
|
|
}
|
|
|
|
|
|
/*
|
|
* Prepare an instruction slot to receive an instruction for emulating.
|
|
* This is done by placing a subroutine return after the location where the
|
|
* instruction will be placed. We also modify ARM instructions to be
|
|
* unconditional as the condition code will already be checked before any
|
|
* emulation handler is called.
|
|
*/
|
|
static kprobe_opcode_t __kprobes
|
|
prepare_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
|
|
bool thumb)
|
|
{
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
if (thumb) {
|
|
u16 *thumb_insn = (u16 *)asi->insn;
|
|
thumb_insn[1] = 0x4770; /* Thumb bx lr */
|
|
thumb_insn[2] = 0x4770; /* Thumb bx lr */
|
|
return insn;
|
|
}
|
|
asi->insn[1] = 0xe12fff1e; /* ARM bx lr */
|
|
#else
|
|
asi->insn[1] = 0xe1a0f00e; /* mov pc, lr */
|
|
#endif
|
|
/* Make an ARM instruction unconditional */
|
|
if (insn < 0xe0000000)
|
|
insn = (insn | 0xe0000000) & ~0x10000000;
|
|
return insn;
|
|
}
|
|
|
|
/*
|
|
* Write a (probably modified) instruction into the slot previously prepared by
|
|
* prepare_emulated_insn
|
|
*/
|
|
static void __kprobes
|
|
set_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
|
|
bool thumb)
|
|
{
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
if (thumb) {
|
|
u16 *ip = (u16 *)asi->insn;
|
|
if (is_wide_instruction(insn))
|
|
*ip++ = insn >> 16;
|
|
*ip++ = insn;
|
|
return;
|
|
}
|
|
#endif
|
|
asi->insn[0] = insn;
|
|
}
|
|
|
|
/*
|
|
* When we modify the register numbers encoded in an instruction to be emulated,
|
|
* the new values come from this define. For ARM and 32-bit Thumb instructions
|
|
* this gives...
|
|
*
|
|
* bit position 16 12 8 4 0
|
|
* ---------------+---+---+---+---+---+
|
|
* register r2 r0 r1 -- r3
|
|
*/
|
|
#define INSN_NEW_BITS 0x00020103
|
|
|
|
/* Each nibble has same value as that at INSN_NEW_BITS bit 16 */
|
|
#define INSN_SAMEAS16_BITS 0x22222222
|
|
|
|
/*
|
|
* Validate and modify each of the registers encoded in an instruction.
|
|
*
|
|
* Each nibble in regs contains a value from enum decode_reg_type. For each
|
|
* non-zero value, the corresponding nibble in pinsn is validated and modified
|
|
* according to the type.
|
|
*/
|
|
static bool __kprobes decode_regs(kprobe_opcode_t* pinsn, u32 regs)
|
|
{
|
|
kprobe_opcode_t insn = *pinsn;
|
|
kprobe_opcode_t mask = 0xf; /* Start at least significant nibble */
|
|
|
|
for (; regs != 0; regs >>= 4, mask <<= 4) {
|
|
|
|
kprobe_opcode_t new_bits = INSN_NEW_BITS;
|
|
|
|
switch (regs & 0xf) {
|
|
|
|
case REG_TYPE_NONE:
|
|
/* Nibble not a register, skip to next */
|
|
continue;
|
|
|
|
case REG_TYPE_ANY:
|
|
/* Any register is allowed */
|
|
break;
|
|
|
|
case REG_TYPE_SAMEAS16:
|
|
/* Replace register with same as at bit position 16 */
|
|
new_bits = INSN_SAMEAS16_BITS;
|
|
break;
|
|
|
|
case REG_TYPE_SP:
|
|
/* Only allow SP (R13) */
|
|
if ((insn ^ 0xdddddddd) & mask)
|
|
goto reject;
|
|
break;
|
|
|
|
case REG_TYPE_PC:
|
|
/* Only allow PC (R15) */
|
|
if ((insn ^ 0xffffffff) & mask)
|
|
goto reject;
|
|
break;
|
|
|
|
case REG_TYPE_NOSP:
|
|
/* Reject SP (R13) */
|
|
if (((insn ^ 0xdddddddd) & mask) == 0)
|
|
goto reject;
|
|
break;
|
|
|
|
case REG_TYPE_NOSPPC:
|
|
case REG_TYPE_NOSPPCX:
|
|
/* Reject SP and PC (R13 and R15) */
|
|
if (((insn ^ 0xdddddddd) & 0xdddddddd & mask) == 0)
|
|
goto reject;
|
|
break;
|
|
|
|
case REG_TYPE_NOPCWB:
|
|
if (!is_writeback(insn))
|
|
break; /* No writeback, so any register is OK */
|
|
/* fall through... */
|
|
case REG_TYPE_NOPC:
|
|
case REG_TYPE_NOPCX:
|
|
/* Reject PC (R15) */
|
|
if (((insn ^ 0xffffffff) & mask) == 0)
|
|
goto reject;
|
|
break;
|
|
}
|
|
|
|
/* Replace value of nibble with new register number... */
|
|
insn &= ~mask;
|
|
insn |= new_bits & mask;
|
|
}
|
|
|
|
*pinsn = insn;
|
|
return true;
|
|
|
|
reject:
|
|
return false;
|
|
}
|
|
|
|
static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
|
|
[DECODE_TYPE_TABLE] = sizeof(struct decode_table),
|
|
[DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
|
|
[DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
|
|
[DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
|
|
[DECODE_TYPE_OR] = sizeof(struct decode_or),
|
|
[DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
|
|
};
|
|
|
|
/*
|
|
* kprobe_decode_insn operates on data tables in order to decode an ARM
|
|
* architecture instruction onto which a kprobe has been placed.
|
|
*
|
|
* These instruction decoding tables are a concatenation of entries each
|
|
* of which consist of one of the following structs:
|
|
*
|
|
* decode_table
|
|
* decode_custom
|
|
* decode_simulate
|
|
* decode_emulate
|
|
* decode_or
|
|
* decode_reject
|
|
*
|
|
* Each of these starts with a struct decode_header which has the following
|
|
* fields:
|
|
*
|
|
* type_regs
|
|
* mask
|
|
* value
|
|
*
|
|
* The least significant DECODE_TYPE_BITS of type_regs contains a value
|
|
* from enum decode_type, this indicates which of the decode_* structs
|
|
* the entry contains. The value DECODE_TYPE_END indicates the end of the
|
|
* table.
|
|
*
|
|
* When the table is parsed, each entry is checked in turn to see if it
|
|
* matches the instruction to be decoded using the test:
|
|
*
|
|
* (insn & mask) == value
|
|
*
|
|
* If no match is found before the end of the table is reached then decoding
|
|
* fails with INSN_REJECTED.
|
|
*
|
|
* When a match is found, decode_regs() is called to validate and modify each
|
|
* of the registers encoded in the instruction; the data it uses to do this
|
|
* is (type_regs >> DECODE_TYPE_BITS). A validation failure will cause decoding
|
|
* to fail with INSN_REJECTED.
|
|
*
|
|
* Once the instruction has passed the above tests, further processing
|
|
* depends on the type of the table entry's decode struct.
|
|
*
|
|
*/
|
|
int __kprobes
|
|
kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
|
|
const union decode_item *table, bool thumb)
|
|
{
|
|
const struct decode_header *h = (struct decode_header *)table;
|
|
const struct decode_header *next;
|
|
bool matched = false;
|
|
|
|
insn = prepare_emulated_insn(insn, asi, thumb);
|
|
|
|
for (;; h = next) {
|
|
enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
|
|
u32 regs = h->type_regs.bits >> DECODE_TYPE_BITS;
|
|
|
|
if (type == DECODE_TYPE_END)
|
|
return INSN_REJECTED;
|
|
|
|
next = (struct decode_header *)
|
|
((uintptr_t)h + decode_struct_sizes[type]);
|
|
|
|
if (!matched && (insn & h->mask.bits) != h->value.bits)
|
|
continue;
|
|
|
|
if (!decode_regs(&insn, regs))
|
|
return INSN_REJECTED;
|
|
|
|
switch (type) {
|
|
|
|
case DECODE_TYPE_TABLE: {
|
|
struct decode_table *d = (struct decode_table *)h;
|
|
next = (struct decode_header *)d->table.table;
|
|
break;
|
|
}
|
|
|
|
case DECODE_TYPE_CUSTOM: {
|
|
struct decode_custom *d = (struct decode_custom *)h;
|
|
return (*d->decoder.decoder)(insn, asi);
|
|
}
|
|
|
|
case DECODE_TYPE_SIMULATE: {
|
|
struct decode_simulate *d = (struct decode_simulate *)h;
|
|
asi->insn_handler = d->handler.handler;
|
|
return INSN_GOOD_NO_SLOT;
|
|
}
|
|
|
|
case DECODE_TYPE_EMULATE: {
|
|
struct decode_emulate *d = (struct decode_emulate *)h;
|
|
asi->insn_handler = d->handler.handler;
|
|
set_emulated_insn(insn, asi, thumb);
|
|
return INSN_GOOD;
|
|
}
|
|
|
|
case DECODE_TYPE_OR:
|
|
matched = true;
|
|
break;
|
|
|
|
case DECODE_TYPE_REJECT:
|
|
default:
|
|
return INSN_REJECTED;
|
|
}
|
|
}
|
|
}
|