mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 13:45:13 +07:00
f39b948dbe
This patch adds the dmaenginem_async_device_register for DMA code. Use the Devres to call the release for the DMA engine driver. Signed-off-by: Huang Shijie <sjhuang@iluvatar.ai> Signed-off-by: Vinod Koul <vkoul@kernel.org>
1435 lines
46 KiB
C
1435 lines
46 KiB
C
/*
|
|
* Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* The full GNU General Public License is included in this distribution in the
|
|
* file called COPYING.
|
|
*/
|
|
#ifndef LINUX_DMAENGINE_H
|
|
#define LINUX_DMAENGINE_H
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/err.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/types.h>
|
|
#include <asm/page.h>
|
|
|
|
/**
|
|
* typedef dma_cookie_t - an opaque DMA cookie
|
|
*
|
|
* if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
|
|
*/
|
|
typedef s32 dma_cookie_t;
|
|
#define DMA_MIN_COOKIE 1
|
|
|
|
static inline int dma_submit_error(dma_cookie_t cookie)
|
|
{
|
|
return cookie < 0 ? cookie : 0;
|
|
}
|
|
|
|
/**
|
|
* enum dma_status - DMA transaction status
|
|
* @DMA_COMPLETE: transaction completed
|
|
* @DMA_IN_PROGRESS: transaction not yet processed
|
|
* @DMA_PAUSED: transaction is paused
|
|
* @DMA_ERROR: transaction failed
|
|
*/
|
|
enum dma_status {
|
|
DMA_COMPLETE,
|
|
DMA_IN_PROGRESS,
|
|
DMA_PAUSED,
|
|
DMA_ERROR,
|
|
};
|
|
|
|
/**
|
|
* enum dma_transaction_type - DMA transaction types/indexes
|
|
*
|
|
* Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
|
|
* automatically set as dma devices are registered.
|
|
*/
|
|
enum dma_transaction_type {
|
|
DMA_MEMCPY,
|
|
DMA_XOR,
|
|
DMA_PQ,
|
|
DMA_XOR_VAL,
|
|
DMA_PQ_VAL,
|
|
DMA_MEMSET,
|
|
DMA_MEMSET_SG,
|
|
DMA_INTERRUPT,
|
|
DMA_PRIVATE,
|
|
DMA_ASYNC_TX,
|
|
DMA_SLAVE,
|
|
DMA_CYCLIC,
|
|
DMA_INTERLEAVE,
|
|
/* last transaction type for creation of the capabilities mask */
|
|
DMA_TX_TYPE_END,
|
|
};
|
|
|
|
/**
|
|
* enum dma_transfer_direction - dma transfer mode and direction indicator
|
|
* @DMA_MEM_TO_MEM: Async/Memcpy mode
|
|
* @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
|
|
* @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
|
|
* @DMA_DEV_TO_DEV: Slave mode & From Device to Device
|
|
*/
|
|
enum dma_transfer_direction {
|
|
DMA_MEM_TO_MEM,
|
|
DMA_MEM_TO_DEV,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_DEV_TO_DEV,
|
|
DMA_TRANS_NONE,
|
|
};
|
|
|
|
/**
|
|
* Interleaved Transfer Request
|
|
* ----------------------------
|
|
* A chunk is collection of contiguous bytes to be transfered.
|
|
* The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
|
|
* ICGs may or maynot change between chunks.
|
|
* A FRAME is the smallest series of contiguous {chunk,icg} pairs,
|
|
* that when repeated an integral number of times, specifies the transfer.
|
|
* A transfer template is specification of a Frame, the number of times
|
|
* it is to be repeated and other per-transfer attributes.
|
|
*
|
|
* Practically, a client driver would have ready a template for each
|
|
* type of transfer it is going to need during its lifetime and
|
|
* set only 'src_start' and 'dst_start' before submitting the requests.
|
|
*
|
|
*
|
|
* | Frame-1 | Frame-2 | ~ | Frame-'numf' |
|
|
* |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
|
|
*
|
|
* == Chunk size
|
|
* ... ICG
|
|
*/
|
|
|
|
/**
|
|
* struct data_chunk - Element of scatter-gather list that makes a frame.
|
|
* @size: Number of bytes to read from source.
|
|
* size_dst := fn(op, size_src), so doesn't mean much for destination.
|
|
* @icg: Number of bytes to jump after last src/dst address of this
|
|
* chunk and before first src/dst address for next chunk.
|
|
* Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
|
|
* Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
|
|
* @dst_icg: Number of bytes to jump after last dst address of this
|
|
* chunk and before the first dst address for next chunk.
|
|
* Ignored if dst_inc is true and dst_sgl is false.
|
|
* @src_icg: Number of bytes to jump after last src address of this
|
|
* chunk and before the first src address for next chunk.
|
|
* Ignored if src_inc is true and src_sgl is false.
|
|
*/
|
|
struct data_chunk {
|
|
size_t size;
|
|
size_t icg;
|
|
size_t dst_icg;
|
|
size_t src_icg;
|
|
};
|
|
|
|
/**
|
|
* struct dma_interleaved_template - Template to convey DMAC the transfer pattern
|
|
* and attributes.
|
|
* @src_start: Bus address of source for the first chunk.
|
|
* @dst_start: Bus address of destination for the first chunk.
|
|
* @dir: Specifies the type of Source and Destination.
|
|
* @src_inc: If the source address increments after reading from it.
|
|
* @dst_inc: If the destination address increments after writing to it.
|
|
* @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
|
|
* Otherwise, source is read contiguously (icg ignored).
|
|
* Ignored if src_inc is false.
|
|
* @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
|
|
* Otherwise, destination is filled contiguously (icg ignored).
|
|
* Ignored if dst_inc is false.
|
|
* @numf: Number of frames in this template.
|
|
* @frame_size: Number of chunks in a frame i.e, size of sgl[].
|
|
* @sgl: Array of {chunk,icg} pairs that make up a frame.
|
|
*/
|
|
struct dma_interleaved_template {
|
|
dma_addr_t src_start;
|
|
dma_addr_t dst_start;
|
|
enum dma_transfer_direction dir;
|
|
bool src_inc;
|
|
bool dst_inc;
|
|
bool src_sgl;
|
|
bool dst_sgl;
|
|
size_t numf;
|
|
size_t frame_size;
|
|
struct data_chunk sgl[0];
|
|
};
|
|
|
|
/**
|
|
* enum dma_ctrl_flags - DMA flags to augment operation preparation,
|
|
* control completion, and communicate status.
|
|
* @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
|
|
* this transaction
|
|
* @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
|
|
* acknowledges receipt, i.e. has has a chance to establish any dependency
|
|
* chains
|
|
* @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
|
|
* @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
|
|
* @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
|
|
* sources that were the result of a previous operation, in the case of a PQ
|
|
* operation it continues the calculation with new sources
|
|
* @DMA_PREP_FENCE - tell the driver that subsequent operations depend
|
|
* on the result of this operation
|
|
* @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
|
|
* cleared or freed
|
|
* @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
|
|
* data and the descriptor should be in different format from normal
|
|
* data descriptors.
|
|
*/
|
|
enum dma_ctrl_flags {
|
|
DMA_PREP_INTERRUPT = (1 << 0),
|
|
DMA_CTRL_ACK = (1 << 1),
|
|
DMA_PREP_PQ_DISABLE_P = (1 << 2),
|
|
DMA_PREP_PQ_DISABLE_Q = (1 << 3),
|
|
DMA_PREP_CONTINUE = (1 << 4),
|
|
DMA_PREP_FENCE = (1 << 5),
|
|
DMA_CTRL_REUSE = (1 << 6),
|
|
DMA_PREP_CMD = (1 << 7),
|
|
};
|
|
|
|
/**
|
|
* enum sum_check_bits - bit position of pq_check_flags
|
|
*/
|
|
enum sum_check_bits {
|
|
SUM_CHECK_P = 0,
|
|
SUM_CHECK_Q = 1,
|
|
};
|
|
|
|
/**
|
|
* enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
|
|
* @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
|
|
* @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
|
|
*/
|
|
enum sum_check_flags {
|
|
SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
|
|
SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
|
|
};
|
|
|
|
|
|
/**
|
|
* dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
|
|
* See linux/cpumask.h
|
|
*/
|
|
typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
|
|
|
|
/**
|
|
* struct dma_chan_percpu - the per-CPU part of struct dma_chan
|
|
* @memcpy_count: transaction counter
|
|
* @bytes_transferred: byte counter
|
|
*/
|
|
|
|
struct dma_chan_percpu {
|
|
/* stats */
|
|
unsigned long memcpy_count;
|
|
unsigned long bytes_transferred;
|
|
};
|
|
|
|
/**
|
|
* struct dma_router - DMA router structure
|
|
* @dev: pointer to the DMA router device
|
|
* @route_free: function to be called when the route can be disconnected
|
|
*/
|
|
struct dma_router {
|
|
struct device *dev;
|
|
void (*route_free)(struct device *dev, void *route_data);
|
|
};
|
|
|
|
/**
|
|
* struct dma_chan - devices supply DMA channels, clients use them
|
|
* @device: ptr to the dma device who supplies this channel, always !%NULL
|
|
* @cookie: last cookie value returned to client
|
|
* @completed_cookie: last completed cookie for this channel
|
|
* @chan_id: channel ID for sysfs
|
|
* @dev: class device for sysfs
|
|
* @device_node: used to add this to the device chan list
|
|
* @local: per-cpu pointer to a struct dma_chan_percpu
|
|
* @client_count: how many clients are using this channel
|
|
* @table_count: number of appearances in the mem-to-mem allocation table
|
|
* @router: pointer to the DMA router structure
|
|
* @route_data: channel specific data for the router
|
|
* @private: private data for certain client-channel associations
|
|
*/
|
|
struct dma_chan {
|
|
struct dma_device *device;
|
|
dma_cookie_t cookie;
|
|
dma_cookie_t completed_cookie;
|
|
|
|
/* sysfs */
|
|
int chan_id;
|
|
struct dma_chan_dev *dev;
|
|
|
|
struct list_head device_node;
|
|
struct dma_chan_percpu __percpu *local;
|
|
int client_count;
|
|
int table_count;
|
|
|
|
/* DMA router */
|
|
struct dma_router *router;
|
|
void *route_data;
|
|
|
|
void *private;
|
|
};
|
|
|
|
/**
|
|
* struct dma_chan_dev - relate sysfs device node to backing channel device
|
|
* @chan: driver channel device
|
|
* @device: sysfs device
|
|
* @dev_id: parent dma_device dev_id
|
|
* @idr_ref: reference count to gate release of dma_device dev_id
|
|
*/
|
|
struct dma_chan_dev {
|
|
struct dma_chan *chan;
|
|
struct device device;
|
|
int dev_id;
|
|
atomic_t *idr_ref;
|
|
};
|
|
|
|
/**
|
|
* enum dma_slave_buswidth - defines bus width of the DMA slave
|
|
* device, source or target buses
|
|
*/
|
|
enum dma_slave_buswidth {
|
|
DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
|
|
DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
|
|
DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
|
|
DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
|
|
DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
|
|
DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
|
|
DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
|
|
DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
|
|
DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
|
|
};
|
|
|
|
/**
|
|
* struct dma_slave_config - dma slave channel runtime config
|
|
* @direction: whether the data shall go in or out on this slave
|
|
* channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
|
|
* legal values. DEPRECATED, drivers should use the direction argument
|
|
* to the device_prep_slave_sg and device_prep_dma_cyclic functions or
|
|
* the dir field in the dma_interleaved_template structure.
|
|
* @src_addr: this is the physical address where DMA slave data
|
|
* should be read (RX), if the source is memory this argument is
|
|
* ignored.
|
|
* @dst_addr: this is the physical address where DMA slave data
|
|
* should be written (TX), if the source is memory this argument
|
|
* is ignored.
|
|
* @src_addr_width: this is the width in bytes of the source (RX)
|
|
* register where DMA data shall be read. If the source
|
|
* is memory this may be ignored depending on architecture.
|
|
* Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
|
|
* @dst_addr_width: same as src_addr_width but for destination
|
|
* target (TX) mutatis mutandis.
|
|
* @src_maxburst: the maximum number of words (note: words, as in
|
|
* units of the src_addr_width member, not bytes) that can be sent
|
|
* in one burst to the device. Typically something like half the
|
|
* FIFO depth on I/O peripherals so you don't overflow it. This
|
|
* may or may not be applicable on memory sources.
|
|
* @dst_maxburst: same as src_maxburst but for destination target
|
|
* mutatis mutandis.
|
|
* @src_port_window_size: The length of the register area in words the data need
|
|
* to be accessed on the device side. It is only used for devices which is using
|
|
* an area instead of a single register to receive the data. Typically the DMA
|
|
* loops in this area in order to transfer the data.
|
|
* @dst_port_window_size: same as src_port_window_size but for the destination
|
|
* port.
|
|
* @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
|
|
* with 'true' if peripheral should be flow controller. Direction will be
|
|
* selected at Runtime.
|
|
* @slave_id: Slave requester id. Only valid for slave channels. The dma
|
|
* slave peripheral will have unique id as dma requester which need to be
|
|
* pass as slave config.
|
|
*
|
|
* This struct is passed in as configuration data to a DMA engine
|
|
* in order to set up a certain channel for DMA transport at runtime.
|
|
* The DMA device/engine has to provide support for an additional
|
|
* callback in the dma_device structure, device_config and this struct
|
|
* will then be passed in as an argument to the function.
|
|
*
|
|
* The rationale for adding configuration information to this struct is as
|
|
* follows: if it is likely that more than one DMA slave controllers in
|
|
* the world will support the configuration option, then make it generic.
|
|
* If not: if it is fixed so that it be sent in static from the platform
|
|
* data, then prefer to do that.
|
|
*/
|
|
struct dma_slave_config {
|
|
enum dma_transfer_direction direction;
|
|
phys_addr_t src_addr;
|
|
phys_addr_t dst_addr;
|
|
enum dma_slave_buswidth src_addr_width;
|
|
enum dma_slave_buswidth dst_addr_width;
|
|
u32 src_maxburst;
|
|
u32 dst_maxburst;
|
|
u32 src_port_window_size;
|
|
u32 dst_port_window_size;
|
|
bool device_fc;
|
|
unsigned int slave_id;
|
|
};
|
|
|
|
/**
|
|
* enum dma_residue_granularity - Granularity of the reported transfer residue
|
|
* @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
|
|
* DMA channel is only able to tell whether a descriptor has been completed or
|
|
* not, which means residue reporting is not supported by this channel. The
|
|
* residue field of the dma_tx_state field will always be 0.
|
|
* @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
|
|
* completed segment of the transfer (For cyclic transfers this is after each
|
|
* period). This is typically implemented by having the hardware generate an
|
|
* interrupt after each transferred segment and then the drivers updates the
|
|
* outstanding residue by the size of the segment. Another possibility is if
|
|
* the hardware supports scatter-gather and the segment descriptor has a field
|
|
* which gets set after the segment has been completed. The driver then counts
|
|
* the number of segments without the flag set to compute the residue.
|
|
* @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
|
|
* burst. This is typically only supported if the hardware has a progress
|
|
* register of some sort (E.g. a register with the current read/write address
|
|
* or a register with the amount of bursts/beats/bytes that have been
|
|
* transferred or still need to be transferred).
|
|
*/
|
|
enum dma_residue_granularity {
|
|
DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
|
|
DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
|
|
DMA_RESIDUE_GRANULARITY_BURST = 2,
|
|
};
|
|
|
|
/**
|
|
* struct dma_slave_caps - expose capabilities of a slave channel only
|
|
* @src_addr_widths: bit mask of src addr widths the channel supports.
|
|
* Width is specified in bytes, e.g. for a channel supporting
|
|
* a width of 4 the mask should have BIT(4) set.
|
|
* @dst_addr_widths: bit mask of dst addr widths the channel supports
|
|
* @directions: bit mask of slave directions the channel supports.
|
|
* Since the enum dma_transfer_direction is not defined as bit flag for
|
|
* each type, the dma controller should set BIT(<TYPE>) and same
|
|
* should be checked by controller as well
|
|
* @max_burst: max burst capability per-transfer
|
|
* @cmd_pause: true, if pause is supported (i.e. for reading residue or
|
|
* for resume later)
|
|
* @cmd_resume: true, if resume is supported
|
|
* @cmd_terminate: true, if terminate cmd is supported
|
|
* @residue_granularity: granularity of the reported transfer residue
|
|
* @descriptor_reuse: if a descriptor can be reused by client and
|
|
* resubmitted multiple times
|
|
*/
|
|
struct dma_slave_caps {
|
|
u32 src_addr_widths;
|
|
u32 dst_addr_widths;
|
|
u32 directions;
|
|
u32 max_burst;
|
|
bool cmd_pause;
|
|
bool cmd_resume;
|
|
bool cmd_terminate;
|
|
enum dma_residue_granularity residue_granularity;
|
|
bool descriptor_reuse;
|
|
};
|
|
|
|
static inline const char *dma_chan_name(struct dma_chan *chan)
|
|
{
|
|
return dev_name(&chan->dev->device);
|
|
}
|
|
|
|
void dma_chan_cleanup(struct kref *kref);
|
|
|
|
/**
|
|
* typedef dma_filter_fn - callback filter for dma_request_channel
|
|
* @chan: channel to be reviewed
|
|
* @filter_param: opaque parameter passed through dma_request_channel
|
|
*
|
|
* When this optional parameter is specified in a call to dma_request_channel a
|
|
* suitable channel is passed to this routine for further dispositioning before
|
|
* being returned. Where 'suitable' indicates a non-busy channel that
|
|
* satisfies the given capability mask. It returns 'true' to indicate that the
|
|
* channel is suitable.
|
|
*/
|
|
typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
|
|
|
|
typedef void (*dma_async_tx_callback)(void *dma_async_param);
|
|
|
|
enum dmaengine_tx_result {
|
|
DMA_TRANS_NOERROR = 0, /* SUCCESS */
|
|
DMA_TRANS_READ_FAILED, /* Source DMA read failed */
|
|
DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
|
|
DMA_TRANS_ABORTED, /* Op never submitted / aborted */
|
|
};
|
|
|
|
struct dmaengine_result {
|
|
enum dmaengine_tx_result result;
|
|
u32 residue;
|
|
};
|
|
|
|
typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
|
|
const struct dmaengine_result *result);
|
|
|
|
struct dmaengine_unmap_data {
|
|
#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
|
|
u16 map_cnt;
|
|
#else
|
|
u8 map_cnt;
|
|
#endif
|
|
u8 to_cnt;
|
|
u8 from_cnt;
|
|
u8 bidi_cnt;
|
|
struct device *dev;
|
|
struct kref kref;
|
|
size_t len;
|
|
dma_addr_t addr[0];
|
|
};
|
|
|
|
/**
|
|
* struct dma_async_tx_descriptor - async transaction descriptor
|
|
* ---dma generic offload fields---
|
|
* @cookie: tracking cookie for this transaction, set to -EBUSY if
|
|
* this tx is sitting on a dependency list
|
|
* @flags: flags to augment operation preparation, control completion, and
|
|
* communicate status
|
|
* @phys: physical address of the descriptor
|
|
* @chan: target channel for this operation
|
|
* @tx_submit: accept the descriptor, assign ordered cookie and mark the
|
|
* descriptor pending. To be pushed on .issue_pending() call
|
|
* @callback: routine to call after this operation is complete
|
|
* @callback_param: general parameter to pass to the callback routine
|
|
* ---async_tx api specific fields---
|
|
* @next: at completion submit this descriptor
|
|
* @parent: pointer to the next level up in the dependency chain
|
|
* @lock: protect the parent and next pointers
|
|
*/
|
|
struct dma_async_tx_descriptor {
|
|
dma_cookie_t cookie;
|
|
enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
|
|
dma_addr_t phys;
|
|
struct dma_chan *chan;
|
|
dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
|
|
int (*desc_free)(struct dma_async_tx_descriptor *tx);
|
|
dma_async_tx_callback callback;
|
|
dma_async_tx_callback_result callback_result;
|
|
void *callback_param;
|
|
struct dmaengine_unmap_data *unmap;
|
|
#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
|
|
struct dma_async_tx_descriptor *next;
|
|
struct dma_async_tx_descriptor *parent;
|
|
spinlock_t lock;
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
|
|
struct dmaengine_unmap_data *unmap)
|
|
{
|
|
kref_get(&unmap->kref);
|
|
tx->unmap = unmap;
|
|
}
|
|
|
|
struct dmaengine_unmap_data *
|
|
dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
|
|
void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
|
|
#else
|
|
static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
|
|
struct dmaengine_unmap_data *unmap)
|
|
{
|
|
}
|
|
static inline struct dmaengine_unmap_data *
|
|
dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
if (tx->unmap) {
|
|
dmaengine_unmap_put(tx->unmap);
|
|
tx->unmap = NULL;
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
|
|
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
}
|
|
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
}
|
|
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
|
|
{
|
|
BUG();
|
|
}
|
|
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
}
|
|
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
}
|
|
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
#else
|
|
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
spin_lock_bh(&txd->lock);
|
|
}
|
|
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
spin_unlock_bh(&txd->lock);
|
|
}
|
|
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
|
|
{
|
|
txd->next = next;
|
|
next->parent = txd;
|
|
}
|
|
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
txd->parent = NULL;
|
|
}
|
|
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
txd->next = NULL;
|
|
}
|
|
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
return txd->parent;
|
|
}
|
|
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
return txd->next;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* struct dma_tx_state - filled in to report the status of
|
|
* a transfer.
|
|
* @last: last completed DMA cookie
|
|
* @used: last issued DMA cookie (i.e. the one in progress)
|
|
* @residue: the remaining number of bytes left to transmit
|
|
* on the selected transfer for states DMA_IN_PROGRESS and
|
|
* DMA_PAUSED if this is implemented in the driver, else 0
|
|
*/
|
|
struct dma_tx_state {
|
|
dma_cookie_t last;
|
|
dma_cookie_t used;
|
|
u32 residue;
|
|
};
|
|
|
|
/**
|
|
* enum dmaengine_alignment - defines alignment of the DMA async tx
|
|
* buffers
|
|
*/
|
|
enum dmaengine_alignment {
|
|
DMAENGINE_ALIGN_1_BYTE = 0,
|
|
DMAENGINE_ALIGN_2_BYTES = 1,
|
|
DMAENGINE_ALIGN_4_BYTES = 2,
|
|
DMAENGINE_ALIGN_8_BYTES = 3,
|
|
DMAENGINE_ALIGN_16_BYTES = 4,
|
|
DMAENGINE_ALIGN_32_BYTES = 5,
|
|
DMAENGINE_ALIGN_64_BYTES = 6,
|
|
};
|
|
|
|
/**
|
|
* struct dma_slave_map - associates slave device and it's slave channel with
|
|
* parameter to be used by a filter function
|
|
* @devname: name of the device
|
|
* @slave: slave channel name
|
|
* @param: opaque parameter to pass to struct dma_filter.fn
|
|
*/
|
|
struct dma_slave_map {
|
|
const char *devname;
|
|
const char *slave;
|
|
void *param;
|
|
};
|
|
|
|
/**
|
|
* struct dma_filter - information for slave device/channel to filter_fn/param
|
|
* mapping
|
|
* @fn: filter function callback
|
|
* @mapcnt: number of slave device/channel in the map
|
|
* @map: array of channel to filter mapping data
|
|
*/
|
|
struct dma_filter {
|
|
dma_filter_fn fn;
|
|
int mapcnt;
|
|
const struct dma_slave_map *map;
|
|
};
|
|
|
|
/**
|
|
* struct dma_device - info on the entity supplying DMA services
|
|
* @chancnt: how many DMA channels are supported
|
|
* @privatecnt: how many DMA channels are requested by dma_request_channel
|
|
* @channels: the list of struct dma_chan
|
|
* @global_node: list_head for global dma_device_list
|
|
* @filter: information for device/slave to filter function/param mapping
|
|
* @cap_mask: one or more dma_capability flags
|
|
* @max_xor: maximum number of xor sources, 0 if no capability
|
|
* @max_pq: maximum number of PQ sources and PQ-continue capability
|
|
* @copy_align: alignment shift for memcpy operations
|
|
* @xor_align: alignment shift for xor operations
|
|
* @pq_align: alignment shift for pq operations
|
|
* @fill_align: alignment shift for memset operations
|
|
* @dev_id: unique device ID
|
|
* @dev: struct device reference for dma mapping api
|
|
* @src_addr_widths: bit mask of src addr widths the device supports
|
|
* Width is specified in bytes, e.g. for a device supporting
|
|
* a width of 4 the mask should have BIT(4) set.
|
|
* @dst_addr_widths: bit mask of dst addr widths the device supports
|
|
* @directions: bit mask of slave directions the device supports.
|
|
* Since the enum dma_transfer_direction is not defined as bit flag for
|
|
* each type, the dma controller should set BIT(<TYPE>) and same
|
|
* should be checked by controller as well
|
|
* @max_burst: max burst capability per-transfer
|
|
* @residue_granularity: granularity of the transfer residue reported
|
|
* by tx_status
|
|
* @device_alloc_chan_resources: allocate resources and return the
|
|
* number of allocated descriptors
|
|
* @device_free_chan_resources: release DMA channel's resources
|
|
* @device_prep_dma_memcpy: prepares a memcpy operation
|
|
* @device_prep_dma_xor: prepares a xor operation
|
|
* @device_prep_dma_xor_val: prepares a xor validation operation
|
|
* @device_prep_dma_pq: prepares a pq operation
|
|
* @device_prep_dma_pq_val: prepares a pqzero_sum operation
|
|
* @device_prep_dma_memset: prepares a memset operation
|
|
* @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
|
|
* @device_prep_dma_interrupt: prepares an end of chain interrupt operation
|
|
* @device_prep_slave_sg: prepares a slave dma operation
|
|
* @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
|
|
* The function takes a buffer of size buf_len. The callback function will
|
|
* be called after period_len bytes have been transferred.
|
|
* @device_prep_interleaved_dma: Transfer expression in a generic way.
|
|
* @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
|
|
* @device_config: Pushes a new configuration to a channel, return 0 or an error
|
|
* code
|
|
* @device_pause: Pauses any transfer happening on a channel. Returns
|
|
* 0 or an error code
|
|
* @device_resume: Resumes any transfer on a channel previously
|
|
* paused. Returns 0 or an error code
|
|
* @device_terminate_all: Aborts all transfers on a channel. Returns 0
|
|
* or an error code
|
|
* @device_synchronize: Synchronizes the termination of a transfers to the
|
|
* current context.
|
|
* @device_tx_status: poll for transaction completion, the optional
|
|
* txstate parameter can be supplied with a pointer to get a
|
|
* struct with auxiliary transfer status information, otherwise the call
|
|
* will just return a simple status code
|
|
* @device_issue_pending: push pending transactions to hardware
|
|
* @descriptor_reuse: a submitted transfer can be resubmitted after completion
|
|
*/
|
|
struct dma_device {
|
|
|
|
unsigned int chancnt;
|
|
unsigned int privatecnt;
|
|
struct list_head channels;
|
|
struct list_head global_node;
|
|
struct dma_filter filter;
|
|
dma_cap_mask_t cap_mask;
|
|
unsigned short max_xor;
|
|
unsigned short max_pq;
|
|
enum dmaengine_alignment copy_align;
|
|
enum dmaengine_alignment xor_align;
|
|
enum dmaengine_alignment pq_align;
|
|
enum dmaengine_alignment fill_align;
|
|
#define DMA_HAS_PQ_CONTINUE (1 << 15)
|
|
|
|
int dev_id;
|
|
struct device *dev;
|
|
|
|
u32 src_addr_widths;
|
|
u32 dst_addr_widths;
|
|
u32 directions;
|
|
u32 max_burst;
|
|
bool descriptor_reuse;
|
|
enum dma_residue_granularity residue_granularity;
|
|
|
|
int (*device_alloc_chan_resources)(struct dma_chan *chan);
|
|
void (*device_free_chan_resources)(struct dma_chan *chan);
|
|
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
|
|
struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
|
|
size_t len, unsigned long flags);
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
|
|
struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
|
|
unsigned int src_cnt, size_t len, unsigned long flags);
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
|
|
struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
|
|
size_t len, enum sum_check_flags *result, unsigned long flags);
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
|
|
struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf,
|
|
size_t len, unsigned long flags);
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
|
|
struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf, size_t len,
|
|
enum sum_check_flags *pqres, unsigned long flags);
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
|
|
struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
|
|
unsigned long flags);
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
|
|
struct dma_chan *chan, struct scatterlist *sg,
|
|
unsigned int nents, int value, unsigned long flags);
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
|
|
struct dma_chan *chan, unsigned long flags);
|
|
|
|
struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
|
|
struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context);
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
|
|
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags);
|
|
struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
|
|
struct dma_chan *chan, struct dma_interleaved_template *xt,
|
|
unsigned long flags);
|
|
struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
|
|
struct dma_chan *chan, dma_addr_t dst, u64 data,
|
|
unsigned long flags);
|
|
|
|
int (*device_config)(struct dma_chan *chan,
|
|
struct dma_slave_config *config);
|
|
int (*device_pause)(struct dma_chan *chan);
|
|
int (*device_resume)(struct dma_chan *chan);
|
|
int (*device_terminate_all)(struct dma_chan *chan);
|
|
void (*device_synchronize)(struct dma_chan *chan);
|
|
|
|
enum dma_status (*device_tx_status)(struct dma_chan *chan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate);
|
|
void (*device_issue_pending)(struct dma_chan *chan);
|
|
};
|
|
|
|
static inline int dmaengine_slave_config(struct dma_chan *chan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
if (chan->device->device_config)
|
|
return chan->device->device_config(chan, config);
|
|
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static inline bool is_slave_direction(enum dma_transfer_direction direction)
|
|
{
|
|
return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
|
|
}
|
|
|
|
static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
|
|
struct dma_chan *chan, dma_addr_t buf, size_t len,
|
|
enum dma_transfer_direction dir, unsigned long flags)
|
|
{
|
|
struct scatterlist sg;
|
|
sg_init_table(&sg, 1);
|
|
sg_dma_address(&sg) = buf;
|
|
sg_dma_len(&sg) = len;
|
|
|
|
if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
|
|
return NULL;
|
|
|
|
return chan->device->device_prep_slave_sg(chan, &sg, 1,
|
|
dir, flags, NULL);
|
|
}
|
|
|
|
static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
|
|
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
|
|
enum dma_transfer_direction dir, unsigned long flags)
|
|
{
|
|
if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
|
|
return NULL;
|
|
|
|
return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
|
|
dir, flags, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_RAPIDIO_DMA_ENGINE
|
|
struct rio_dma_ext;
|
|
static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
|
|
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
|
|
enum dma_transfer_direction dir, unsigned long flags,
|
|
struct rio_dma_ext *rio_ext)
|
|
{
|
|
if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
|
|
return NULL;
|
|
|
|
return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
|
|
dir, flags, rio_ext);
|
|
}
|
|
#endif
|
|
|
|
static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
|
|
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction dir,
|
|
unsigned long flags)
|
|
{
|
|
if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
|
|
return NULL;
|
|
|
|
return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
|
|
period_len, dir, flags);
|
|
}
|
|
|
|
static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
|
|
struct dma_chan *chan, struct dma_interleaved_template *xt,
|
|
unsigned long flags)
|
|
{
|
|
if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
|
|
return NULL;
|
|
|
|
return chan->device->device_prep_interleaved_dma(chan, xt, flags);
|
|
}
|
|
|
|
static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
|
|
struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
|
|
unsigned long flags)
|
|
{
|
|
if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
|
|
return NULL;
|
|
|
|
return chan->device->device_prep_dma_memset(chan, dest, value,
|
|
len, flags);
|
|
}
|
|
|
|
static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
|
|
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
|
|
return NULL;
|
|
|
|
return chan->device->device_prep_dma_memcpy(chan, dest, src,
|
|
len, flags);
|
|
}
|
|
|
|
/**
|
|
* dmaengine_terminate_all() - Terminate all active DMA transfers
|
|
* @chan: The channel for which to terminate the transfers
|
|
*
|
|
* This function is DEPRECATED use either dmaengine_terminate_sync() or
|
|
* dmaengine_terminate_async() instead.
|
|
*/
|
|
static inline int dmaengine_terminate_all(struct dma_chan *chan)
|
|
{
|
|
if (chan->device->device_terminate_all)
|
|
return chan->device->device_terminate_all(chan);
|
|
|
|
return -ENOSYS;
|
|
}
|
|
|
|
/**
|
|
* dmaengine_terminate_async() - Terminate all active DMA transfers
|
|
* @chan: The channel for which to terminate the transfers
|
|
*
|
|
* Calling this function will terminate all active and pending descriptors
|
|
* that have previously been submitted to the channel. It is not guaranteed
|
|
* though that the transfer for the active descriptor has stopped when the
|
|
* function returns. Furthermore it is possible the complete callback of a
|
|
* submitted transfer is still running when this function returns.
|
|
*
|
|
* dmaengine_synchronize() needs to be called before it is safe to free
|
|
* any memory that is accessed by previously submitted descriptors or before
|
|
* freeing any resources accessed from within the completion callback of any
|
|
* perviously submitted descriptors.
|
|
*
|
|
* This function can be called from atomic context as well as from within a
|
|
* complete callback of a descriptor submitted on the same channel.
|
|
*
|
|
* If none of the two conditions above apply consider using
|
|
* dmaengine_terminate_sync() instead.
|
|
*/
|
|
static inline int dmaengine_terminate_async(struct dma_chan *chan)
|
|
{
|
|
if (chan->device->device_terminate_all)
|
|
return chan->device->device_terminate_all(chan);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* dmaengine_synchronize() - Synchronize DMA channel termination
|
|
* @chan: The channel to synchronize
|
|
*
|
|
* Synchronizes to the DMA channel termination to the current context. When this
|
|
* function returns it is guaranteed that all transfers for previously issued
|
|
* descriptors have stopped and and it is safe to free the memory assoicated
|
|
* with them. Furthermore it is guaranteed that all complete callback functions
|
|
* for a previously submitted descriptor have finished running and it is safe to
|
|
* free resources accessed from within the complete callbacks.
|
|
*
|
|
* The behavior of this function is undefined if dma_async_issue_pending() has
|
|
* been called between dmaengine_terminate_async() and this function.
|
|
*
|
|
* This function must only be called from non-atomic context and must not be
|
|
* called from within a complete callback of a descriptor submitted on the same
|
|
* channel.
|
|
*/
|
|
static inline void dmaengine_synchronize(struct dma_chan *chan)
|
|
{
|
|
might_sleep();
|
|
|
|
if (chan->device->device_synchronize)
|
|
chan->device->device_synchronize(chan);
|
|
}
|
|
|
|
/**
|
|
* dmaengine_terminate_sync() - Terminate all active DMA transfers
|
|
* @chan: The channel for which to terminate the transfers
|
|
*
|
|
* Calling this function will terminate all active and pending transfers
|
|
* that have previously been submitted to the channel. It is similar to
|
|
* dmaengine_terminate_async() but guarantees that the DMA transfer has actually
|
|
* stopped and that all complete callbacks have finished running when the
|
|
* function returns.
|
|
*
|
|
* This function must only be called from non-atomic context and must not be
|
|
* called from within a complete callback of a descriptor submitted on the same
|
|
* channel.
|
|
*/
|
|
static inline int dmaengine_terminate_sync(struct dma_chan *chan)
|
|
{
|
|
int ret;
|
|
|
|
ret = dmaengine_terminate_async(chan);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dmaengine_synchronize(chan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int dmaengine_pause(struct dma_chan *chan)
|
|
{
|
|
if (chan->device->device_pause)
|
|
return chan->device->device_pause(chan);
|
|
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static inline int dmaengine_resume(struct dma_chan *chan)
|
|
{
|
|
if (chan->device->device_resume)
|
|
return chan->device->device_resume(chan);
|
|
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie, struct dma_tx_state *state)
|
|
{
|
|
return chan->device->device_tx_status(chan, cookie, state);
|
|
}
|
|
|
|
static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
|
|
{
|
|
return desc->tx_submit(desc);
|
|
}
|
|
|
|
static inline bool dmaengine_check_align(enum dmaengine_alignment align,
|
|
size_t off1, size_t off2, size_t len)
|
|
{
|
|
size_t mask;
|
|
|
|
if (!align)
|
|
return true;
|
|
mask = (1 << align) - 1;
|
|
if (mask & (off1 | off2 | len))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
|
|
size_t off2, size_t len)
|
|
{
|
|
return dmaengine_check_align(dev->copy_align, off1, off2, len);
|
|
}
|
|
|
|
static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
|
|
size_t off2, size_t len)
|
|
{
|
|
return dmaengine_check_align(dev->xor_align, off1, off2, len);
|
|
}
|
|
|
|
static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
|
|
size_t off2, size_t len)
|
|
{
|
|
return dmaengine_check_align(dev->pq_align, off1, off2, len);
|
|
}
|
|
|
|
static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
|
|
size_t off2, size_t len)
|
|
{
|
|
return dmaengine_check_align(dev->fill_align, off1, off2, len);
|
|
}
|
|
|
|
static inline void
|
|
dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
|
|
{
|
|
dma->max_pq = maxpq;
|
|
if (has_pq_continue)
|
|
dma->max_pq |= DMA_HAS_PQ_CONTINUE;
|
|
}
|
|
|
|
static inline bool dmaf_continue(enum dma_ctrl_flags flags)
|
|
{
|
|
return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
|
|
}
|
|
|
|
static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
|
|
{
|
|
enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
|
|
|
|
return (flags & mask) == mask;
|
|
}
|
|
|
|
static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
|
|
{
|
|
return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
|
|
}
|
|
|
|
static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
|
|
{
|
|
return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
|
|
}
|
|
|
|
/* dma_maxpq - reduce maxpq in the face of continued operations
|
|
* @dma - dma device with PQ capability
|
|
* @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
|
|
*
|
|
* When an engine does not support native continuation we need 3 extra
|
|
* source slots to reuse P and Q with the following coefficients:
|
|
* 1/ {00} * P : remove P from Q', but use it as a source for P'
|
|
* 2/ {01} * Q : use Q to continue Q' calculation
|
|
* 3/ {00} * Q : subtract Q from P' to cancel (2)
|
|
*
|
|
* In the case where P is disabled we only need 1 extra source:
|
|
* 1/ {01} * Q : use Q to continue Q' calculation
|
|
*/
|
|
static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
|
|
{
|
|
if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
|
|
return dma_dev_to_maxpq(dma);
|
|
else if (dmaf_p_disabled_continue(flags))
|
|
return dma_dev_to_maxpq(dma) - 1;
|
|
else if (dmaf_continue(flags))
|
|
return dma_dev_to_maxpq(dma) - 3;
|
|
BUG();
|
|
}
|
|
|
|
static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
|
|
size_t dir_icg)
|
|
{
|
|
if (inc) {
|
|
if (dir_icg)
|
|
return dir_icg;
|
|
else if (sgl)
|
|
return icg;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
|
|
struct data_chunk *chunk)
|
|
{
|
|
return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
|
|
chunk->icg, chunk->dst_icg);
|
|
}
|
|
|
|
static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
|
|
struct data_chunk *chunk)
|
|
{
|
|
return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
|
|
chunk->icg, chunk->src_icg);
|
|
}
|
|
|
|
/* --- public DMA engine API --- */
|
|
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
void dmaengine_get(void);
|
|
void dmaengine_put(void);
|
|
#else
|
|
static inline void dmaengine_get(void)
|
|
{
|
|
}
|
|
static inline void dmaengine_put(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ASYNC_TX_DMA
|
|
#define async_dmaengine_get() dmaengine_get()
|
|
#define async_dmaengine_put() dmaengine_put()
|
|
#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
|
|
#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
|
|
#else
|
|
#define async_dma_find_channel(type) dma_find_channel(type)
|
|
#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
|
|
#else
|
|
static inline void async_dmaengine_get(void)
|
|
{
|
|
}
|
|
static inline void async_dmaengine_put(void)
|
|
{
|
|
}
|
|
static inline struct dma_chan *
|
|
async_dma_find_channel(enum dma_transaction_type type)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_ASYNC_TX_DMA */
|
|
void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
|
|
struct dma_chan *chan);
|
|
|
|
static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
tx->flags |= DMA_CTRL_ACK;
|
|
}
|
|
|
|
static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
tx->flags &= ~DMA_CTRL_ACK;
|
|
}
|
|
|
|
static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
|
|
}
|
|
|
|
#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
|
|
static inline void
|
|
__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
|
|
{
|
|
set_bit(tx_type, dstp->bits);
|
|
}
|
|
|
|
#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
|
|
static inline void
|
|
__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
|
|
{
|
|
clear_bit(tx_type, dstp->bits);
|
|
}
|
|
|
|
#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
|
|
static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
|
|
{
|
|
bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
|
|
}
|
|
|
|
#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
|
|
static inline int
|
|
__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
|
|
{
|
|
return test_bit(tx_type, srcp->bits);
|
|
}
|
|
|
|
#define for_each_dma_cap_mask(cap, mask) \
|
|
for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
|
|
|
|
/**
|
|
* dma_async_issue_pending - flush pending transactions to HW
|
|
* @chan: target DMA channel
|
|
*
|
|
* This allows drivers to push copies to HW in batches,
|
|
* reducing MMIO writes where possible.
|
|
*/
|
|
static inline void dma_async_issue_pending(struct dma_chan *chan)
|
|
{
|
|
chan->device->device_issue_pending(chan);
|
|
}
|
|
|
|
/**
|
|
* dma_async_is_tx_complete - poll for transaction completion
|
|
* @chan: DMA channel
|
|
* @cookie: transaction identifier to check status of
|
|
* @last: returns last completed cookie, can be NULL
|
|
* @used: returns last issued cookie, can be NULL
|
|
*
|
|
* If @last and @used are passed in, upon return they reflect the driver
|
|
* internal state and can be used with dma_async_is_complete() to check
|
|
* the status of multiple cookies without re-checking hardware state.
|
|
*/
|
|
static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
|
|
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
|
|
{
|
|
struct dma_tx_state state;
|
|
enum dma_status status;
|
|
|
|
status = chan->device->device_tx_status(chan, cookie, &state);
|
|
if (last)
|
|
*last = state.last;
|
|
if (used)
|
|
*used = state.used;
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* dma_async_is_complete - test a cookie against chan state
|
|
* @cookie: transaction identifier to test status of
|
|
* @last_complete: last know completed transaction
|
|
* @last_used: last cookie value handed out
|
|
*
|
|
* dma_async_is_complete() is used in dma_async_is_tx_complete()
|
|
* the test logic is separated for lightweight testing of multiple cookies
|
|
*/
|
|
static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
|
|
dma_cookie_t last_complete, dma_cookie_t last_used)
|
|
{
|
|
if (last_complete <= last_used) {
|
|
if ((cookie <= last_complete) || (cookie > last_used))
|
|
return DMA_COMPLETE;
|
|
} else {
|
|
if ((cookie <= last_complete) && (cookie > last_used))
|
|
return DMA_COMPLETE;
|
|
}
|
|
return DMA_IN_PROGRESS;
|
|
}
|
|
|
|
static inline void
|
|
dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
|
|
{
|
|
if (st) {
|
|
st->last = last;
|
|
st->used = used;
|
|
st->residue = residue;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
|
|
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
|
|
enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
|
|
void dma_issue_pending_all(void);
|
|
struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
|
|
dma_filter_fn fn, void *fn_param);
|
|
struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
|
|
|
|
struct dma_chan *dma_request_chan(struct device *dev, const char *name);
|
|
struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
|
|
|
|
void dma_release_channel(struct dma_chan *chan);
|
|
int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
|
|
#else
|
|
static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
|
|
{
|
|
return DMA_COMPLETE;
|
|
}
|
|
static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
return DMA_COMPLETE;
|
|
}
|
|
static inline void dma_issue_pending_all(void)
|
|
{
|
|
}
|
|
static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
|
|
dma_filter_fn fn, void *fn_param)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
|
|
const char *name)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline struct dma_chan *dma_request_chan(struct device *dev,
|
|
const char *name)
|
|
{
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
static inline struct dma_chan *dma_request_chan_by_mask(
|
|
const dma_cap_mask_t *mask)
|
|
{
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
static inline void dma_release_channel(struct dma_chan *chan)
|
|
{
|
|
}
|
|
static inline int dma_get_slave_caps(struct dma_chan *chan,
|
|
struct dma_slave_caps *caps)
|
|
{
|
|
return -ENXIO;
|
|
}
|
|
#endif
|
|
|
|
#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
|
|
|
|
static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct dma_slave_caps caps;
|
|
|
|
dma_get_slave_caps(tx->chan, &caps);
|
|
|
|
if (caps.descriptor_reuse) {
|
|
tx->flags |= DMA_CTRL_REUSE;
|
|
return 0;
|
|
} else {
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
tx->flags &= ~DMA_CTRL_REUSE;
|
|
}
|
|
|
|
static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
|
|
}
|
|
|
|
static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
|
|
{
|
|
/* this is supported for reusable desc, so check that */
|
|
if (dmaengine_desc_test_reuse(desc))
|
|
return desc->desc_free(desc);
|
|
else
|
|
return -EPERM;
|
|
}
|
|
|
|
/* --- DMA device --- */
|
|
|
|
int dma_async_device_register(struct dma_device *device);
|
|
int dmaenginem_async_device_register(struct dma_device *device);
|
|
void dma_async_device_unregister(struct dma_device *device);
|
|
void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
|
|
struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
|
|
struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
|
|
#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
|
|
#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
|
|
__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
|
|
|
|
static inline struct dma_chan
|
|
*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
|
|
dma_filter_fn fn, void *fn_param,
|
|
struct device *dev, const char *name)
|
|
{
|
|
struct dma_chan *chan;
|
|
|
|
chan = dma_request_slave_channel(dev, name);
|
|
if (chan)
|
|
return chan;
|
|
|
|
if (!fn || !fn_param)
|
|
return NULL;
|
|
|
|
return __dma_request_channel(mask, fn, fn_param);
|
|
}
|
|
#endif /* DMAENGINE_H */
|