mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 11:09:29 +07:00
9d1b404cbc
For smq the 32 bit 'hint' stores the multiqueue level that the entry should be stored in. If a different policy has been used previously, and then switched to smq, the hints will be invalid. In which case we used to put all entries in the bottom level of the multiqueue, and then redistribute. Redistribution is faster if we put entries with invalid hints in random levels initially. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
1819 lines
41 KiB
C
1819 lines
41 KiB
C
/*
|
|
* Copyright (C) 2015 Red Hat. All rights reserved.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm-cache-policy.h"
|
|
#include "dm-cache-policy-internal.h"
|
|
#include "dm.h"
|
|
|
|
#include <linux/hash.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/math64.h>
|
|
|
|
#define DM_MSG_PREFIX "cache-policy-smq"
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Safe division functions that return zero on divide by zero.
|
|
*/
|
|
static unsigned safe_div(unsigned n, unsigned d)
|
|
{
|
|
return d ? n / d : 0u;
|
|
}
|
|
|
|
static unsigned safe_mod(unsigned n, unsigned d)
|
|
{
|
|
return d ? n % d : 0u;
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
struct entry {
|
|
unsigned hash_next:28;
|
|
unsigned prev:28;
|
|
unsigned next:28;
|
|
unsigned level:7;
|
|
bool dirty:1;
|
|
bool allocated:1;
|
|
bool sentinel:1;
|
|
|
|
dm_oblock_t oblock;
|
|
};
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
#define INDEXER_NULL ((1u << 28u) - 1u)
|
|
|
|
/*
|
|
* An entry_space manages a set of entries that we use for the queues.
|
|
* The clean and dirty queues share entries, so this object is separate
|
|
* from the queue itself.
|
|
*/
|
|
struct entry_space {
|
|
struct entry *begin;
|
|
struct entry *end;
|
|
};
|
|
|
|
static int space_init(struct entry_space *es, unsigned nr_entries)
|
|
{
|
|
if (!nr_entries) {
|
|
es->begin = es->end = NULL;
|
|
return 0;
|
|
}
|
|
|
|
es->begin = vzalloc(sizeof(struct entry) * nr_entries);
|
|
if (!es->begin)
|
|
return -ENOMEM;
|
|
|
|
es->end = es->begin + nr_entries;
|
|
return 0;
|
|
}
|
|
|
|
static void space_exit(struct entry_space *es)
|
|
{
|
|
vfree(es->begin);
|
|
}
|
|
|
|
static struct entry *__get_entry(struct entry_space *es, unsigned block)
|
|
{
|
|
struct entry *e;
|
|
|
|
e = es->begin + block;
|
|
BUG_ON(e >= es->end);
|
|
|
|
return e;
|
|
}
|
|
|
|
static unsigned to_index(struct entry_space *es, struct entry *e)
|
|
{
|
|
BUG_ON(e < es->begin || e >= es->end);
|
|
return e - es->begin;
|
|
}
|
|
|
|
static struct entry *to_entry(struct entry_space *es, unsigned block)
|
|
{
|
|
if (block == INDEXER_NULL)
|
|
return NULL;
|
|
|
|
return __get_entry(es, block);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
struct ilist {
|
|
unsigned nr_elts; /* excluding sentinel entries */
|
|
unsigned head, tail;
|
|
};
|
|
|
|
static void l_init(struct ilist *l)
|
|
{
|
|
l->nr_elts = 0;
|
|
l->head = l->tail = INDEXER_NULL;
|
|
}
|
|
|
|
static struct entry *l_head(struct entry_space *es, struct ilist *l)
|
|
{
|
|
return to_entry(es, l->head);
|
|
}
|
|
|
|
static struct entry *l_tail(struct entry_space *es, struct ilist *l)
|
|
{
|
|
return to_entry(es, l->tail);
|
|
}
|
|
|
|
static struct entry *l_next(struct entry_space *es, struct entry *e)
|
|
{
|
|
return to_entry(es, e->next);
|
|
}
|
|
|
|
static struct entry *l_prev(struct entry_space *es, struct entry *e)
|
|
{
|
|
return to_entry(es, e->prev);
|
|
}
|
|
|
|
static bool l_empty(struct ilist *l)
|
|
{
|
|
return l->head == INDEXER_NULL;
|
|
}
|
|
|
|
static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
|
|
{
|
|
struct entry *head = l_head(es, l);
|
|
|
|
e->next = l->head;
|
|
e->prev = INDEXER_NULL;
|
|
|
|
if (head)
|
|
head->prev = l->head = to_index(es, e);
|
|
else
|
|
l->head = l->tail = to_index(es, e);
|
|
|
|
if (!e->sentinel)
|
|
l->nr_elts++;
|
|
}
|
|
|
|
static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
|
|
{
|
|
struct entry *tail = l_tail(es, l);
|
|
|
|
e->next = INDEXER_NULL;
|
|
e->prev = l->tail;
|
|
|
|
if (tail)
|
|
tail->next = l->tail = to_index(es, e);
|
|
else
|
|
l->head = l->tail = to_index(es, e);
|
|
|
|
if (!e->sentinel)
|
|
l->nr_elts++;
|
|
}
|
|
|
|
static void l_add_before(struct entry_space *es, struct ilist *l,
|
|
struct entry *old, struct entry *e)
|
|
{
|
|
struct entry *prev = l_prev(es, old);
|
|
|
|
if (!prev)
|
|
l_add_head(es, l, e);
|
|
|
|
else {
|
|
e->prev = old->prev;
|
|
e->next = to_index(es, old);
|
|
prev->next = old->prev = to_index(es, e);
|
|
|
|
if (!e->sentinel)
|
|
l->nr_elts++;
|
|
}
|
|
}
|
|
|
|
static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
|
|
{
|
|
struct entry *prev = l_prev(es, e);
|
|
struct entry *next = l_next(es, e);
|
|
|
|
if (prev)
|
|
prev->next = e->next;
|
|
else
|
|
l->head = e->next;
|
|
|
|
if (next)
|
|
next->prev = e->prev;
|
|
else
|
|
l->tail = e->prev;
|
|
|
|
if (!e->sentinel)
|
|
l->nr_elts--;
|
|
}
|
|
|
|
static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
|
|
{
|
|
struct entry *e;
|
|
|
|
for (e = l_tail(es, l); e; e = l_prev(es, e))
|
|
if (!e->sentinel) {
|
|
l_del(es, l, e);
|
|
return e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* The stochastic-multi-queue is a set of lru lists stacked into levels.
|
|
* Entries are moved up levels when they are used, which loosely orders the
|
|
* most accessed entries in the top levels and least in the bottom. This
|
|
* structure is *much* better than a single lru list.
|
|
*/
|
|
#define MAX_LEVELS 64u
|
|
|
|
struct queue {
|
|
struct entry_space *es;
|
|
|
|
unsigned nr_elts;
|
|
unsigned nr_levels;
|
|
struct ilist qs[MAX_LEVELS];
|
|
|
|
/*
|
|
* We maintain a count of the number of entries we would like in each
|
|
* level.
|
|
*/
|
|
unsigned last_target_nr_elts;
|
|
unsigned nr_top_levels;
|
|
unsigned nr_in_top_levels;
|
|
unsigned target_count[MAX_LEVELS];
|
|
};
|
|
|
|
static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
|
|
{
|
|
unsigned i;
|
|
|
|
q->es = es;
|
|
q->nr_elts = 0;
|
|
q->nr_levels = nr_levels;
|
|
|
|
for (i = 0; i < q->nr_levels; i++) {
|
|
l_init(q->qs + i);
|
|
q->target_count[i] = 0u;
|
|
}
|
|
|
|
q->last_target_nr_elts = 0u;
|
|
q->nr_top_levels = 0u;
|
|
q->nr_in_top_levels = 0u;
|
|
}
|
|
|
|
static unsigned q_size(struct queue *q)
|
|
{
|
|
return q->nr_elts;
|
|
}
|
|
|
|
/*
|
|
* Insert an entry to the back of the given level.
|
|
*/
|
|
static void q_push(struct queue *q, struct entry *e)
|
|
{
|
|
if (!e->sentinel)
|
|
q->nr_elts++;
|
|
|
|
l_add_tail(q->es, q->qs + e->level, e);
|
|
}
|
|
|
|
static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
|
|
{
|
|
if (!e->sentinel)
|
|
q->nr_elts++;
|
|
|
|
l_add_before(q->es, q->qs + e->level, old, e);
|
|
}
|
|
|
|
static void q_del(struct queue *q, struct entry *e)
|
|
{
|
|
l_del(q->es, q->qs + e->level, e);
|
|
if (!e->sentinel)
|
|
q->nr_elts--;
|
|
}
|
|
|
|
/*
|
|
* Return the oldest entry of the lowest populated level.
|
|
*/
|
|
static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
|
|
{
|
|
unsigned level;
|
|
struct entry *e;
|
|
|
|
max_level = min(max_level, q->nr_levels);
|
|
|
|
for (level = 0; level < max_level; level++)
|
|
for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
|
|
if (e->sentinel) {
|
|
if (can_cross_sentinel)
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct entry *q_pop(struct queue *q)
|
|
{
|
|
struct entry *e = q_peek(q, q->nr_levels, true);
|
|
|
|
if (e)
|
|
q_del(q, e);
|
|
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* Pops an entry from a level that is not past a sentinel.
|
|
*/
|
|
static struct entry *q_pop_old(struct queue *q, unsigned max_level)
|
|
{
|
|
struct entry *e = q_peek(q, max_level, false);
|
|
|
|
if (e)
|
|
q_del(q, e);
|
|
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* This function assumes there is a non-sentinel entry to pop. It's only
|
|
* used by redistribute, so we know this is true. It also doesn't adjust
|
|
* the q->nr_elts count.
|
|
*/
|
|
static struct entry *__redist_pop_from(struct queue *q, unsigned level)
|
|
{
|
|
struct entry *e;
|
|
|
|
for (; level < q->nr_levels; level++)
|
|
for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
|
|
if (!e->sentinel) {
|
|
l_del(q->es, q->qs + e->level, e);
|
|
return e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
|
|
{
|
|
unsigned level, nr_levels, entries_per_level, remainder;
|
|
|
|
BUG_ON(lbegin > lend);
|
|
BUG_ON(lend > q->nr_levels);
|
|
nr_levels = lend - lbegin;
|
|
entries_per_level = safe_div(nr_elts, nr_levels);
|
|
remainder = safe_mod(nr_elts, nr_levels);
|
|
|
|
for (level = lbegin; level < lend; level++)
|
|
q->target_count[level] =
|
|
(level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
|
|
}
|
|
|
|
/*
|
|
* Typically we have fewer elements in the top few levels which allows us
|
|
* to adjust the promote threshold nicely.
|
|
*/
|
|
static void q_set_targets(struct queue *q)
|
|
{
|
|
if (q->last_target_nr_elts == q->nr_elts)
|
|
return;
|
|
|
|
q->last_target_nr_elts = q->nr_elts;
|
|
|
|
if (q->nr_top_levels > q->nr_levels)
|
|
q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
|
|
|
|
else {
|
|
q_set_targets_subrange_(q, q->nr_in_top_levels,
|
|
q->nr_levels - q->nr_top_levels, q->nr_levels);
|
|
|
|
if (q->nr_in_top_levels < q->nr_elts)
|
|
q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
|
|
0, q->nr_levels - q->nr_top_levels);
|
|
else
|
|
q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
|
|
}
|
|
}
|
|
|
|
static void q_redistribute(struct queue *q)
|
|
{
|
|
unsigned target, level;
|
|
struct ilist *l, *l_above;
|
|
struct entry *e;
|
|
|
|
q_set_targets(q);
|
|
|
|
for (level = 0u; level < q->nr_levels - 1u; level++) {
|
|
l = q->qs + level;
|
|
target = q->target_count[level];
|
|
|
|
/*
|
|
* Pull down some entries from the level above.
|
|
*/
|
|
while (l->nr_elts < target) {
|
|
e = __redist_pop_from(q, level + 1u);
|
|
if (!e) {
|
|
/* bug in nr_elts */
|
|
break;
|
|
}
|
|
|
|
e->level = level;
|
|
l_add_tail(q->es, l, e);
|
|
}
|
|
|
|
/*
|
|
* Push some entries up.
|
|
*/
|
|
l_above = q->qs + level + 1u;
|
|
while (l->nr_elts > target) {
|
|
e = l_pop_tail(q->es, l);
|
|
|
|
if (!e)
|
|
/* bug in nr_elts */
|
|
break;
|
|
|
|
e->level = level + 1u;
|
|
l_add_head(q->es, l_above, e);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels)
|
|
{
|
|
struct entry *de;
|
|
unsigned new_level;
|
|
|
|
q_del(q, e);
|
|
|
|
if (extra_levels && (e->level < q->nr_levels - 1u)) {
|
|
new_level = min(q->nr_levels - 1u, e->level + extra_levels);
|
|
for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) {
|
|
if (de->sentinel)
|
|
continue;
|
|
|
|
q_del(q, de);
|
|
de->level = e->level;
|
|
|
|
if (dest)
|
|
q_push_before(q, dest, de);
|
|
else
|
|
q_push(q, de);
|
|
break;
|
|
}
|
|
|
|
e->level = new_level;
|
|
}
|
|
|
|
q_push(q, e);
|
|
}
|
|
|
|
static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels)
|
|
{
|
|
q_requeue_before(q, NULL, e, extra_levels);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
#define FP_SHIFT 8
|
|
#define SIXTEENTH (1u << (FP_SHIFT - 4u))
|
|
#define EIGHTH (1u << (FP_SHIFT - 3u))
|
|
|
|
struct stats {
|
|
unsigned hit_threshold;
|
|
unsigned hits;
|
|
unsigned misses;
|
|
};
|
|
|
|
enum performance {
|
|
Q_POOR,
|
|
Q_FAIR,
|
|
Q_WELL
|
|
};
|
|
|
|
static void stats_init(struct stats *s, unsigned nr_levels)
|
|
{
|
|
s->hit_threshold = (nr_levels * 3u) / 4u;
|
|
s->hits = 0u;
|
|
s->misses = 0u;
|
|
}
|
|
|
|
static void stats_reset(struct stats *s)
|
|
{
|
|
s->hits = s->misses = 0u;
|
|
}
|
|
|
|
static void stats_level_accessed(struct stats *s, unsigned level)
|
|
{
|
|
if (level >= s->hit_threshold)
|
|
s->hits++;
|
|
else
|
|
s->misses++;
|
|
}
|
|
|
|
static void stats_miss(struct stats *s)
|
|
{
|
|
s->misses++;
|
|
}
|
|
|
|
/*
|
|
* There are times when we don't have any confidence in the hotspot queue.
|
|
* Such as when a fresh cache is created and the blocks have been spread
|
|
* out across the levels, or if an io load changes. We detect this by
|
|
* seeing how often a lookup is in the top levels of the hotspot queue.
|
|
*/
|
|
static enum performance stats_assess(struct stats *s)
|
|
{
|
|
unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
|
|
|
|
if (confidence < SIXTEENTH)
|
|
return Q_POOR;
|
|
|
|
else if (confidence < EIGHTH)
|
|
return Q_FAIR;
|
|
|
|
else
|
|
return Q_WELL;
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
struct hash_table {
|
|
struct entry_space *es;
|
|
unsigned long long hash_bits;
|
|
unsigned *buckets;
|
|
};
|
|
|
|
/*
|
|
* All cache entries are stored in a chained hash table. To save space we
|
|
* use indexing again, and only store indexes to the next entry.
|
|
*/
|
|
static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries)
|
|
{
|
|
unsigned i, nr_buckets;
|
|
|
|
ht->es = es;
|
|
nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
|
|
ht->hash_bits = __ffs(nr_buckets);
|
|
|
|
ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
|
|
if (!ht->buckets)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < nr_buckets; i++)
|
|
ht->buckets[i] = INDEXER_NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void h_exit(struct hash_table *ht)
|
|
{
|
|
vfree(ht->buckets);
|
|
}
|
|
|
|
static struct entry *h_head(struct hash_table *ht, unsigned bucket)
|
|
{
|
|
return to_entry(ht->es, ht->buckets[bucket]);
|
|
}
|
|
|
|
static struct entry *h_next(struct hash_table *ht, struct entry *e)
|
|
{
|
|
return to_entry(ht->es, e->hash_next);
|
|
}
|
|
|
|
static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e)
|
|
{
|
|
e->hash_next = ht->buckets[bucket];
|
|
ht->buckets[bucket] = to_index(ht->es, e);
|
|
}
|
|
|
|
static void h_insert(struct hash_table *ht, struct entry *e)
|
|
{
|
|
unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
|
|
__h_insert(ht, h, e);
|
|
}
|
|
|
|
static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock,
|
|
struct entry **prev)
|
|
{
|
|
struct entry *e;
|
|
|
|
*prev = NULL;
|
|
for (e = h_head(ht, h); e; e = h_next(ht, e)) {
|
|
if (e->oblock == oblock)
|
|
return e;
|
|
|
|
*prev = e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void __h_unlink(struct hash_table *ht, unsigned h,
|
|
struct entry *e, struct entry *prev)
|
|
{
|
|
if (prev)
|
|
prev->hash_next = e->hash_next;
|
|
else
|
|
ht->buckets[h] = e->hash_next;
|
|
}
|
|
|
|
/*
|
|
* Also moves each entry to the front of the bucket.
|
|
*/
|
|
static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock)
|
|
{
|
|
struct entry *e, *prev;
|
|
unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
|
|
|
|
e = __h_lookup(ht, h, oblock, &prev);
|
|
if (e && prev) {
|
|
/*
|
|
* Move to the front because this entry is likely
|
|
* to be hit again.
|
|
*/
|
|
__h_unlink(ht, h, e, prev);
|
|
__h_insert(ht, h, e);
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
static void h_remove(struct hash_table *ht, struct entry *e)
|
|
{
|
|
unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
|
|
struct entry *prev;
|
|
|
|
/*
|
|
* The down side of using a singly linked list is we have to
|
|
* iterate the bucket to remove an item.
|
|
*/
|
|
e = __h_lookup(ht, h, e->oblock, &prev);
|
|
if (e)
|
|
__h_unlink(ht, h, e, prev);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
struct entry_alloc {
|
|
struct entry_space *es;
|
|
unsigned begin;
|
|
|
|
unsigned nr_allocated;
|
|
struct ilist free;
|
|
};
|
|
|
|
static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
|
|
unsigned begin, unsigned end)
|
|
{
|
|
unsigned i;
|
|
|
|
ea->es = es;
|
|
ea->nr_allocated = 0u;
|
|
ea->begin = begin;
|
|
|
|
l_init(&ea->free);
|
|
for (i = begin; i != end; i++)
|
|
l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
|
|
}
|
|
|
|
static void init_entry(struct entry *e)
|
|
{
|
|
/*
|
|
* We can't memset because that would clear the hotspot and
|
|
* sentinel bits which remain constant.
|
|
*/
|
|
e->hash_next = INDEXER_NULL;
|
|
e->next = INDEXER_NULL;
|
|
e->prev = INDEXER_NULL;
|
|
e->level = 0u;
|
|
e->allocated = true;
|
|
}
|
|
|
|
static struct entry *alloc_entry(struct entry_alloc *ea)
|
|
{
|
|
struct entry *e;
|
|
|
|
if (l_empty(&ea->free))
|
|
return NULL;
|
|
|
|
e = l_pop_tail(ea->es, &ea->free);
|
|
init_entry(e);
|
|
ea->nr_allocated++;
|
|
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* This assumes the cblock hasn't already been allocated.
|
|
*/
|
|
static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
|
|
{
|
|
struct entry *e = __get_entry(ea->es, ea->begin + i);
|
|
|
|
BUG_ON(e->allocated);
|
|
|
|
l_del(ea->es, &ea->free, e);
|
|
init_entry(e);
|
|
ea->nr_allocated++;
|
|
|
|
return e;
|
|
}
|
|
|
|
static void free_entry(struct entry_alloc *ea, struct entry *e)
|
|
{
|
|
BUG_ON(!ea->nr_allocated);
|
|
BUG_ON(!e->allocated);
|
|
|
|
ea->nr_allocated--;
|
|
e->allocated = false;
|
|
l_add_tail(ea->es, &ea->free, e);
|
|
}
|
|
|
|
static bool allocator_empty(struct entry_alloc *ea)
|
|
{
|
|
return l_empty(&ea->free);
|
|
}
|
|
|
|
static unsigned get_index(struct entry_alloc *ea, struct entry *e)
|
|
{
|
|
return to_index(ea->es, e) - ea->begin;
|
|
}
|
|
|
|
static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
|
|
{
|
|
return __get_entry(ea->es, ea->begin + index);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
#define NR_HOTSPOT_LEVELS 64u
|
|
#define NR_CACHE_LEVELS 64u
|
|
|
|
#define WRITEBACK_PERIOD (10 * HZ)
|
|
#define DEMOTE_PERIOD (60 * HZ)
|
|
|
|
#define HOTSPOT_UPDATE_PERIOD (HZ)
|
|
#define CACHE_UPDATE_PERIOD (10u * HZ)
|
|
|
|
struct smq_policy {
|
|
struct dm_cache_policy policy;
|
|
|
|
/* protects everything */
|
|
spinlock_t lock;
|
|
dm_cblock_t cache_size;
|
|
sector_t cache_block_size;
|
|
|
|
sector_t hotspot_block_size;
|
|
unsigned nr_hotspot_blocks;
|
|
unsigned cache_blocks_per_hotspot_block;
|
|
unsigned hotspot_level_jump;
|
|
|
|
struct entry_space es;
|
|
struct entry_alloc writeback_sentinel_alloc;
|
|
struct entry_alloc demote_sentinel_alloc;
|
|
struct entry_alloc hotspot_alloc;
|
|
struct entry_alloc cache_alloc;
|
|
|
|
unsigned long *hotspot_hit_bits;
|
|
unsigned long *cache_hit_bits;
|
|
|
|
/*
|
|
* We maintain three queues of entries. The cache proper,
|
|
* consisting of a clean and dirty queue, containing the currently
|
|
* active mappings. The hotspot queue uses a larger block size to
|
|
* track blocks that are being hit frequently and potential
|
|
* candidates for promotion to the cache.
|
|
*/
|
|
struct queue hotspot;
|
|
struct queue clean;
|
|
struct queue dirty;
|
|
|
|
struct stats hotspot_stats;
|
|
struct stats cache_stats;
|
|
|
|
/*
|
|
* Keeps track of time, incremented by the core. We use this to
|
|
* avoid attributing multiple hits within the same tick.
|
|
*/
|
|
unsigned tick;
|
|
|
|
/*
|
|
* The hash tables allows us to quickly find an entry by origin
|
|
* block.
|
|
*/
|
|
struct hash_table table;
|
|
struct hash_table hotspot_table;
|
|
|
|
bool current_writeback_sentinels;
|
|
unsigned long next_writeback_period;
|
|
|
|
bool current_demote_sentinels;
|
|
unsigned long next_demote_period;
|
|
|
|
unsigned write_promote_level;
|
|
unsigned read_promote_level;
|
|
|
|
unsigned long next_hotspot_period;
|
|
unsigned long next_cache_period;
|
|
};
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
|
|
{
|
|
return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
|
|
}
|
|
|
|
static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
|
|
{
|
|
return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
|
|
}
|
|
|
|
static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
|
|
{
|
|
return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
|
|
}
|
|
|
|
static void __update_writeback_sentinels(struct smq_policy *mq)
|
|
{
|
|
unsigned level;
|
|
struct queue *q = &mq->dirty;
|
|
struct entry *sentinel;
|
|
|
|
for (level = 0; level < q->nr_levels; level++) {
|
|
sentinel = writeback_sentinel(mq, level);
|
|
q_del(q, sentinel);
|
|
q_push(q, sentinel);
|
|
}
|
|
}
|
|
|
|
static void __update_demote_sentinels(struct smq_policy *mq)
|
|
{
|
|
unsigned level;
|
|
struct queue *q = &mq->clean;
|
|
struct entry *sentinel;
|
|
|
|
for (level = 0; level < q->nr_levels; level++) {
|
|
sentinel = demote_sentinel(mq, level);
|
|
q_del(q, sentinel);
|
|
q_push(q, sentinel);
|
|
}
|
|
}
|
|
|
|
static void update_sentinels(struct smq_policy *mq)
|
|
{
|
|
if (time_after(jiffies, mq->next_writeback_period)) {
|
|
__update_writeback_sentinels(mq);
|
|
mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
|
|
mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
|
|
}
|
|
|
|
if (time_after(jiffies, mq->next_demote_period)) {
|
|
__update_demote_sentinels(mq);
|
|
mq->next_demote_period = jiffies + DEMOTE_PERIOD;
|
|
mq->current_demote_sentinels = !mq->current_demote_sentinels;
|
|
}
|
|
}
|
|
|
|
static void __sentinels_init(struct smq_policy *mq)
|
|
{
|
|
unsigned level;
|
|
struct entry *sentinel;
|
|
|
|
for (level = 0; level < NR_CACHE_LEVELS; level++) {
|
|
sentinel = writeback_sentinel(mq, level);
|
|
sentinel->level = level;
|
|
q_push(&mq->dirty, sentinel);
|
|
|
|
sentinel = demote_sentinel(mq, level);
|
|
sentinel->level = level;
|
|
q_push(&mq->clean, sentinel);
|
|
}
|
|
}
|
|
|
|
static void sentinels_init(struct smq_policy *mq)
|
|
{
|
|
mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
|
|
mq->next_demote_period = jiffies + DEMOTE_PERIOD;
|
|
|
|
mq->current_writeback_sentinels = false;
|
|
mq->current_demote_sentinels = false;
|
|
__sentinels_init(mq);
|
|
|
|
mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
|
|
mq->current_demote_sentinels = !mq->current_demote_sentinels;
|
|
__sentinels_init(mq);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* These methods tie together the dirty queue, clean queue and hash table.
|
|
*/
|
|
static void push_new(struct smq_policy *mq, struct entry *e)
|
|
{
|
|
struct queue *q = e->dirty ? &mq->dirty : &mq->clean;
|
|
h_insert(&mq->table, e);
|
|
q_push(q, e);
|
|
}
|
|
|
|
static void push(struct smq_policy *mq, struct entry *e)
|
|
{
|
|
struct entry *sentinel;
|
|
|
|
h_insert(&mq->table, e);
|
|
|
|
/*
|
|
* Punch this into the queue just in front of the sentinel, to
|
|
* ensure it's cleaned straight away.
|
|
*/
|
|
if (e->dirty) {
|
|
sentinel = writeback_sentinel(mq, e->level);
|
|
q_push_before(&mq->dirty, sentinel, e);
|
|
} else {
|
|
sentinel = demote_sentinel(mq, e->level);
|
|
q_push_before(&mq->clean, sentinel, e);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Removes an entry from cache. Removes from the hash table.
|
|
*/
|
|
static void __del(struct smq_policy *mq, struct queue *q, struct entry *e)
|
|
{
|
|
q_del(q, e);
|
|
h_remove(&mq->table, e);
|
|
}
|
|
|
|
static void del(struct smq_policy *mq, struct entry *e)
|
|
{
|
|
__del(mq, e->dirty ? &mq->dirty : &mq->clean, e);
|
|
}
|
|
|
|
static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level)
|
|
{
|
|
struct entry *e = q_pop_old(q, max_level);
|
|
if (e)
|
|
h_remove(&mq->table, e);
|
|
return e;
|
|
}
|
|
|
|
static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
|
|
{
|
|
return to_cblock(get_index(&mq->cache_alloc, e));
|
|
}
|
|
|
|
static void requeue(struct smq_policy *mq, struct entry *e)
|
|
{
|
|
struct entry *sentinel;
|
|
|
|
if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
|
|
if (e->dirty) {
|
|
sentinel = writeback_sentinel(mq, e->level);
|
|
q_requeue_before(&mq->dirty, sentinel, e, 1u);
|
|
} else {
|
|
sentinel = demote_sentinel(mq, e->level);
|
|
q_requeue_before(&mq->clean, sentinel, e, 1u);
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned default_promote_level(struct smq_policy *mq)
|
|
{
|
|
/*
|
|
* The promote level depends on the current performance of the
|
|
* cache.
|
|
*
|
|
* If the cache is performing badly, then we can't afford
|
|
* to promote much without causing performance to drop below that
|
|
* of the origin device.
|
|
*
|
|
* If the cache is performing well, then we don't need to promote
|
|
* much. If it isn't broken, don't fix it.
|
|
*
|
|
* If the cache is middling then we promote more.
|
|
*
|
|
* This scheme reminds me of a graph of entropy vs probability of a
|
|
* binary variable.
|
|
*/
|
|
static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
|
|
|
|
unsigned hits = mq->cache_stats.hits;
|
|
unsigned misses = mq->cache_stats.misses;
|
|
unsigned index = safe_div(hits << 4u, hits + misses);
|
|
return table[index];
|
|
}
|
|
|
|
static void update_promote_levels(struct smq_policy *mq)
|
|
{
|
|
/*
|
|
* If there are unused cache entries then we want to be really
|
|
* eager to promote.
|
|
*/
|
|
unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
|
|
default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
|
|
|
|
/*
|
|
* If the hotspot queue is performing badly then we have little
|
|
* confidence that we know which blocks to promote. So we cut down
|
|
* the amount of promotions.
|
|
*/
|
|
switch (stats_assess(&mq->hotspot_stats)) {
|
|
case Q_POOR:
|
|
threshold_level /= 4u;
|
|
break;
|
|
|
|
case Q_FAIR:
|
|
threshold_level /= 2u;
|
|
break;
|
|
|
|
case Q_WELL:
|
|
break;
|
|
}
|
|
|
|
mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
|
|
mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u;
|
|
}
|
|
|
|
/*
|
|
* If the hotspot queue is performing badly, then we try and move entries
|
|
* around more quickly.
|
|
*/
|
|
static void update_level_jump(struct smq_policy *mq)
|
|
{
|
|
switch (stats_assess(&mq->hotspot_stats)) {
|
|
case Q_POOR:
|
|
mq->hotspot_level_jump = 4u;
|
|
break;
|
|
|
|
case Q_FAIR:
|
|
mq->hotspot_level_jump = 2u;
|
|
break;
|
|
|
|
case Q_WELL:
|
|
mq->hotspot_level_jump = 1u;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void end_hotspot_period(struct smq_policy *mq)
|
|
{
|
|
clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
|
|
update_promote_levels(mq);
|
|
|
|
if (time_after(jiffies, mq->next_hotspot_period)) {
|
|
update_level_jump(mq);
|
|
q_redistribute(&mq->hotspot);
|
|
stats_reset(&mq->hotspot_stats);
|
|
mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
|
|
}
|
|
}
|
|
|
|
static void end_cache_period(struct smq_policy *mq)
|
|
{
|
|
if (time_after(jiffies, mq->next_cache_period)) {
|
|
clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
|
|
|
|
q_redistribute(&mq->dirty);
|
|
q_redistribute(&mq->clean);
|
|
stats_reset(&mq->cache_stats);
|
|
|
|
mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
|
|
}
|
|
}
|
|
|
|
static int demote_cblock(struct smq_policy *mq,
|
|
struct policy_locker *locker,
|
|
dm_oblock_t *oblock)
|
|
{
|
|
struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false);
|
|
if (!demoted)
|
|
/*
|
|
* We could get a block from mq->dirty, but that
|
|
* would add extra latency to the triggering bio as it
|
|
* waits for the writeback. Better to not promote this
|
|
* time and hope there's a clean block next time this block
|
|
* is hit.
|
|
*/
|
|
return -ENOSPC;
|
|
|
|
if (locker->fn(locker, demoted->oblock))
|
|
/*
|
|
* We couldn't lock this block.
|
|
*/
|
|
return -EBUSY;
|
|
|
|
del(mq, demoted);
|
|
*oblock = demoted->oblock;
|
|
free_entry(&mq->cache_alloc, demoted);
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum promote_result {
|
|
PROMOTE_NOT,
|
|
PROMOTE_TEMPORARY,
|
|
PROMOTE_PERMANENT
|
|
};
|
|
|
|
/*
|
|
* Converts a boolean into a promote result.
|
|
*/
|
|
static enum promote_result maybe_promote(bool promote)
|
|
{
|
|
return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
|
|
}
|
|
|
|
static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio,
|
|
bool fast_promote)
|
|
{
|
|
if (bio_data_dir(bio) == WRITE) {
|
|
if (!allocator_empty(&mq->cache_alloc) && fast_promote)
|
|
return PROMOTE_TEMPORARY;
|
|
|
|
else
|
|
return maybe_promote(hs_e->level >= mq->write_promote_level);
|
|
} else
|
|
return maybe_promote(hs_e->level >= mq->read_promote_level);
|
|
}
|
|
|
|
static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock,
|
|
struct policy_locker *locker,
|
|
struct policy_result *result, enum promote_result pr)
|
|
{
|
|
int r;
|
|
struct entry *e;
|
|
|
|
if (allocator_empty(&mq->cache_alloc)) {
|
|
result->op = POLICY_REPLACE;
|
|
r = demote_cblock(mq, locker, &result->old_oblock);
|
|
if (r) {
|
|
result->op = POLICY_MISS;
|
|
return;
|
|
}
|
|
|
|
} else
|
|
result->op = POLICY_NEW;
|
|
|
|
e = alloc_entry(&mq->cache_alloc);
|
|
BUG_ON(!e);
|
|
e->oblock = oblock;
|
|
|
|
if (pr == PROMOTE_TEMPORARY)
|
|
push(mq, e);
|
|
else
|
|
push_new(mq, e);
|
|
|
|
result->cblock = infer_cblock(mq, e);
|
|
}
|
|
|
|
static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
|
|
{
|
|
sector_t r = from_oblock(b);
|
|
(void) sector_div(r, mq->cache_blocks_per_hotspot_block);
|
|
return to_oblock(r);
|
|
}
|
|
|
|
static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio)
|
|
{
|
|
unsigned hi;
|
|
dm_oblock_t hb = to_hblock(mq, b);
|
|
struct entry *e = h_lookup(&mq->hotspot_table, hb);
|
|
|
|
if (e) {
|
|
stats_level_accessed(&mq->hotspot_stats, e->level);
|
|
|
|
hi = get_index(&mq->hotspot_alloc, e);
|
|
q_requeue(&mq->hotspot, e,
|
|
test_and_set_bit(hi, mq->hotspot_hit_bits) ?
|
|
0u : mq->hotspot_level_jump);
|
|
|
|
} else {
|
|
stats_miss(&mq->hotspot_stats);
|
|
|
|
e = alloc_entry(&mq->hotspot_alloc);
|
|
if (!e) {
|
|
e = q_pop(&mq->hotspot);
|
|
if (e) {
|
|
h_remove(&mq->hotspot_table, e);
|
|
hi = get_index(&mq->hotspot_alloc, e);
|
|
clear_bit(hi, mq->hotspot_hit_bits);
|
|
}
|
|
|
|
}
|
|
|
|
if (e) {
|
|
e->oblock = hb;
|
|
q_push(&mq->hotspot, e);
|
|
h_insert(&mq->hotspot_table, e);
|
|
}
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* Looks the oblock up in the hash table, then decides whether to put in
|
|
* pre_cache, or cache etc.
|
|
*/
|
|
static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock,
|
|
bool can_migrate, bool fast_promote,
|
|
struct policy_locker *locker, struct policy_result *result)
|
|
{
|
|
struct entry *e, *hs_e;
|
|
enum promote_result pr;
|
|
|
|
hs_e = update_hotspot_queue(mq, oblock, bio);
|
|
|
|
e = h_lookup(&mq->table, oblock);
|
|
if (e) {
|
|
stats_level_accessed(&mq->cache_stats, e->level);
|
|
|
|
requeue(mq, e);
|
|
result->op = POLICY_HIT;
|
|
result->cblock = infer_cblock(mq, e);
|
|
|
|
} else {
|
|
stats_miss(&mq->cache_stats);
|
|
|
|
pr = should_promote(mq, hs_e, bio, fast_promote);
|
|
if (pr == PROMOTE_NOT)
|
|
result->op = POLICY_MISS;
|
|
|
|
else {
|
|
if (!can_migrate) {
|
|
result->op = POLICY_MISS;
|
|
return -EWOULDBLOCK;
|
|
}
|
|
|
|
insert_in_cache(mq, oblock, locker, result, pr);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Public interface, via the policy struct. See dm-cache-policy.h for a
|
|
* description of these.
|
|
*/
|
|
|
|
static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
|
|
{
|
|
return container_of(p, struct smq_policy, policy);
|
|
}
|
|
|
|
static void smq_destroy(struct dm_cache_policy *p)
|
|
{
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
|
|
h_exit(&mq->hotspot_table);
|
|
h_exit(&mq->table);
|
|
free_bitset(mq->hotspot_hit_bits);
|
|
free_bitset(mq->cache_hit_bits);
|
|
space_exit(&mq->es);
|
|
kfree(mq);
|
|
}
|
|
|
|
static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
|
|
bool can_block, bool can_migrate, bool fast_promote,
|
|
struct bio *bio, struct policy_locker *locker,
|
|
struct policy_result *result)
|
|
{
|
|
int r;
|
|
unsigned long flags;
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
|
|
result->op = POLICY_MISS;
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result);
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
|
|
{
|
|
int r;
|
|
unsigned long flags;
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
struct entry *e;
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
e = h_lookup(&mq->table, oblock);
|
|
if (e) {
|
|
*cblock = infer_cblock(mq, e);
|
|
r = 0;
|
|
} else
|
|
r = -ENOENT;
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set)
|
|
{
|
|
struct entry *e;
|
|
|
|
e = h_lookup(&mq->table, oblock);
|
|
BUG_ON(!e);
|
|
|
|
del(mq, e);
|
|
e->dirty = set;
|
|
push(mq, e);
|
|
}
|
|
|
|
static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
|
|
{
|
|
unsigned long flags;
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
__smq_set_clear_dirty(mq, oblock, true);
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
}
|
|
|
|
static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
|
|
{
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
__smq_set_clear_dirty(mq, oblock, false);
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
}
|
|
|
|
static unsigned random_level(dm_cblock_t cblock)
|
|
{
|
|
return hash_32_generic(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
|
|
}
|
|
|
|
static int smq_load_mapping(struct dm_cache_policy *p,
|
|
dm_oblock_t oblock, dm_cblock_t cblock,
|
|
uint32_t hint, bool hint_valid)
|
|
{
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
struct entry *e;
|
|
|
|
e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
|
|
e->oblock = oblock;
|
|
e->dirty = false; /* this gets corrected in a minute */
|
|
e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
|
|
push(mq, e);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
|
|
{
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
|
|
|
|
if (!e->allocated)
|
|
return 0;
|
|
|
|
return e->level;
|
|
}
|
|
|
|
static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock)
|
|
{
|
|
struct entry *e;
|
|
|
|
e = h_lookup(&mq->table, oblock);
|
|
BUG_ON(!e);
|
|
|
|
del(mq, e);
|
|
free_entry(&mq->cache_alloc, e);
|
|
}
|
|
|
|
static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
|
|
{
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
__remove_mapping(mq, oblock);
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
}
|
|
|
|
static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock)
|
|
{
|
|
struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
|
|
|
|
if (!e || !e->allocated)
|
|
return -ENODATA;
|
|
|
|
del(mq, e);
|
|
free_entry(&mq->cache_alloc, e);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
|
|
{
|
|
int r;
|
|
unsigned long flags;
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
r = __remove_cblock(mq, cblock);
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
#define CLEAN_TARGET_CRITICAL 5u /* percent */
|
|
|
|
static bool clean_target_met(struct smq_policy *mq, bool critical)
|
|
{
|
|
if (critical) {
|
|
/*
|
|
* Cache entries may not be populated. So we're cannot rely on the
|
|
* size of the clean queue.
|
|
*/
|
|
unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty);
|
|
unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u;
|
|
|
|
return nr_clean >= target;
|
|
} else
|
|
return !q_size(&mq->dirty);
|
|
}
|
|
|
|
static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock,
|
|
dm_cblock_t *cblock, bool critical_only)
|
|
{
|
|
struct entry *e = NULL;
|
|
bool target_met = clean_target_met(mq, critical_only);
|
|
|
|
if (critical_only)
|
|
/*
|
|
* Always try and keep the bottom level clean.
|
|
*/
|
|
e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels);
|
|
|
|
else
|
|
e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels);
|
|
|
|
if (!e)
|
|
return -ENODATA;
|
|
|
|
*oblock = e->oblock;
|
|
*cblock = infer_cblock(mq, e);
|
|
e->dirty = false;
|
|
push_new(mq, e);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
|
|
dm_cblock_t *cblock, bool critical_only)
|
|
{
|
|
int r;
|
|
unsigned long flags;
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
r = __smq_writeback_work(mq, oblock, cblock, critical_only);
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void __force_mapping(struct smq_policy *mq,
|
|
dm_oblock_t current_oblock, dm_oblock_t new_oblock)
|
|
{
|
|
struct entry *e = h_lookup(&mq->table, current_oblock);
|
|
|
|
if (e) {
|
|
del(mq, e);
|
|
e->oblock = new_oblock;
|
|
e->dirty = true;
|
|
push(mq, e);
|
|
}
|
|
}
|
|
|
|
static void smq_force_mapping(struct dm_cache_policy *p,
|
|
dm_oblock_t current_oblock, dm_oblock_t new_oblock)
|
|
{
|
|
unsigned long flags;
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
__force_mapping(mq, current_oblock, new_oblock);
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
}
|
|
|
|
static dm_cblock_t smq_residency(struct dm_cache_policy *p)
|
|
{
|
|
dm_cblock_t r;
|
|
unsigned long flags;
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
r = to_cblock(mq->cache_alloc.nr_allocated);
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void smq_tick(struct dm_cache_policy *p, bool can_block)
|
|
{
|
|
struct smq_policy *mq = to_smq_policy(p);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mq->lock, flags);
|
|
mq->tick++;
|
|
update_sentinels(mq);
|
|
end_hotspot_period(mq);
|
|
end_cache_period(mq);
|
|
spin_unlock_irqrestore(&mq->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* smq has no config values, but the old mq policy did. To avoid breaking
|
|
* software we continue to accept these configurables for the mq policy,
|
|
* but they have no effect.
|
|
*/
|
|
static int mq_set_config_value(struct dm_cache_policy *p,
|
|
const char *key, const char *value)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
if (kstrtoul(value, 10, &tmp))
|
|
return -EINVAL;
|
|
|
|
if (!strcasecmp(key, "random_threshold") ||
|
|
!strcasecmp(key, "sequential_threshold") ||
|
|
!strcasecmp(key, "discard_promote_adjustment") ||
|
|
!strcasecmp(key, "read_promote_adjustment") ||
|
|
!strcasecmp(key, "write_promote_adjustment")) {
|
|
DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
|
|
unsigned maxlen, ssize_t *sz_ptr)
|
|
{
|
|
ssize_t sz = *sz_ptr;
|
|
|
|
DMEMIT("10 random_threshold 0 "
|
|
"sequential_threshold 0 "
|
|
"discard_promote_adjustment 0 "
|
|
"read_promote_adjustment 0 "
|
|
"write_promote_adjustment 0 ");
|
|
|
|
*sz_ptr = sz;
|
|
return 0;
|
|
}
|
|
|
|
/* Init the policy plugin interface function pointers. */
|
|
static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
|
|
{
|
|
mq->policy.destroy = smq_destroy;
|
|
mq->policy.map = smq_map;
|
|
mq->policy.lookup = smq_lookup;
|
|
mq->policy.set_dirty = smq_set_dirty;
|
|
mq->policy.clear_dirty = smq_clear_dirty;
|
|
mq->policy.load_mapping = smq_load_mapping;
|
|
mq->policy.get_hint = smq_get_hint;
|
|
mq->policy.remove_mapping = smq_remove_mapping;
|
|
mq->policy.remove_cblock = smq_remove_cblock;
|
|
mq->policy.writeback_work = smq_writeback_work;
|
|
mq->policy.force_mapping = smq_force_mapping;
|
|
mq->policy.residency = smq_residency;
|
|
mq->policy.tick = smq_tick;
|
|
|
|
if (mimic_mq) {
|
|
mq->policy.set_config_value = mq_set_config_value;
|
|
mq->policy.emit_config_values = mq_emit_config_values;
|
|
}
|
|
}
|
|
|
|
static bool too_many_hotspot_blocks(sector_t origin_size,
|
|
sector_t hotspot_block_size,
|
|
unsigned nr_hotspot_blocks)
|
|
{
|
|
return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
|
|
}
|
|
|
|
static void calc_hotspot_params(sector_t origin_size,
|
|
sector_t cache_block_size,
|
|
unsigned nr_cache_blocks,
|
|
sector_t *hotspot_block_size,
|
|
unsigned *nr_hotspot_blocks)
|
|
{
|
|
*hotspot_block_size = cache_block_size * 16u;
|
|
*nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
|
|
|
|
while ((*hotspot_block_size > cache_block_size) &&
|
|
too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
|
|
*hotspot_block_size /= 2u;
|
|
}
|
|
|
|
static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size,
|
|
sector_t origin_size,
|
|
sector_t cache_block_size,
|
|
bool mimic_mq)
|
|
{
|
|
unsigned i;
|
|
unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
|
|
unsigned total_sentinels = 2u * nr_sentinels_per_queue;
|
|
struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
|
|
|
|
if (!mq)
|
|
return NULL;
|
|
|
|
init_policy_functions(mq, mimic_mq);
|
|
mq->cache_size = cache_size;
|
|
mq->cache_block_size = cache_block_size;
|
|
|
|
calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
|
|
&mq->hotspot_block_size, &mq->nr_hotspot_blocks);
|
|
|
|
mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
|
|
mq->hotspot_level_jump = 1u;
|
|
if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
|
|
DMERR("couldn't initialize entry space");
|
|
goto bad_pool_init;
|
|
}
|
|
|
|
init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
|
|
for (i = 0; i < nr_sentinels_per_queue; i++)
|
|
get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
|
|
|
|
init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
|
|
for (i = 0; i < nr_sentinels_per_queue; i++)
|
|
get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
|
|
|
|
init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
|
|
total_sentinels + mq->nr_hotspot_blocks);
|
|
|
|
init_allocator(&mq->cache_alloc, &mq->es,
|
|
total_sentinels + mq->nr_hotspot_blocks,
|
|
total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
|
|
|
|
mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
|
|
if (!mq->hotspot_hit_bits) {
|
|
DMERR("couldn't allocate hotspot hit bitset");
|
|
goto bad_hotspot_hit_bits;
|
|
}
|
|
clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
|
|
|
|
if (from_cblock(cache_size)) {
|
|
mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
|
|
if (!mq->cache_hit_bits) {
|
|
DMERR("couldn't allocate cache hit bitset");
|
|
goto bad_cache_hit_bits;
|
|
}
|
|
clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
|
|
} else
|
|
mq->cache_hit_bits = NULL;
|
|
|
|
mq->tick = 0;
|
|
spin_lock_init(&mq->lock);
|
|
|
|
q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
|
|
mq->hotspot.nr_top_levels = 8;
|
|
mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
|
|
from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
|
|
|
|
q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
|
|
q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
|
|
|
|
stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
|
|
stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
|
|
|
|
if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
|
|
goto bad_alloc_table;
|
|
|
|
if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
|
|
goto bad_alloc_hotspot_table;
|
|
|
|
sentinels_init(mq);
|
|
mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
|
|
|
|
mq->next_hotspot_period = jiffies;
|
|
mq->next_cache_period = jiffies;
|
|
|
|
return &mq->policy;
|
|
|
|
bad_alloc_hotspot_table:
|
|
h_exit(&mq->table);
|
|
bad_alloc_table:
|
|
free_bitset(mq->cache_hit_bits);
|
|
bad_cache_hit_bits:
|
|
free_bitset(mq->hotspot_hit_bits);
|
|
bad_hotspot_hit_bits:
|
|
space_exit(&mq->es);
|
|
bad_pool_init:
|
|
kfree(mq);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
|
|
sector_t origin_size,
|
|
sector_t cache_block_size)
|
|
{
|
|
return __smq_create(cache_size, origin_size, cache_block_size, false);
|
|
}
|
|
|
|
static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
|
|
sector_t origin_size,
|
|
sector_t cache_block_size)
|
|
{
|
|
return __smq_create(cache_size, origin_size, cache_block_size, true);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static struct dm_cache_policy_type smq_policy_type = {
|
|
.name = "smq",
|
|
.version = {1, 5, 0},
|
|
.hint_size = 4,
|
|
.owner = THIS_MODULE,
|
|
.create = smq_create
|
|
};
|
|
|
|
static struct dm_cache_policy_type mq_policy_type = {
|
|
.name = "mq",
|
|
.version = {1, 5, 0},
|
|
.hint_size = 4,
|
|
.owner = THIS_MODULE,
|
|
.create = mq_create,
|
|
};
|
|
|
|
static struct dm_cache_policy_type default_policy_type = {
|
|
.name = "default",
|
|
.version = {1, 5, 0},
|
|
.hint_size = 4,
|
|
.owner = THIS_MODULE,
|
|
.create = smq_create,
|
|
.real = &smq_policy_type
|
|
};
|
|
|
|
static int __init smq_init(void)
|
|
{
|
|
int r;
|
|
|
|
r = dm_cache_policy_register(&smq_policy_type);
|
|
if (r) {
|
|
DMERR("register failed %d", r);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
r = dm_cache_policy_register(&mq_policy_type);
|
|
if (r) {
|
|
DMERR("register failed (as mq) %d", r);
|
|
dm_cache_policy_unregister(&smq_policy_type);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
r = dm_cache_policy_register(&default_policy_type);
|
|
if (r) {
|
|
DMERR("register failed (as default) %d", r);
|
|
dm_cache_policy_unregister(&mq_policy_type);
|
|
dm_cache_policy_unregister(&smq_policy_type);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit smq_exit(void)
|
|
{
|
|
dm_cache_policy_unregister(&smq_policy_type);
|
|
dm_cache_policy_unregister(&mq_policy_type);
|
|
dm_cache_policy_unregister(&default_policy_type);
|
|
}
|
|
|
|
module_init(smq_init);
|
|
module_exit(smq_exit);
|
|
|
|
MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("smq cache policy");
|
|
|
|
MODULE_ALIAS("dm-cache-default");
|
|
MODULE_ALIAS("dm-cache-mq");
|