mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 18:07:02 +07:00
b764f2f66e
The rcar_du_crtc functions have a heavy reliance on the rcar_du_group structure, in many cases just to access the DU device context. To better separate the groups out of the CRTC handling code, give the rcar_du_crtc its own pointer to the device and remove the indirection through the group pointers. Signed-off-by: Kieran Bingham <kieran.bingham+renesas@ideasonboard.com> Reviewed-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
1229 lines
32 KiB
C
1229 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* rcar_du_crtc.c -- R-Car Display Unit CRTCs
|
|
*
|
|
* Copyright (C) 2013-2015 Renesas Electronics Corporation
|
|
*
|
|
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/sys_soc.h>
|
|
|
|
#include <drm/drm_atomic.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_crtc.h>
|
|
#include <drm/drm_device.h>
|
|
#include <drm/drm_fb_cma_helper.h>
|
|
#include <drm/drm_gem_cma_helper.h>
|
|
#include <drm/drm_plane_helper.h>
|
|
#include <drm/drm_vblank.h>
|
|
|
|
#include "rcar_du_crtc.h"
|
|
#include "rcar_du_drv.h"
|
|
#include "rcar_du_encoder.h"
|
|
#include "rcar_du_kms.h"
|
|
#include "rcar_du_plane.h"
|
|
#include "rcar_du_regs.h"
|
|
#include "rcar_du_vsp.h"
|
|
#include "rcar_lvds.h"
|
|
|
|
static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
|
|
}
|
|
|
|
static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
|
|
}
|
|
|
|
static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
|
|
rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
|
|
}
|
|
|
|
static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
|
|
rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
|
|
}
|
|
|
|
void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
|
|
rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Hardware Setup
|
|
*/
|
|
|
|
struct dpll_info {
|
|
unsigned int output;
|
|
unsigned int fdpll;
|
|
unsigned int n;
|
|
unsigned int m;
|
|
};
|
|
|
|
static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
|
|
struct dpll_info *dpll,
|
|
unsigned long input,
|
|
unsigned long target)
|
|
{
|
|
unsigned long best_diff = (unsigned long)-1;
|
|
unsigned long diff;
|
|
unsigned int fdpll;
|
|
unsigned int m;
|
|
unsigned int n;
|
|
|
|
/*
|
|
* fin fvco fout fclkout
|
|
* in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
|
|
* +-> | | |
|
|
* | |
|
|
* +---------------- [1/N] <------------+
|
|
*
|
|
* fclkout = fvco / P / FDPLL -- (1)
|
|
*
|
|
* fin/M = fvco/P/N
|
|
*
|
|
* fvco = fin * P * N / M -- (2)
|
|
*
|
|
* (1) + (2) indicates
|
|
*
|
|
* fclkout = fin * N / M / FDPLL
|
|
*
|
|
* NOTES
|
|
* N : (n + 1)
|
|
* M : (m + 1)
|
|
* FDPLL : (fdpll + 1)
|
|
* P : 2
|
|
* 2kHz < fvco < 4096MHz
|
|
*
|
|
* To minimize the jitter,
|
|
* N : as large as possible
|
|
* M : as small as possible
|
|
*/
|
|
for (m = 0; m < 4; m++) {
|
|
for (n = 119; n > 38; n--) {
|
|
/*
|
|
* This code only runs on 64-bit architectures, the
|
|
* unsigned long type can thus be used for 64-bit
|
|
* computation. It will still compile without any
|
|
* warning on 32-bit architectures.
|
|
*
|
|
* To optimize calculations, use fout instead of fvco
|
|
* to verify the VCO frequency constraint.
|
|
*/
|
|
unsigned long fout = input * (n + 1) / (m + 1);
|
|
|
|
if (fout < 1000 || fout > 2048 * 1000 * 1000U)
|
|
continue;
|
|
|
|
for (fdpll = 1; fdpll < 32; fdpll++) {
|
|
unsigned long output;
|
|
|
|
output = fout / (fdpll + 1);
|
|
if (output >= 400 * 1000 * 1000)
|
|
continue;
|
|
|
|
diff = abs((long)output - (long)target);
|
|
if (best_diff > diff) {
|
|
best_diff = diff;
|
|
dpll->n = n;
|
|
dpll->m = m;
|
|
dpll->fdpll = fdpll;
|
|
dpll->output = output;
|
|
}
|
|
|
|
if (diff == 0)
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
dev_dbg(rcrtc->dev->dev,
|
|
"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
|
|
dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
|
|
}
|
|
|
|
struct du_clk_params {
|
|
struct clk *clk;
|
|
unsigned long rate;
|
|
unsigned long diff;
|
|
u32 escr;
|
|
};
|
|
|
|
static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
|
|
u32 escr, struct du_clk_params *params)
|
|
{
|
|
unsigned long rate;
|
|
unsigned long diff;
|
|
u32 div;
|
|
|
|
/*
|
|
* If the target rate has already been achieved perfectly we can't do
|
|
* better.
|
|
*/
|
|
if (params->diff == 0)
|
|
return;
|
|
|
|
/*
|
|
* Compute the input clock rate and internal divisor values to obtain
|
|
* the clock rate closest to the target frequency.
|
|
*/
|
|
rate = clk_round_rate(clk, target);
|
|
div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
|
|
diff = abs(rate / (div + 1) - target);
|
|
|
|
/*
|
|
* Store the parameters if the resulting frequency is better than any
|
|
* previously calculated value.
|
|
*/
|
|
if (diff < params->diff) {
|
|
params->clk = clk;
|
|
params->rate = rate;
|
|
params->diff = diff;
|
|
params->escr = escr | div;
|
|
}
|
|
}
|
|
|
|
static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
|
|
{ .soc_id = "r8a7795", .revision = "ES1.*" },
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
unsigned long mode_clock = mode->clock * 1000;
|
|
u32 dsmr;
|
|
u32 escr;
|
|
|
|
if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
|
|
unsigned long target = mode_clock;
|
|
struct dpll_info dpll = { 0 };
|
|
unsigned long extclk;
|
|
u32 dpllcr;
|
|
u32 div = 0;
|
|
|
|
/*
|
|
* DU channels that have a display PLL can't use the internal
|
|
* system clock, and have no internal clock divider.
|
|
*/
|
|
|
|
/*
|
|
* The H3 ES1.x exhibits dot clock duty cycle stability issues.
|
|
* We can work around them by configuring the DPLL to twice the
|
|
* desired frequency, coupled with a /2 post-divider. Restrict
|
|
* the workaround to H3 ES1.x as ES2.0 and all other SoCs have
|
|
* no post-divider when a display PLL is present (as shown by
|
|
* the workaround breaking HDMI output on M3-W during testing).
|
|
*/
|
|
if (soc_device_match(rcar_du_r8a7795_es1)) {
|
|
target *= 2;
|
|
div = 1;
|
|
}
|
|
|
|
extclk = clk_get_rate(rcrtc->extclock);
|
|
rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
|
|
|
|
dpllcr = DPLLCR_CODE | DPLLCR_CLKE
|
|
| DPLLCR_FDPLL(dpll.fdpll)
|
|
| DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
|
|
| DPLLCR_STBY;
|
|
|
|
if (rcrtc->index == 1)
|
|
dpllcr |= DPLLCR_PLCS1
|
|
| DPLLCR_INCS_DOTCLKIN1;
|
|
else
|
|
dpllcr |= DPLLCR_PLCS0
|
|
| DPLLCR_INCS_DOTCLKIN0;
|
|
|
|
rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
|
|
|
|
escr = ESCR_DCLKSEL_DCLKIN | div;
|
|
} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
|
|
/*
|
|
* Use the LVDS PLL output as the dot clock when outputting to
|
|
* the LVDS encoder on an SoC that supports this clock routing
|
|
* option. We use the clock directly in that case, without any
|
|
* additional divider.
|
|
*/
|
|
escr = ESCR_DCLKSEL_DCLKIN;
|
|
} else {
|
|
struct du_clk_params params = { .diff = (unsigned long)-1 };
|
|
|
|
rcar_du_escr_divider(rcrtc->clock, mode_clock,
|
|
ESCR_DCLKSEL_CLKS, ¶ms);
|
|
if (rcrtc->extclock)
|
|
rcar_du_escr_divider(rcrtc->extclock, mode_clock,
|
|
ESCR_DCLKSEL_DCLKIN, ¶ms);
|
|
|
|
dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
|
|
mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
|
|
params.rate);
|
|
|
|
clk_set_rate(params.clk, params.rate);
|
|
escr = params.escr;
|
|
}
|
|
|
|
dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
|
|
|
|
rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
|
|
rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
|
|
|
|
/* Signal polarities */
|
|
dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
|
|
| ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
|
|
| ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
|
|
| DSMR_DIPM_DISP | DSMR_CSPM;
|
|
rcar_du_crtc_write(rcrtc, DSMR, dsmr);
|
|
|
|
/* Display timings */
|
|
rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
|
|
rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
|
|
mode->hdisplay - 19);
|
|
rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
|
|
mode->hsync_start - 1);
|
|
rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1);
|
|
|
|
rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
|
|
mode->crtc_vsync_end - 2);
|
|
rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
|
|
mode->crtc_vsync_end +
|
|
mode->crtc_vdisplay - 2);
|
|
rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
|
|
mode->crtc_vsync_end +
|
|
mode->crtc_vsync_start - 1);
|
|
rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1);
|
|
|
|
rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1);
|
|
rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay);
|
|
}
|
|
|
|
static unsigned int plane_zpos(struct rcar_du_plane *plane)
|
|
{
|
|
return plane->plane.state->normalized_zpos;
|
|
}
|
|
|
|
static const struct rcar_du_format_info *
|
|
plane_format(struct rcar_du_plane *plane)
|
|
{
|
|
return to_rcar_plane_state(plane->plane.state)->format;
|
|
}
|
|
|
|
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
unsigned int num_planes = 0;
|
|
unsigned int dptsr_planes;
|
|
unsigned int hwplanes = 0;
|
|
unsigned int prio = 0;
|
|
unsigned int i;
|
|
u32 dspr = 0;
|
|
|
|
for (i = 0; i < rcrtc->group->num_planes; ++i) {
|
|
struct rcar_du_plane *plane = &rcrtc->group->planes[i];
|
|
unsigned int j;
|
|
|
|
if (plane->plane.state->crtc != &rcrtc->crtc ||
|
|
!plane->plane.state->visible)
|
|
continue;
|
|
|
|
/* Insert the plane in the sorted planes array. */
|
|
for (j = num_planes++; j > 0; --j) {
|
|
if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
|
|
break;
|
|
planes[j] = planes[j-1];
|
|
}
|
|
|
|
planes[j] = plane;
|
|
prio += plane_format(plane)->planes * 4;
|
|
}
|
|
|
|
for (i = 0; i < num_planes; ++i) {
|
|
struct rcar_du_plane *plane = planes[i];
|
|
struct drm_plane_state *state = plane->plane.state;
|
|
unsigned int index = to_rcar_plane_state(state)->hwindex;
|
|
|
|
prio -= 4;
|
|
dspr |= (index + 1) << prio;
|
|
hwplanes |= 1 << index;
|
|
|
|
if (plane_format(plane)->planes == 2) {
|
|
index = (index + 1) % 8;
|
|
|
|
prio -= 4;
|
|
dspr |= (index + 1) << prio;
|
|
hwplanes |= 1 << index;
|
|
}
|
|
}
|
|
|
|
/* If VSP+DU integration is enabled the plane assignment is fixed. */
|
|
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
|
|
if (rcdu->info->gen < 3) {
|
|
dspr = (rcrtc->index % 2) + 1;
|
|
hwplanes = 1 << (rcrtc->index % 2);
|
|
} else {
|
|
dspr = (rcrtc->index % 2) ? 3 : 1;
|
|
hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the planes to display timing and dot clock generator
|
|
* associations.
|
|
*
|
|
* Updating the DPTSR register requires restarting the CRTC group,
|
|
* resulting in visible flicker. To mitigate the issue only update the
|
|
* association if needed by enabled planes. Planes being disabled will
|
|
* keep their current association.
|
|
*/
|
|
mutex_lock(&rcrtc->group->lock);
|
|
|
|
dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
|
|
: rcrtc->group->dptsr_planes & ~hwplanes;
|
|
|
|
if (dptsr_planes != rcrtc->group->dptsr_planes) {
|
|
rcar_du_group_write(rcrtc->group, DPTSR,
|
|
(dptsr_planes << 16) | dptsr_planes);
|
|
rcrtc->group->dptsr_planes = dptsr_planes;
|
|
|
|
if (rcrtc->group->used_crtcs)
|
|
rcar_du_group_restart(rcrtc->group);
|
|
}
|
|
|
|
/* Restart the group if plane sources have changed. */
|
|
if (rcrtc->group->need_restart)
|
|
rcar_du_group_restart(rcrtc->group);
|
|
|
|
mutex_unlock(&rcrtc->group->lock);
|
|
|
|
rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
|
|
dspr);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Page Flip
|
|
*/
|
|
|
|
void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct drm_pending_vblank_event *event;
|
|
struct drm_device *dev = rcrtc->crtc.dev;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
event = rcrtc->event;
|
|
rcrtc->event = NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
if (event == NULL)
|
|
return;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
drm_crtc_send_vblank_event(&rcrtc->crtc, event);
|
|
wake_up(&rcrtc->flip_wait);
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
drm_crtc_vblank_put(&rcrtc->crtc);
|
|
}
|
|
|
|
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct drm_device *dev = rcrtc->crtc.dev;
|
|
unsigned long flags;
|
|
bool pending;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
pending = rcrtc->event != NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
return pending;
|
|
}
|
|
|
|
static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
if (wait_event_timeout(rcrtc->flip_wait,
|
|
!rcar_du_crtc_page_flip_pending(rcrtc),
|
|
msecs_to_jiffies(50)))
|
|
return;
|
|
|
|
dev_warn(rcdu->dev, "page flip timeout\n");
|
|
|
|
rcar_du_crtc_finish_page_flip(rcrtc);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Start/Stop and Suspend/Resume
|
|
*/
|
|
|
|
static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
/* Set display off and background to black */
|
|
rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
|
|
rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
|
|
|
|
/* Configure display timings and output routing */
|
|
rcar_du_crtc_set_display_timing(rcrtc);
|
|
rcar_du_group_set_routing(rcrtc->group);
|
|
|
|
/* Start with all planes disabled. */
|
|
rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
|
|
|
|
/* Enable the VSP compositor. */
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
rcar_du_vsp_enable(rcrtc);
|
|
|
|
/* Turn vertical blanking interrupt reporting on. */
|
|
drm_crtc_vblank_on(&rcrtc->crtc);
|
|
}
|
|
|
|
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Guard against double-get, as the function is called from both the
|
|
* .atomic_enable() and .atomic_begin() handlers.
|
|
*/
|
|
if (rcrtc->initialized)
|
|
return 0;
|
|
|
|
ret = clk_prepare_enable(rcrtc->clock);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = clk_prepare_enable(rcrtc->extclock);
|
|
if (ret < 0)
|
|
goto error_clock;
|
|
|
|
ret = rcar_du_group_get(rcrtc->group);
|
|
if (ret < 0)
|
|
goto error_group;
|
|
|
|
rcar_du_crtc_setup(rcrtc);
|
|
rcrtc->initialized = true;
|
|
|
|
return 0;
|
|
|
|
error_group:
|
|
clk_disable_unprepare(rcrtc->extclock);
|
|
error_clock:
|
|
clk_disable_unprepare(rcrtc->clock);
|
|
return ret;
|
|
}
|
|
|
|
static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
rcar_du_group_put(rcrtc->group);
|
|
|
|
clk_disable_unprepare(rcrtc->extclock);
|
|
clk_disable_unprepare(rcrtc->clock);
|
|
|
|
rcrtc->initialized = false;
|
|
}
|
|
|
|
static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
bool interlaced;
|
|
|
|
/*
|
|
* Select master sync mode. This enables display operation in master
|
|
* sync mode (with the HSYNC and VSYNC signals configured as outputs and
|
|
* actively driven).
|
|
*/
|
|
interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
|
|
rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
|
|
(interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
|
|
DSYSR_TVM_MASTER);
|
|
|
|
rcar_du_group_start_stop(rcrtc->group, true);
|
|
}
|
|
|
|
static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
struct drm_crtc *crtc = &rcrtc->crtc;
|
|
u32 status;
|
|
|
|
/* Make sure vblank interrupts are enabled. */
|
|
drm_crtc_vblank_get(crtc);
|
|
|
|
/*
|
|
* Disable planes and calculate how many vertical blanking interrupts we
|
|
* have to wait for. If a vertical blanking interrupt has been triggered
|
|
* but not processed yet, we don't know whether it occurred before or
|
|
* after the planes got disabled. We thus have to wait for two vblank
|
|
* interrupts in that case.
|
|
*/
|
|
spin_lock_irq(&rcrtc->vblank_lock);
|
|
rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
|
|
status = rcar_du_crtc_read(rcrtc, DSSR);
|
|
rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
|
|
spin_unlock_irq(&rcrtc->vblank_lock);
|
|
|
|
if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
|
|
msecs_to_jiffies(100)))
|
|
dev_warn(rcdu->dev, "vertical blanking timeout\n");
|
|
|
|
drm_crtc_vblank_put(crtc);
|
|
}
|
|
|
|
static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct drm_crtc *crtc = &rcrtc->crtc;
|
|
|
|
/*
|
|
* Disable all planes and wait for the change to take effect. This is
|
|
* required as the plane enable registers are updated on vblank, and no
|
|
* vblank will occur once the CRTC is stopped. Disabling planes when
|
|
* starting the CRTC thus wouldn't be enough as it would start scanning
|
|
* out immediately from old frame buffers until the next vblank.
|
|
*
|
|
* This increases the CRTC stop delay, especially when multiple CRTCs
|
|
* are stopped in one operation as we now wait for one vblank per CRTC.
|
|
* Whether this can be improved needs to be researched.
|
|
*/
|
|
rcar_du_crtc_disable_planes(rcrtc);
|
|
|
|
/*
|
|
* Disable vertical blanking interrupt reporting. We first need to wait
|
|
* for page flip completion before stopping the CRTC as userspace
|
|
* expects page flips to eventually complete.
|
|
*/
|
|
rcar_du_crtc_wait_page_flip(rcrtc);
|
|
drm_crtc_vblank_off(crtc);
|
|
|
|
/* Disable the VSP compositor. */
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
rcar_du_vsp_disable(rcrtc);
|
|
|
|
/*
|
|
* Select switch sync mode. This stops display operation and configures
|
|
* the HSYNC and VSYNC signals as inputs.
|
|
*
|
|
* TODO: Find another way to stop the display for DUs that don't support
|
|
* TVM sync.
|
|
*/
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
|
|
rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
|
|
DSYSR_TVM_SWITCH);
|
|
|
|
rcar_du_group_start_stop(rcrtc->group, false);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CRTC Functions
|
|
*/
|
|
|
|
static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state)
|
|
{
|
|
struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
|
|
struct drm_encoder *encoder;
|
|
|
|
/* Store the routes from the CRTC output to the DU outputs. */
|
|
rstate->outputs = 0;
|
|
|
|
drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
|
|
struct rcar_du_encoder *renc;
|
|
|
|
/* Skip the writeback encoder. */
|
|
if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
|
|
continue;
|
|
|
|
renc = to_rcar_encoder(encoder);
|
|
rstate->outputs |= BIT(renc->output);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_state)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcar_du_crtc_get(rcrtc);
|
|
|
|
/*
|
|
* On D3/E3 the dot clock is provided by the LVDS encoder attached to
|
|
* the DU channel. We need to enable its clock output explicitly if
|
|
* the LVDS output is disabled.
|
|
*/
|
|
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
|
|
rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
|
|
struct rcar_du_encoder *encoder =
|
|
rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
|
|
const struct drm_display_mode *mode =
|
|
&crtc->state->adjusted_mode;
|
|
|
|
rcar_lvds_clk_enable(encoder->base.bridge,
|
|
mode->clock * 1000);
|
|
}
|
|
|
|
rcar_du_crtc_start(rcrtc);
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_state)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcar_du_crtc_stop(rcrtc);
|
|
rcar_du_crtc_put(rcrtc);
|
|
|
|
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
|
|
rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
|
|
struct rcar_du_encoder *encoder =
|
|
rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
|
|
|
|
/*
|
|
* Disable the LVDS clock output, see
|
|
* rcar_du_crtc_atomic_enable().
|
|
*/
|
|
rcar_lvds_clk_disable(encoder->base.bridge);
|
|
}
|
|
|
|
spin_lock_irq(&crtc->dev->event_lock);
|
|
if (crtc->state->event) {
|
|
drm_crtc_send_vblank_event(crtc, crtc->state->event);
|
|
crtc->state->event = NULL;
|
|
}
|
|
spin_unlock_irq(&crtc->dev->event_lock);
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_crtc_state)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
WARN_ON(!crtc->state->enable);
|
|
|
|
/*
|
|
* If a mode set is in progress we can be called with the CRTC disabled.
|
|
* We thus need to first get and setup the CRTC in order to configure
|
|
* planes. We must *not* put the CRTC in .atomic_flush(), as it must be
|
|
* kept awake until the .atomic_enable() call that will follow. The get
|
|
* operation in .atomic_enable() will in that case be a no-op, and the
|
|
* CRTC will be put later in .atomic_disable().
|
|
*
|
|
* If a mode set is not in progress the CRTC is enabled, and the
|
|
* following get call will be a no-op. There is thus no need to balance
|
|
* it in .atomic_flush() either.
|
|
*/
|
|
rcar_du_crtc_get(rcrtc);
|
|
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
rcar_du_vsp_atomic_begin(rcrtc);
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_crtc_state)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct drm_device *dev = rcrtc->crtc.dev;
|
|
unsigned long flags;
|
|
|
|
rcar_du_crtc_update_planes(rcrtc);
|
|
|
|
if (crtc->state->event) {
|
|
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
rcrtc->event = crtc->state->event;
|
|
crtc->state->event = NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
rcar_du_vsp_atomic_flush(rcrtc);
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
|
|
const struct drm_display_mode *mode)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
|
|
unsigned int vbp;
|
|
|
|
if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
|
|
return MODE_NO_INTERLACE;
|
|
|
|
/*
|
|
* The hardware requires a minimum combined horizontal sync and back
|
|
* porch of 20 pixels and a minimum vertical back porch of 3 lines.
|
|
*/
|
|
if (mode->htotal - mode->hsync_start < 20)
|
|
return MODE_HBLANK_NARROW;
|
|
|
|
vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
|
|
if (vbp < 3)
|
|
return MODE_VBLANK_NARROW;
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
|
|
.atomic_check = rcar_du_crtc_atomic_check,
|
|
.atomic_begin = rcar_du_crtc_atomic_begin,
|
|
.atomic_flush = rcar_du_crtc_atomic_flush,
|
|
.atomic_enable = rcar_du_crtc_atomic_enable,
|
|
.atomic_disable = rcar_du_crtc_atomic_disable,
|
|
.mode_valid = rcar_du_crtc_mode_valid,
|
|
};
|
|
|
|
static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
const char **sources;
|
|
unsigned int count;
|
|
int i = -1;
|
|
|
|
/* CRC available only on Gen3 HW. */
|
|
if (rcdu->info->gen < 3)
|
|
return;
|
|
|
|
/* Reserve 1 for "auto" source. */
|
|
count = rcrtc->vsp->num_planes + 1;
|
|
|
|
sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
|
|
if (!sources)
|
|
return;
|
|
|
|
sources[0] = kstrdup("auto", GFP_KERNEL);
|
|
if (!sources[0])
|
|
goto error;
|
|
|
|
for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
|
|
struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
|
|
char name[16];
|
|
|
|
sprintf(name, "plane%u", plane->base.id);
|
|
sources[i + 1] = kstrdup(name, GFP_KERNEL);
|
|
if (!sources[i + 1])
|
|
goto error;
|
|
}
|
|
|
|
rcrtc->sources = sources;
|
|
rcrtc->sources_count = count;
|
|
return;
|
|
|
|
error:
|
|
while (i >= 0) {
|
|
kfree(sources[i]);
|
|
i--;
|
|
}
|
|
kfree(sources);
|
|
}
|
|
|
|
static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!rcrtc->sources)
|
|
return;
|
|
|
|
for (i = 0; i < rcrtc->sources_count; i++)
|
|
kfree(rcrtc->sources[i]);
|
|
kfree(rcrtc->sources);
|
|
|
|
rcrtc->sources = NULL;
|
|
rcrtc->sources_count = 0;
|
|
}
|
|
|
|
static struct drm_crtc_state *
|
|
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc_state *state;
|
|
struct rcar_du_crtc_state *copy;
|
|
|
|
if (WARN_ON(!crtc->state))
|
|
return NULL;
|
|
|
|
state = to_rcar_crtc_state(crtc->state);
|
|
copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
|
|
if (copy == NULL)
|
|
return NULL;
|
|
|
|
__drm_atomic_helper_crtc_duplicate_state(crtc, ©->state);
|
|
|
|
return ©->state;
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state)
|
|
{
|
|
__drm_atomic_helper_crtc_destroy_state(state);
|
|
kfree(to_rcar_crtc_state(state));
|
|
}
|
|
|
|
static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
rcar_du_crtc_crc_cleanup(rcrtc);
|
|
|
|
return drm_crtc_cleanup(crtc);
|
|
}
|
|
|
|
static void rcar_du_crtc_reset(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc_state *state;
|
|
|
|
if (crtc->state) {
|
|
rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
|
|
crtc->state = NULL;
|
|
}
|
|
|
|
state = kzalloc(sizeof(*state), GFP_KERNEL);
|
|
if (state == NULL)
|
|
return;
|
|
|
|
state->crc.source = VSP1_DU_CRC_NONE;
|
|
state->crc.index = 0;
|
|
|
|
crtc->state = &state->state;
|
|
crtc->state->crtc = crtc;
|
|
}
|
|
|
|
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
|
|
rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
|
|
rcrtc->vblank_enable = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
|
|
rcrtc->vblank_enable = false;
|
|
}
|
|
|
|
static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
|
|
const char *source_name,
|
|
enum vsp1_du_crc_source *source)
|
|
{
|
|
unsigned int index;
|
|
int ret;
|
|
|
|
/*
|
|
* Parse the source name. Supported values are "plane%u" to compute the
|
|
* CRC on an input plane (%u is the plane ID), and "auto" to compute the
|
|
* CRC on the composer (VSP) output.
|
|
*/
|
|
|
|
if (!source_name) {
|
|
*source = VSP1_DU_CRC_NONE;
|
|
return 0;
|
|
} else if (!strcmp(source_name, "auto")) {
|
|
*source = VSP1_DU_CRC_OUTPUT;
|
|
return 0;
|
|
} else if (strstarts(source_name, "plane")) {
|
|
unsigned int i;
|
|
|
|
*source = VSP1_DU_CRC_PLANE;
|
|
|
|
ret = kstrtouint(source_name + strlen("plane"), 10, &index);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
|
|
if (index == rcrtc->vsp->planes[i].plane.base.id)
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
|
|
const char *source_name,
|
|
size_t *values_cnt)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
enum vsp1_du_crc_source source;
|
|
|
|
if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
|
|
DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*values_cnt = 1;
|
|
return 0;
|
|
}
|
|
|
|
static const char *const *
|
|
rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
*count = rcrtc->sources_count;
|
|
return rcrtc->sources;
|
|
}
|
|
|
|
static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
|
|
const char *source_name)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct drm_modeset_acquire_ctx ctx;
|
|
struct drm_crtc_state *crtc_state;
|
|
struct drm_atomic_state *state;
|
|
enum vsp1_du_crc_source source;
|
|
unsigned int index;
|
|
int ret;
|
|
|
|
ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
index = ret;
|
|
|
|
/* Perform an atomic commit to set the CRC source. */
|
|
drm_modeset_acquire_init(&ctx, 0);
|
|
|
|
state = drm_atomic_state_alloc(crtc->dev);
|
|
if (!state) {
|
|
ret = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
|
|
state->acquire_ctx = &ctx;
|
|
|
|
retry:
|
|
crtc_state = drm_atomic_get_crtc_state(state, crtc);
|
|
if (!IS_ERR(crtc_state)) {
|
|
struct rcar_du_crtc_state *rcrtc_state;
|
|
|
|
rcrtc_state = to_rcar_crtc_state(crtc_state);
|
|
rcrtc_state->crc.source = source;
|
|
rcrtc_state->crc.index = index;
|
|
|
|
ret = drm_atomic_commit(state);
|
|
} else {
|
|
ret = PTR_ERR(crtc_state);
|
|
}
|
|
|
|
if (ret == -EDEADLK) {
|
|
drm_atomic_state_clear(state);
|
|
drm_modeset_backoff(&ctx);
|
|
goto retry;
|
|
}
|
|
|
|
drm_atomic_state_put(state);
|
|
|
|
unlock:
|
|
drm_modeset_drop_locks(&ctx);
|
|
drm_modeset_acquire_fini(&ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct drm_crtc_funcs crtc_funcs_gen2 = {
|
|
.reset = rcar_du_crtc_reset,
|
|
.destroy = drm_crtc_cleanup,
|
|
.set_config = drm_atomic_helper_set_config,
|
|
.page_flip = drm_atomic_helper_page_flip,
|
|
.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
|
|
.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
|
|
.enable_vblank = rcar_du_crtc_enable_vblank,
|
|
.disable_vblank = rcar_du_crtc_disable_vblank,
|
|
};
|
|
|
|
static const struct drm_crtc_funcs crtc_funcs_gen3 = {
|
|
.reset = rcar_du_crtc_reset,
|
|
.destroy = rcar_du_crtc_cleanup,
|
|
.set_config = drm_atomic_helper_set_config,
|
|
.page_flip = drm_atomic_helper_page_flip,
|
|
.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
|
|
.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
|
|
.enable_vblank = rcar_du_crtc_enable_vblank,
|
|
.disable_vblank = rcar_du_crtc_disable_vblank,
|
|
.set_crc_source = rcar_du_crtc_set_crc_source,
|
|
.verify_crc_source = rcar_du_crtc_verify_crc_source,
|
|
.get_crc_sources = rcar_du_crtc_get_crc_sources,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Interrupt Handling
|
|
*/
|
|
|
|
static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = arg;
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
u32 status;
|
|
|
|
spin_lock(&rcrtc->vblank_lock);
|
|
|
|
status = rcar_du_crtc_read(rcrtc, DSSR);
|
|
rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
|
|
|
|
if (status & DSSR_VBK) {
|
|
/*
|
|
* Wake up the vblank wait if the counter reaches 0. This must
|
|
* be protected by the vblank_lock to avoid races in
|
|
* rcar_du_crtc_disable_planes().
|
|
*/
|
|
if (rcrtc->vblank_count) {
|
|
if (--rcrtc->vblank_count == 0)
|
|
wake_up(&rcrtc->vblank_wait);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&rcrtc->vblank_lock);
|
|
|
|
if (status & DSSR_VBK) {
|
|
if (rcdu->info->gen < 3) {
|
|
drm_crtc_handle_vblank(&rcrtc->crtc);
|
|
rcar_du_crtc_finish_page_flip(rcrtc);
|
|
}
|
|
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Initialization
|
|
*/
|
|
|
|
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
|
|
unsigned int hwindex)
|
|
{
|
|
static const unsigned int mmio_offsets[] = {
|
|
DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
|
|
};
|
|
|
|
struct rcar_du_device *rcdu = rgrp->dev;
|
|
struct platform_device *pdev = to_platform_device(rcdu->dev);
|
|
struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
|
|
struct drm_crtc *crtc = &rcrtc->crtc;
|
|
struct drm_plane *primary;
|
|
unsigned int irqflags;
|
|
struct clk *clk;
|
|
char clk_name[9];
|
|
char *name;
|
|
int irq;
|
|
int ret;
|
|
|
|
/* Get the CRTC clock and the optional external clock. */
|
|
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
|
|
sprintf(clk_name, "du.%u", hwindex);
|
|
name = clk_name;
|
|
} else {
|
|
name = NULL;
|
|
}
|
|
|
|
rcrtc->clock = devm_clk_get(rcdu->dev, name);
|
|
if (IS_ERR(rcrtc->clock)) {
|
|
dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
|
|
return PTR_ERR(rcrtc->clock);
|
|
}
|
|
|
|
sprintf(clk_name, "dclkin.%u", hwindex);
|
|
clk = devm_clk_get(rcdu->dev, clk_name);
|
|
if (!IS_ERR(clk)) {
|
|
rcrtc->extclock = clk;
|
|
} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
|
|
return -EPROBE_DEFER;
|
|
} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
|
|
/*
|
|
* DU channels that have a display PLL can't use the internal
|
|
* system clock and thus require an external clock.
|
|
*/
|
|
ret = PTR_ERR(clk);
|
|
dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
|
|
return ret;
|
|
}
|
|
|
|
init_waitqueue_head(&rcrtc->flip_wait);
|
|
init_waitqueue_head(&rcrtc->vblank_wait);
|
|
spin_lock_init(&rcrtc->vblank_lock);
|
|
|
|
rcrtc->dev = rcdu;
|
|
rcrtc->group = rgrp;
|
|
rcrtc->mmio_offset = mmio_offsets[hwindex];
|
|
rcrtc->index = hwindex;
|
|
rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
|
|
|
|
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
|
|
else
|
|
primary = &rgrp->planes[swindex % 2].plane;
|
|
|
|
ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
|
|
rcdu->info->gen <= 2 ?
|
|
&crtc_funcs_gen2 : &crtc_funcs_gen3,
|
|
NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
drm_crtc_helper_add(crtc, &crtc_helper_funcs);
|
|
|
|
/* Start with vertical blanking interrupt reporting disabled. */
|
|
drm_crtc_vblank_off(crtc);
|
|
|
|
/* Register the interrupt handler. */
|
|
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
|
|
/* The IRQ's are associated with the CRTC (sw)index. */
|
|
irq = platform_get_irq(pdev, swindex);
|
|
irqflags = 0;
|
|
} else {
|
|
irq = platform_get_irq(pdev, 0);
|
|
irqflags = IRQF_SHARED;
|
|
}
|
|
|
|
if (irq < 0) {
|
|
dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
|
|
return irq;
|
|
}
|
|
|
|
ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
|
|
dev_name(rcdu->dev), rcrtc);
|
|
if (ret < 0) {
|
|
dev_err(rcdu->dev,
|
|
"failed to register IRQ for CRTC %u\n", swindex);
|
|
return ret;
|
|
}
|
|
|
|
rcar_du_crtc_crc_init(rcrtc);
|
|
|
|
return 0;
|
|
}
|