mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 16:48:18 +07:00
33e4f80ee6
The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ during suspend-to-idle transitions and, consequently, any events signaled through it wake up the system from that state. However, on some systems some of the events signaled via the ACPI SCI while suspended to idle should not cause the system to wake up. In fact, quite often they should just be discarded. Arguably, systems should not resume entirely on such events, but in order to decide which events really should cause the system to resume and which are spurious, it is necessary to resume up to the point when ACPI SCIs are actually handled and processed, which is after executing dpm_resume_noirq() in the system resume path. For this reasons, add a loop around freeze_enter() in which the platforms can process events signaled via multiplexed IRQ lines like the ACPI SCI and add suspend-to-idle hooks that can be used for this purpose to struct platform_freeze_ops. In the ACPI case, the ->wake hook is used for checking if the SCI has triggered while suspended and deferring the interrupt-induced system wakeup until the events signaled through it are actually processed sufficiently to decide whether or not the system should resume. In turn, the ->sync hook allows all of the relevant event queues to be flushed so as to prevent events from being missed due to race conditions. In addition to that, some ACPI code processing wakeup events needs to be modified to use the "hard" version of wakeup triggers, so that it will cause a system resume to happen on device-induced wakeup events even if the "soft" mechanism to prevent the system from suspending is not enabled. However, to preserve the existing behavior with respect to suspend-to-RAM, this only is done in the suspend-to-idle case and only if an SCI has occurred while suspended. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
242 lines
5.5 KiB
C
242 lines
5.5 KiB
C
/*
|
|
* drivers/power/process.c - Functions for starting/stopping processes on
|
|
* suspend transitions.
|
|
*
|
|
* Originally from swsusp.
|
|
*/
|
|
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kmod.h>
|
|
#include <trace/events/power.h>
|
|
|
|
/*
|
|
* Timeout for stopping processes
|
|
*/
|
|
unsigned int __read_mostly freeze_timeout_msecs = 20 * MSEC_PER_SEC;
|
|
|
|
static int try_to_freeze_tasks(bool user_only)
|
|
{
|
|
struct task_struct *g, *p;
|
|
unsigned long end_time;
|
|
unsigned int todo;
|
|
bool wq_busy = false;
|
|
ktime_t start, end, elapsed;
|
|
unsigned int elapsed_msecs;
|
|
bool wakeup = false;
|
|
int sleep_usecs = USEC_PER_MSEC;
|
|
|
|
start = ktime_get_boottime();
|
|
|
|
end_time = jiffies + msecs_to_jiffies(freeze_timeout_msecs);
|
|
|
|
if (!user_only)
|
|
freeze_workqueues_begin();
|
|
|
|
while (true) {
|
|
todo = 0;
|
|
read_lock(&tasklist_lock);
|
|
for_each_process_thread(g, p) {
|
|
if (p == current || !freeze_task(p))
|
|
continue;
|
|
|
|
if (!freezer_should_skip(p))
|
|
todo++;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
if (!user_only) {
|
|
wq_busy = freeze_workqueues_busy();
|
|
todo += wq_busy;
|
|
}
|
|
|
|
if (!todo || time_after(jiffies, end_time))
|
|
break;
|
|
|
|
if (pm_wakeup_pending()) {
|
|
wakeup = true;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We need to retry, but first give the freezing tasks some
|
|
* time to enter the refrigerator. Start with an initial
|
|
* 1 ms sleep followed by exponential backoff until 8 ms.
|
|
*/
|
|
usleep_range(sleep_usecs / 2, sleep_usecs);
|
|
if (sleep_usecs < 8 * USEC_PER_MSEC)
|
|
sleep_usecs *= 2;
|
|
}
|
|
|
|
end = ktime_get_boottime();
|
|
elapsed = ktime_sub(end, start);
|
|
elapsed_msecs = ktime_to_ms(elapsed);
|
|
|
|
if (todo) {
|
|
pr_cont("\n");
|
|
pr_err("Freezing of tasks %s after %d.%03d seconds "
|
|
"(%d tasks refusing to freeze, wq_busy=%d):\n",
|
|
wakeup ? "aborted" : "failed",
|
|
elapsed_msecs / 1000, elapsed_msecs % 1000,
|
|
todo - wq_busy, wq_busy);
|
|
|
|
if (wq_busy)
|
|
show_workqueue_state();
|
|
|
|
if (!wakeup) {
|
|
read_lock(&tasklist_lock);
|
|
for_each_process_thread(g, p) {
|
|
if (p != current && !freezer_should_skip(p)
|
|
&& freezing(p) && !frozen(p))
|
|
sched_show_task(p);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
} else {
|
|
pr_cont("(elapsed %d.%03d seconds) ", elapsed_msecs / 1000,
|
|
elapsed_msecs % 1000);
|
|
}
|
|
|
|
return todo ? -EBUSY : 0;
|
|
}
|
|
|
|
/**
|
|
* freeze_processes - Signal user space processes to enter the refrigerator.
|
|
* The current thread will not be frozen. The same process that calls
|
|
* freeze_processes must later call thaw_processes.
|
|
*
|
|
* On success, returns 0. On failure, -errno and system is fully thawed.
|
|
*/
|
|
int freeze_processes(void)
|
|
{
|
|
int error;
|
|
|
|
error = __usermodehelper_disable(UMH_FREEZING);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Make sure this task doesn't get frozen */
|
|
current->flags |= PF_SUSPEND_TASK;
|
|
|
|
if (!pm_freezing)
|
|
atomic_inc(&system_freezing_cnt);
|
|
|
|
pm_wakeup_clear(true);
|
|
pr_info("Freezing user space processes ... ");
|
|
pm_freezing = true;
|
|
error = try_to_freeze_tasks(true);
|
|
if (!error) {
|
|
__usermodehelper_set_disable_depth(UMH_DISABLED);
|
|
pr_cont("done.");
|
|
}
|
|
pr_cont("\n");
|
|
BUG_ON(in_atomic());
|
|
|
|
/*
|
|
* Now that the whole userspace is frozen we need to disbale
|
|
* the OOM killer to disallow any further interference with
|
|
* killable tasks. There is no guarantee oom victims will
|
|
* ever reach a point they go away we have to wait with a timeout.
|
|
*/
|
|
if (!error && !oom_killer_disable(msecs_to_jiffies(freeze_timeout_msecs)))
|
|
error = -EBUSY;
|
|
|
|
if (error)
|
|
thaw_processes();
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* freeze_kernel_threads - Make freezable kernel threads go to the refrigerator.
|
|
*
|
|
* On success, returns 0. On failure, -errno and only the kernel threads are
|
|
* thawed, so as to give a chance to the caller to do additional cleanups
|
|
* (if any) before thawing the userspace tasks. So, it is the responsibility
|
|
* of the caller to thaw the userspace tasks, when the time is right.
|
|
*/
|
|
int freeze_kernel_threads(void)
|
|
{
|
|
int error;
|
|
|
|
pr_info("Freezing remaining freezable tasks ... ");
|
|
|
|
pm_nosig_freezing = true;
|
|
error = try_to_freeze_tasks(false);
|
|
if (!error)
|
|
pr_cont("done.");
|
|
|
|
pr_cont("\n");
|
|
BUG_ON(in_atomic());
|
|
|
|
if (error)
|
|
thaw_kernel_threads();
|
|
return error;
|
|
}
|
|
|
|
void thaw_processes(void)
|
|
{
|
|
struct task_struct *g, *p;
|
|
struct task_struct *curr = current;
|
|
|
|
trace_suspend_resume(TPS("thaw_processes"), 0, true);
|
|
if (pm_freezing)
|
|
atomic_dec(&system_freezing_cnt);
|
|
pm_freezing = false;
|
|
pm_nosig_freezing = false;
|
|
|
|
oom_killer_enable();
|
|
|
|
pr_info("Restarting tasks ... ");
|
|
|
|
__usermodehelper_set_disable_depth(UMH_FREEZING);
|
|
thaw_workqueues();
|
|
|
|
read_lock(&tasklist_lock);
|
|
for_each_process_thread(g, p) {
|
|
/* No other threads should have PF_SUSPEND_TASK set */
|
|
WARN_ON((p != curr) && (p->flags & PF_SUSPEND_TASK));
|
|
__thaw_task(p);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
WARN_ON(!(curr->flags & PF_SUSPEND_TASK));
|
|
curr->flags &= ~PF_SUSPEND_TASK;
|
|
|
|
usermodehelper_enable();
|
|
|
|
schedule();
|
|
pr_cont("done.\n");
|
|
trace_suspend_resume(TPS("thaw_processes"), 0, false);
|
|
}
|
|
|
|
void thaw_kernel_threads(void)
|
|
{
|
|
struct task_struct *g, *p;
|
|
|
|
pm_nosig_freezing = false;
|
|
pr_info("Restarting kernel threads ... ");
|
|
|
|
thaw_workqueues();
|
|
|
|
read_lock(&tasklist_lock);
|
|
for_each_process_thread(g, p) {
|
|
if (p->flags & (PF_KTHREAD | PF_WQ_WORKER))
|
|
__thaw_task(p);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
schedule();
|
|
pr_cont("done.\n");
|
|
}
|