linux_dsm_epyc7002/drivers/isdn/hardware/mISDN/avmfritz.c
Markus Elfring 0f817a5eb9 mISDN: Delete unnecessary checks before the macro call “dev_kfree_skb”
The dev_kfree_skb() function performs also input parameter validation.
Thus the test around the shown calls is not needed.

This issue was detected by using the Coccinelle software.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-22 16:22:03 -07:00

1164 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* avm_fritz.c low level stuff for AVM FRITZ!CARD PCI ISDN cards
* Thanks to AVM, Berlin for informations
*
* Author Karsten Keil <keil@isdn4linux.de>
*
* Copyright 2009 by Karsten Keil <keil@isdn4linux.de>
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mISDNhw.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include "ipac.h"
#define AVMFRITZ_REV "2.3"
static int AVM_cnt;
static int debug;
enum {
AVM_FRITZ_PCI,
AVM_FRITZ_PCIV2,
};
#define HDLC_FIFO 0x0
#define HDLC_STATUS 0x4
#define CHIP_WINDOW 0x10
#define CHIP_INDEX 0x4
#define AVM_HDLC_1 0x00
#define AVM_HDLC_2 0x01
#define AVM_ISAC_FIFO 0x02
#define AVM_ISAC_REG_LOW 0x04
#define AVM_ISAC_REG_HIGH 0x06
#define AVM_STATUS0_IRQ_ISAC 0x01
#define AVM_STATUS0_IRQ_HDLC 0x02
#define AVM_STATUS0_IRQ_TIMER 0x04
#define AVM_STATUS0_IRQ_MASK 0x07
#define AVM_STATUS0_RESET 0x01
#define AVM_STATUS0_DIS_TIMER 0x02
#define AVM_STATUS0_RES_TIMER 0x04
#define AVM_STATUS0_ENA_IRQ 0x08
#define AVM_STATUS0_TESTBIT 0x10
#define AVM_STATUS1_INT_SEL 0x0f
#define AVM_STATUS1_ENA_IOM 0x80
#define HDLC_MODE_ITF_FLG 0x01
#define HDLC_MODE_TRANS 0x02
#define HDLC_MODE_CCR_7 0x04
#define HDLC_MODE_CCR_16 0x08
#define HDLC_FIFO_SIZE_128 0x20
#define HDLC_MODE_TESTLOOP 0x80
#define HDLC_INT_XPR 0x80
#define HDLC_INT_XDU 0x40
#define HDLC_INT_RPR 0x20
#define HDLC_INT_MASK 0xE0
#define HDLC_STAT_RME 0x01
#define HDLC_STAT_RDO 0x10
#define HDLC_STAT_CRCVFRRAB 0x0E
#define HDLC_STAT_CRCVFR 0x06
#define HDLC_STAT_RML_MASK_V1 0x3f00
#define HDLC_STAT_RML_MASK_V2 0x7f00
#define HDLC_CMD_XRS 0x80
#define HDLC_CMD_XME 0x01
#define HDLC_CMD_RRS 0x20
#define HDLC_CMD_XML_MASK 0x3f00
#define HDLC_FIFO_SIZE_V1 32
#define HDLC_FIFO_SIZE_V2 128
/* Fritz PCI v2.0 */
#define AVM_HDLC_FIFO_1 0x10
#define AVM_HDLC_FIFO_2 0x18
#define AVM_HDLC_STATUS_1 0x14
#define AVM_HDLC_STATUS_2 0x1c
#define AVM_ISACX_INDEX 0x04
#define AVM_ISACX_DATA 0x08
/* data struct */
#define LOG_SIZE 63
struct hdlc_stat_reg {
#ifdef __BIG_ENDIAN
u8 fill;
u8 mode;
u8 xml;
u8 cmd;
#else
u8 cmd;
u8 xml;
u8 mode;
u8 fill;
#endif
} __attribute__((packed));
struct hdlc_hw {
union {
u32 ctrl;
struct hdlc_stat_reg sr;
} ctrl;
u32 stat;
};
struct fritzcard {
struct list_head list;
struct pci_dev *pdev;
char name[MISDN_MAX_IDLEN];
u8 type;
u8 ctrlreg;
u16 irq;
u32 irqcnt;
u32 addr;
spinlock_t lock; /* hw lock */
struct isac_hw isac;
struct hdlc_hw hdlc[2];
struct bchannel bch[2];
char log[LOG_SIZE + 1];
};
static LIST_HEAD(Cards);
static DEFINE_RWLOCK(card_lock); /* protect Cards */
static void
_set_debug(struct fritzcard *card)
{
card->isac.dch.debug = debug;
card->bch[0].debug = debug;
card->bch[1].debug = debug;
}
static int
set_debug(const char *val, const struct kernel_param *kp)
{
int ret;
struct fritzcard *card;
ret = param_set_uint(val, kp);
if (!ret) {
read_lock(&card_lock);
list_for_each_entry(card, &Cards, list)
_set_debug(card);
read_unlock(&card_lock);
}
return ret;
}
MODULE_AUTHOR("Karsten Keil");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(AVMFRITZ_REV);
module_param_call(debug, set_debug, param_get_uint, &debug, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "avmfritz debug mask");
/* Interface functions */
static u8
ReadISAC_V1(void *p, u8 offset)
{
struct fritzcard *fc = p;
u8 idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
outb(idx, fc->addr + CHIP_INDEX);
return inb(fc->addr + CHIP_WINDOW + (offset & 0xf));
}
static void
WriteISAC_V1(void *p, u8 offset, u8 value)
{
struct fritzcard *fc = p;
u8 idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
outb(idx, fc->addr + CHIP_INDEX);
outb(value, fc->addr + CHIP_WINDOW + (offset & 0xf));
}
static void
ReadFiFoISAC_V1(void *p, u8 off, u8 *data, int size)
{
struct fritzcard *fc = p;
outb(AVM_ISAC_FIFO, fc->addr + CHIP_INDEX);
insb(fc->addr + CHIP_WINDOW, data, size);
}
static void
WriteFiFoISAC_V1(void *p, u8 off, u8 *data, int size)
{
struct fritzcard *fc = p;
outb(AVM_ISAC_FIFO, fc->addr + CHIP_INDEX);
outsb(fc->addr + CHIP_WINDOW, data, size);
}
static u8
ReadISAC_V2(void *p, u8 offset)
{
struct fritzcard *fc = p;
outl(offset, fc->addr + AVM_ISACX_INDEX);
return 0xff & inl(fc->addr + AVM_ISACX_DATA);
}
static void
WriteISAC_V2(void *p, u8 offset, u8 value)
{
struct fritzcard *fc = p;
outl(offset, fc->addr + AVM_ISACX_INDEX);
outl(value, fc->addr + AVM_ISACX_DATA);
}
static void
ReadFiFoISAC_V2(void *p, u8 off, u8 *data, int size)
{
struct fritzcard *fc = p;
int i;
outl(off, fc->addr + AVM_ISACX_INDEX);
for (i = 0; i < size; i++)
data[i] = 0xff & inl(fc->addr + AVM_ISACX_DATA);
}
static void
WriteFiFoISAC_V2(void *p, u8 off, u8 *data, int size)
{
struct fritzcard *fc = p;
int i;
outl(off, fc->addr + AVM_ISACX_INDEX);
for (i = 0; i < size; i++)
outl(data[i], fc->addr + AVM_ISACX_DATA);
}
static struct bchannel *
Sel_BCS(struct fritzcard *fc, u32 channel)
{
if (test_bit(FLG_ACTIVE, &fc->bch[0].Flags) &&
(fc->bch[0].nr & channel))
return &fc->bch[0];
else if (test_bit(FLG_ACTIVE, &fc->bch[1].Flags) &&
(fc->bch[1].nr & channel))
return &fc->bch[1];
else
return NULL;
}
static inline void
__write_ctrl_pci(struct fritzcard *fc, struct hdlc_hw *hdlc, u32 channel) {
u32 idx = channel == 2 ? AVM_HDLC_2 : AVM_HDLC_1;
outl(idx, fc->addr + CHIP_INDEX);
outl(hdlc->ctrl.ctrl, fc->addr + CHIP_WINDOW + HDLC_STATUS);
}
static inline void
__write_ctrl_pciv2(struct fritzcard *fc, struct hdlc_hw *hdlc, u32 channel) {
outl(hdlc->ctrl.ctrl, fc->addr + (channel == 2 ? AVM_HDLC_STATUS_2 :
AVM_HDLC_STATUS_1));
}
static void
write_ctrl(struct bchannel *bch, int which) {
struct fritzcard *fc = bch->hw;
struct hdlc_hw *hdlc;
hdlc = &fc->hdlc[(bch->nr - 1) & 1];
pr_debug("%s: hdlc %c wr%x ctrl %x\n", fc->name, '@' + bch->nr,
which, hdlc->ctrl.ctrl);
switch (fc->type) {
case AVM_FRITZ_PCIV2:
__write_ctrl_pciv2(fc, hdlc, bch->nr);
break;
case AVM_FRITZ_PCI:
__write_ctrl_pci(fc, hdlc, bch->nr);
break;
}
}
static inline u32
__read_status_pci(u_long addr, u32 channel)
{
outl(channel == 2 ? AVM_HDLC_2 : AVM_HDLC_1, addr + CHIP_INDEX);
return inl(addr + CHIP_WINDOW + HDLC_STATUS);
}
static inline u32
__read_status_pciv2(u_long addr, u32 channel)
{
return inl(addr + (channel == 2 ? AVM_HDLC_STATUS_2 :
AVM_HDLC_STATUS_1));
}
static u32
read_status(struct fritzcard *fc, u32 channel)
{
switch (fc->type) {
case AVM_FRITZ_PCIV2:
return __read_status_pciv2(fc->addr, channel);
case AVM_FRITZ_PCI:
return __read_status_pci(fc->addr, channel);
}
/* dummy */
return 0;
}
static void
enable_hwirq(struct fritzcard *fc)
{
fc->ctrlreg |= AVM_STATUS0_ENA_IRQ;
outb(fc->ctrlreg, fc->addr + 2);
}
static void
disable_hwirq(struct fritzcard *fc)
{
fc->ctrlreg &= ~AVM_STATUS0_ENA_IRQ;
outb(fc->ctrlreg, fc->addr + 2);
}
static int
modehdlc(struct bchannel *bch, int protocol)
{
struct fritzcard *fc = bch->hw;
struct hdlc_hw *hdlc;
u8 mode;
hdlc = &fc->hdlc[(bch->nr - 1) & 1];
pr_debug("%s: hdlc %c protocol %x-->%x ch %d\n", fc->name,
'@' + bch->nr, bch->state, protocol, bch->nr);
hdlc->ctrl.ctrl = 0;
mode = (fc->type == AVM_FRITZ_PCIV2) ? HDLC_FIFO_SIZE_128 : 0;
switch (protocol) {
case -1: /* used for init */
bch->state = -1;
/* fall through */
case ISDN_P_NONE:
if (bch->state == ISDN_P_NONE)
break;
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
hdlc->ctrl.sr.mode = mode | HDLC_MODE_TRANS;
write_ctrl(bch, 5);
bch->state = ISDN_P_NONE;
test_and_clear_bit(FLG_HDLC, &bch->Flags);
test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
break;
case ISDN_P_B_RAW:
bch->state = protocol;
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
hdlc->ctrl.sr.mode = mode | HDLC_MODE_TRANS;
write_ctrl(bch, 5);
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS;
write_ctrl(bch, 1);
hdlc->ctrl.sr.cmd = 0;
test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
break;
case ISDN_P_B_HDLC:
bch->state = protocol;
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
hdlc->ctrl.sr.mode = mode | HDLC_MODE_ITF_FLG;
write_ctrl(bch, 5);
hdlc->ctrl.sr.cmd = HDLC_CMD_XRS;
write_ctrl(bch, 1);
hdlc->ctrl.sr.cmd = 0;
test_and_set_bit(FLG_HDLC, &bch->Flags);
break;
default:
pr_info("%s: protocol not known %x\n", fc->name, protocol);
return -ENOPROTOOPT;
}
return 0;
}
static void
hdlc_empty_fifo(struct bchannel *bch, int count)
{
u32 *ptr;
u8 *p;
u32 val, addr;
int cnt;
struct fritzcard *fc = bch->hw;
pr_debug("%s: %s %d\n", fc->name, __func__, count);
if (test_bit(FLG_RX_OFF, &bch->Flags)) {
p = NULL;
bch->dropcnt += count;
} else {
cnt = bchannel_get_rxbuf(bch, count);
if (cnt < 0) {
pr_warning("%s.B%d: No bufferspace for %d bytes\n",
fc->name, bch->nr, count);
return;
}
p = skb_put(bch->rx_skb, count);
}
ptr = (u32 *)p;
if (fc->type == AVM_FRITZ_PCIV2)
addr = fc->addr + (bch->nr == 2 ?
AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1);
else {
addr = fc->addr + CHIP_WINDOW;
outl(bch->nr == 2 ? AVM_HDLC_2 : AVM_HDLC_1, fc->addr);
}
cnt = 0;
while (cnt < count) {
val = le32_to_cpu(inl(addr));
if (p) {
put_unaligned(val, ptr);
ptr++;
}
cnt += 4;
}
if (p && (debug & DEBUG_HW_BFIFO)) {
snprintf(fc->log, LOG_SIZE, "B%1d-recv %s %d ",
bch->nr, fc->name, count);
print_hex_dump_bytes(fc->log, DUMP_PREFIX_OFFSET, p, count);
}
}
static void
hdlc_fill_fifo(struct bchannel *bch)
{
struct fritzcard *fc = bch->hw;
struct hdlc_hw *hdlc;
int count, fs, cnt = 0, idx;
bool fillempty = false;
u8 *p;
u32 *ptr, val, addr;
idx = (bch->nr - 1) & 1;
hdlc = &fc->hdlc[idx];
fs = (fc->type == AVM_FRITZ_PCIV2) ?
HDLC_FIFO_SIZE_V2 : HDLC_FIFO_SIZE_V1;
if (!bch->tx_skb) {
if (!test_bit(FLG_TX_EMPTY, &bch->Flags))
return;
count = fs;
p = bch->fill;
fillempty = true;
} else {
count = bch->tx_skb->len - bch->tx_idx;
if (count <= 0)
return;
p = bch->tx_skb->data + bch->tx_idx;
}
hdlc->ctrl.sr.cmd &= ~HDLC_CMD_XME;
if (count > fs) {
count = fs;
} else {
if (test_bit(FLG_HDLC, &bch->Flags))
hdlc->ctrl.sr.cmd |= HDLC_CMD_XME;
}
ptr = (u32 *)p;
if (!fillempty) {
pr_debug("%s.B%d: %d/%d/%d", fc->name, bch->nr, count,
bch->tx_idx, bch->tx_skb->len);
bch->tx_idx += count;
} else {
pr_debug("%s.B%d: fillempty %d\n", fc->name, bch->nr, count);
}
hdlc->ctrl.sr.xml = ((count == fs) ? 0 : count);
if (fc->type == AVM_FRITZ_PCIV2) {
__write_ctrl_pciv2(fc, hdlc, bch->nr);
addr = fc->addr + (bch->nr == 2 ?
AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1);
} else {
__write_ctrl_pci(fc, hdlc, bch->nr);
addr = fc->addr + CHIP_WINDOW;
}
if (fillempty) {
while (cnt < count) {
/* all bytes the same - no worry about endian */
outl(*ptr, addr);
cnt += 4;
}
} else {
while (cnt < count) {
val = get_unaligned(ptr);
outl(cpu_to_le32(val), addr);
ptr++;
cnt += 4;
}
}
if ((debug & DEBUG_HW_BFIFO) && !fillempty) {
snprintf(fc->log, LOG_SIZE, "B%1d-send %s %d ",
bch->nr, fc->name, count);
print_hex_dump_bytes(fc->log, DUMP_PREFIX_OFFSET, p, count);
}
}
static void
HDLC_irq_xpr(struct bchannel *bch)
{
if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len) {
hdlc_fill_fifo(bch);
} else {
dev_kfree_skb(bch->tx_skb);
if (get_next_bframe(bch)) {
hdlc_fill_fifo(bch);
test_and_clear_bit(FLG_TX_EMPTY, &bch->Flags);
} else if (test_bit(FLG_TX_EMPTY, &bch->Flags)) {
hdlc_fill_fifo(bch);
}
}
}
static void
HDLC_irq(struct bchannel *bch, u32 stat)
{
struct fritzcard *fc = bch->hw;
int len, fs;
u32 rmlMask;
struct hdlc_hw *hdlc;
hdlc = &fc->hdlc[(bch->nr - 1) & 1];
pr_debug("%s: ch%d stat %#x\n", fc->name, bch->nr, stat);
if (fc->type == AVM_FRITZ_PCIV2) {
rmlMask = HDLC_STAT_RML_MASK_V2;
fs = HDLC_FIFO_SIZE_V2;
} else {
rmlMask = HDLC_STAT_RML_MASK_V1;
fs = HDLC_FIFO_SIZE_V1;
}
if (stat & HDLC_INT_RPR) {
if (stat & HDLC_STAT_RDO) {
pr_warning("%s: ch%d stat %x RDO\n",
fc->name, bch->nr, stat);
hdlc->ctrl.sr.xml = 0;
hdlc->ctrl.sr.cmd |= HDLC_CMD_RRS;
write_ctrl(bch, 1);
hdlc->ctrl.sr.cmd &= ~HDLC_CMD_RRS;
write_ctrl(bch, 1);
if (bch->rx_skb)
skb_trim(bch->rx_skb, 0);
} else {
len = (stat & rmlMask) >> 8;
if (!len)
len = fs;
hdlc_empty_fifo(bch, len);
if (!bch->rx_skb)
goto handle_tx;
if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
recv_Bchannel(bch, 0, false);
} else if (stat & HDLC_STAT_RME) {
if ((stat & HDLC_STAT_CRCVFRRAB) ==
HDLC_STAT_CRCVFR) {
recv_Bchannel(bch, 0, false);
} else {
pr_warning("%s: got invalid frame\n",
fc->name);
skb_trim(bch->rx_skb, 0);
}
}
}
}
handle_tx:
if (stat & HDLC_INT_XDU) {
/* Here we lost an TX interrupt, so
* restart transmitting the whole frame on HDLC
* in transparent mode we send the next data
*/
pr_warning("%s: ch%d stat %x XDU %s\n", fc->name, bch->nr,
stat, bch->tx_skb ? "tx_skb" : "no tx_skb");
if (bch->tx_skb && bch->tx_skb->len) {
if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
bch->tx_idx = 0;
} else if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
test_and_set_bit(FLG_TX_EMPTY, &bch->Flags);
}
hdlc->ctrl.sr.xml = 0;
hdlc->ctrl.sr.cmd |= HDLC_CMD_XRS;
write_ctrl(bch, 1);
hdlc->ctrl.sr.cmd &= ~HDLC_CMD_XRS;
HDLC_irq_xpr(bch);
return;
} else if (stat & HDLC_INT_XPR)
HDLC_irq_xpr(bch);
}
static inline void
HDLC_irq_main(struct fritzcard *fc)
{
u32 stat;
struct bchannel *bch;
stat = read_status(fc, 1);
if (stat & HDLC_INT_MASK) {
bch = Sel_BCS(fc, 1);
if (bch)
HDLC_irq(bch, stat);
else
pr_debug("%s: spurious ch1 IRQ\n", fc->name);
}
stat = read_status(fc, 2);
if (stat & HDLC_INT_MASK) {
bch = Sel_BCS(fc, 2);
if (bch)
HDLC_irq(bch, stat);
else
pr_debug("%s: spurious ch2 IRQ\n", fc->name);
}
}
static irqreturn_t
avm_fritz_interrupt(int intno, void *dev_id)
{
struct fritzcard *fc = dev_id;
u8 val;
u8 sval;
spin_lock(&fc->lock);
sval = inb(fc->addr + 2);
pr_debug("%s: irq stat0 %x\n", fc->name, sval);
if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
/* shared IRQ from other HW */
spin_unlock(&fc->lock);
return IRQ_NONE;
}
fc->irqcnt++;
if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
val = ReadISAC_V1(fc, ISAC_ISTA);
mISDNisac_irq(&fc->isac, val);
}
if (!(sval & AVM_STATUS0_IRQ_HDLC))
HDLC_irq_main(fc);
spin_unlock(&fc->lock);
return IRQ_HANDLED;
}
static irqreturn_t
avm_fritzv2_interrupt(int intno, void *dev_id)
{
struct fritzcard *fc = dev_id;
u8 val;
u8 sval;
spin_lock(&fc->lock);
sval = inb(fc->addr + 2);
pr_debug("%s: irq stat0 %x\n", fc->name, sval);
if (!(sval & AVM_STATUS0_IRQ_MASK)) {
/* shared IRQ from other HW */
spin_unlock(&fc->lock);
return IRQ_NONE;
}
fc->irqcnt++;
if (sval & AVM_STATUS0_IRQ_HDLC)
HDLC_irq_main(fc);
if (sval & AVM_STATUS0_IRQ_ISAC) {
val = ReadISAC_V2(fc, ISACX_ISTA);
mISDNisac_irq(&fc->isac, val);
}
if (sval & AVM_STATUS0_IRQ_TIMER) {
pr_debug("%s: timer irq\n", fc->name);
outb(fc->ctrlreg | AVM_STATUS0_RES_TIMER, fc->addr + 2);
udelay(1);
outb(fc->ctrlreg, fc->addr + 2);
}
spin_unlock(&fc->lock);
return IRQ_HANDLED;
}
static int
avm_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
struct fritzcard *fc = bch->hw;
int ret = -EINVAL;
struct mISDNhead *hh = mISDN_HEAD_P(skb);
unsigned long flags;
switch (hh->prim) {
case PH_DATA_REQ:
spin_lock_irqsave(&fc->lock, flags);
ret = bchannel_senddata(bch, skb);
if (ret > 0) { /* direct TX */
hdlc_fill_fifo(bch);
ret = 0;
}
spin_unlock_irqrestore(&fc->lock, flags);
return ret;
case PH_ACTIVATE_REQ:
spin_lock_irqsave(&fc->lock, flags);
if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
ret = modehdlc(bch, ch->protocol);
else
ret = 0;
spin_unlock_irqrestore(&fc->lock, flags);
if (!ret)
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
NULL, GFP_KERNEL);
break;
case PH_DEACTIVATE_REQ:
spin_lock_irqsave(&fc->lock, flags);
mISDN_clear_bchannel(bch);
modehdlc(bch, ISDN_P_NONE);
spin_unlock_irqrestore(&fc->lock, flags);
_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
NULL, GFP_KERNEL);
ret = 0;
break;
}
if (!ret)
dev_kfree_skb(skb);
return ret;
}
static void
inithdlc(struct fritzcard *fc)
{
modehdlc(&fc->bch[0], -1);
modehdlc(&fc->bch[1], -1);
}
static void
clear_pending_hdlc_ints(struct fritzcard *fc)
{
u32 val;
val = read_status(fc, 1);
pr_debug("%s: HDLC 1 STA %x\n", fc->name, val);
val = read_status(fc, 2);
pr_debug("%s: HDLC 2 STA %x\n", fc->name, val);
}
static void
reset_avm(struct fritzcard *fc)
{
switch (fc->type) {
case AVM_FRITZ_PCI:
fc->ctrlreg = AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER;
break;
case AVM_FRITZ_PCIV2:
fc->ctrlreg = AVM_STATUS0_RESET;
break;
}
if (debug & DEBUG_HW)
pr_notice("%s: reset\n", fc->name);
disable_hwirq(fc);
mdelay(5);
switch (fc->type) {
case AVM_FRITZ_PCI:
fc->ctrlreg = AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER;
disable_hwirq(fc);
outb(AVM_STATUS1_ENA_IOM, fc->addr + 3);
break;
case AVM_FRITZ_PCIV2:
fc->ctrlreg = 0;
disable_hwirq(fc);
break;
}
mdelay(1);
if (debug & DEBUG_HW)
pr_notice("%s: S0/S1 %x/%x\n", fc->name,
inb(fc->addr + 2), inb(fc->addr + 3));
}
static int
init_card(struct fritzcard *fc)
{
int ret, cnt = 3;
u_long flags;
reset_avm(fc); /* disable IRQ */
if (fc->type == AVM_FRITZ_PCIV2)
ret = request_irq(fc->irq, avm_fritzv2_interrupt,
IRQF_SHARED, fc->name, fc);
else
ret = request_irq(fc->irq, avm_fritz_interrupt,
IRQF_SHARED, fc->name, fc);
if (ret) {
pr_info("%s: couldn't get interrupt %d\n",
fc->name, fc->irq);
return ret;
}
while (cnt--) {
spin_lock_irqsave(&fc->lock, flags);
ret = fc->isac.init(&fc->isac);
if (ret) {
spin_unlock_irqrestore(&fc->lock, flags);
pr_info("%s: ISAC init failed with %d\n",
fc->name, ret);
break;
}
clear_pending_hdlc_ints(fc);
inithdlc(fc);
enable_hwirq(fc);
/* RESET Receiver and Transmitter */
if (fc->type == AVM_FRITZ_PCIV2) {
WriteISAC_V2(fc, ISACX_MASK, 0);
WriteISAC_V2(fc, ISACX_CMDRD, 0x41);
} else {
WriteISAC_V1(fc, ISAC_MASK, 0);
WriteISAC_V1(fc, ISAC_CMDR, 0x41);
}
spin_unlock_irqrestore(&fc->lock, flags);
/* Timeout 10ms */
msleep_interruptible(10);
if (debug & DEBUG_HW)
pr_notice("%s: IRQ %d count %d\n", fc->name,
fc->irq, fc->irqcnt);
if (!fc->irqcnt) {
pr_info("%s: IRQ(%d) getting no IRQs during init %d\n",
fc->name, fc->irq, 3 - cnt);
reset_avm(fc);
} else
return 0;
}
free_irq(fc->irq, fc);
return -EIO;
}
static int
channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
{
return mISDN_ctrl_bchannel(bch, cq);
}
static int
avm_bctrl(struct mISDNchannel *ch, u32 cmd, void *arg)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
struct fritzcard *fc = bch->hw;
int ret = -EINVAL;
u_long flags;
pr_debug("%s: %s cmd:%x %p\n", fc->name, __func__, cmd, arg);
switch (cmd) {
case CLOSE_CHANNEL:
test_and_clear_bit(FLG_OPEN, &bch->Flags);
cancel_work_sync(&bch->workq);
spin_lock_irqsave(&fc->lock, flags);
mISDN_clear_bchannel(bch);
modehdlc(bch, ISDN_P_NONE);
spin_unlock_irqrestore(&fc->lock, flags);
ch->protocol = ISDN_P_NONE;
ch->peer = NULL;
module_put(THIS_MODULE);
ret = 0;
break;
case CONTROL_CHANNEL:
ret = channel_bctrl(bch, arg);
break;
default:
pr_info("%s: %s unknown prim(%x)\n", fc->name, __func__, cmd);
}
return ret;
}
static int
channel_ctrl(struct fritzcard *fc, struct mISDN_ctrl_req *cq)
{
int ret = 0;
switch (cq->op) {
case MISDN_CTRL_GETOP:
cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_L1_TIMER3;
break;
case MISDN_CTRL_LOOP:
/* cq->channel: 0 disable, 1 B1 loop 2 B2 loop, 3 both */
if (cq->channel < 0 || cq->channel > 3) {
ret = -EINVAL;
break;
}
ret = fc->isac.ctrl(&fc->isac, HW_TESTLOOP, cq->channel);
break;
case MISDN_CTRL_L1_TIMER3:
ret = fc->isac.ctrl(&fc->isac, HW_TIMER3_VALUE, cq->p1);
break;
default:
pr_info("%s: %s unknown Op %x\n", fc->name, __func__, cq->op);
ret = -EINVAL;
break;
}
return ret;
}
static int
open_bchannel(struct fritzcard *fc, struct channel_req *rq)
{
struct bchannel *bch;
if (rq->adr.channel == 0 || rq->adr.channel > 2)
return -EINVAL;
if (rq->protocol == ISDN_P_NONE)
return -EINVAL;
bch = &fc->bch[rq->adr.channel - 1];
if (test_and_set_bit(FLG_OPEN, &bch->Flags))
return -EBUSY; /* b-channel can be only open once */
bch->ch.protocol = rq->protocol;
rq->ch = &bch->ch;
return 0;
}
/*
* device control function
*/
static int
avm_dctrl(struct mISDNchannel *ch, u32 cmd, void *arg)
{
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
struct dchannel *dch = container_of(dev, struct dchannel, dev);
struct fritzcard *fc = dch->hw;
struct channel_req *rq;
int err = 0;
pr_debug("%s: %s cmd:%x %p\n", fc->name, __func__, cmd, arg);
switch (cmd) {
case OPEN_CHANNEL:
rq = arg;
if (rq->protocol == ISDN_P_TE_S0)
err = fc->isac.open(&fc->isac, rq);
else
err = open_bchannel(fc, rq);
if (err)
break;
if (!try_module_get(THIS_MODULE))
pr_info("%s: cannot get module\n", fc->name);
break;
case CLOSE_CHANNEL:
pr_debug("%s: dev(%d) close from %p\n", fc->name, dch->dev.id,
__builtin_return_address(0));
module_put(THIS_MODULE);
break;
case CONTROL_CHANNEL:
err = channel_ctrl(fc, arg);
break;
default:
pr_debug("%s: %s unknown command %x\n",
fc->name, __func__, cmd);
return -EINVAL;
}
return err;
}
static int
setup_fritz(struct fritzcard *fc)
{
u32 val, ver;
if (!request_region(fc->addr, 32, fc->name)) {
pr_info("%s: AVM config port %x-%x already in use\n",
fc->name, fc->addr, fc->addr + 31);
return -EIO;
}
switch (fc->type) {
case AVM_FRITZ_PCI:
val = inl(fc->addr);
outl(AVM_HDLC_1, fc->addr + CHIP_INDEX);
ver = inl(fc->addr + CHIP_WINDOW + HDLC_STATUS) >> 24;
if (debug & DEBUG_HW) {
pr_notice("%s: PCI stat %#x\n", fc->name, val);
pr_notice("%s: PCI Class %X Rev %d\n", fc->name,
val & 0xff, (val >> 8) & 0xff);
pr_notice("%s: HDLC version %x\n", fc->name, ver & 0xf);
}
ASSIGN_FUNC(V1, ISAC, fc->isac);
fc->isac.type = IPAC_TYPE_ISAC;
break;
case AVM_FRITZ_PCIV2:
val = inl(fc->addr);
ver = inl(fc->addr + AVM_HDLC_STATUS_1) >> 24;
if (debug & DEBUG_HW) {
pr_notice("%s: PCI V2 stat %#x\n", fc->name, val);
pr_notice("%s: PCI V2 Class %X Rev %d\n", fc->name,
val & 0xff, (val >> 8) & 0xff);
pr_notice("%s: HDLC version %x\n", fc->name, ver & 0xf);
}
ASSIGN_FUNC(V2, ISAC, fc->isac);
fc->isac.type = IPAC_TYPE_ISACX;
break;
default:
release_region(fc->addr, 32);
pr_info("%s: AVM unknown type %d\n", fc->name, fc->type);
return -ENODEV;
}
pr_notice("%s: %s config irq:%d base:0x%X\n", fc->name,
(fc->type == AVM_FRITZ_PCI) ? "AVM Fritz!CARD PCI" :
"AVM Fritz!CARD PCIv2", fc->irq, fc->addr);
return 0;
}
static void
release_card(struct fritzcard *card)
{
u_long flags;
disable_hwirq(card);
spin_lock_irqsave(&card->lock, flags);
modehdlc(&card->bch[0], ISDN_P_NONE);
modehdlc(&card->bch[1], ISDN_P_NONE);
spin_unlock_irqrestore(&card->lock, flags);
card->isac.release(&card->isac);
free_irq(card->irq, card);
mISDN_freebchannel(&card->bch[1]);
mISDN_freebchannel(&card->bch[0]);
mISDN_unregister_device(&card->isac.dch.dev);
release_region(card->addr, 32);
pci_disable_device(card->pdev);
pci_set_drvdata(card->pdev, NULL);
write_lock_irqsave(&card_lock, flags);
list_del(&card->list);
write_unlock_irqrestore(&card_lock, flags);
kfree(card);
AVM_cnt--;
}
static int
setup_instance(struct fritzcard *card)
{
int i, err;
unsigned short minsize;
u_long flags;
snprintf(card->name, MISDN_MAX_IDLEN - 1, "AVM.%d", AVM_cnt + 1);
write_lock_irqsave(&card_lock, flags);
list_add_tail(&card->list, &Cards);
write_unlock_irqrestore(&card_lock, flags);
_set_debug(card);
card->isac.name = card->name;
spin_lock_init(&card->lock);
card->isac.hwlock = &card->lock;
mISDNisac_init(&card->isac, card);
card->isac.dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
card->isac.dch.dev.D.ctrl = avm_dctrl;
for (i = 0; i < 2; i++) {
card->bch[i].nr = i + 1;
set_channelmap(i + 1, card->isac.dch.dev.channelmap);
if (AVM_FRITZ_PCIV2 == card->type)
minsize = HDLC_FIFO_SIZE_V2;
else
minsize = HDLC_FIFO_SIZE_V1;
mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, minsize);
card->bch[i].hw = card;
card->bch[i].ch.send = avm_l2l1B;
card->bch[i].ch.ctrl = avm_bctrl;
card->bch[i].ch.nr = i + 1;
list_add(&card->bch[i].ch.list, &card->isac.dch.dev.bchannels);
}
err = setup_fritz(card);
if (err)
goto error;
err = mISDN_register_device(&card->isac.dch.dev, &card->pdev->dev,
card->name);
if (err)
goto error_reg;
err = init_card(card);
if (!err) {
AVM_cnt++;
pr_notice("AVM %d cards installed DEBUG\n", AVM_cnt);
return 0;
}
mISDN_unregister_device(&card->isac.dch.dev);
error_reg:
release_region(card->addr, 32);
error:
card->isac.release(&card->isac);
mISDN_freebchannel(&card->bch[1]);
mISDN_freebchannel(&card->bch[0]);
write_lock_irqsave(&card_lock, flags);
list_del(&card->list);
write_unlock_irqrestore(&card_lock, flags);
kfree(card);
return err;
}
static int
fritzpci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int err = -ENOMEM;
struct fritzcard *card;
card = kzalloc(sizeof(struct fritzcard), GFP_KERNEL);
if (!card) {
pr_info("No kmem for fritzcard\n");
return err;
}
if (pdev->device == PCI_DEVICE_ID_AVM_A1_V2)
card->type = AVM_FRITZ_PCIV2;
else
card->type = AVM_FRITZ_PCI;
card->pdev = pdev;
err = pci_enable_device(pdev);
if (err) {
kfree(card);
return err;
}
pr_notice("mISDN: found adapter %s at %s\n",
(char *) ent->driver_data, pci_name(pdev));
card->addr = pci_resource_start(pdev, 1);
card->irq = pdev->irq;
pci_set_drvdata(pdev, card);
err = setup_instance(card);
if (err)
pci_set_drvdata(pdev, NULL);
return err;
}
static void
fritz_remove_pci(struct pci_dev *pdev)
{
struct fritzcard *card = pci_get_drvdata(pdev);
if (card)
release_card(card);
else
if (debug)
pr_info("%s: drvdata already removed\n", __func__);
}
static const struct pci_device_id fcpci_ids[] = {
{ PCI_VENDOR_ID_AVM, PCI_DEVICE_ID_AVM_A1, PCI_ANY_ID, PCI_ANY_ID,
0, 0, (unsigned long) "Fritz!Card PCI"},
{ PCI_VENDOR_ID_AVM, PCI_DEVICE_ID_AVM_A1_V2, PCI_ANY_ID, PCI_ANY_ID,
0, 0, (unsigned long) "Fritz!Card PCI v2" },
{ }
};
MODULE_DEVICE_TABLE(pci, fcpci_ids);
static struct pci_driver fcpci_driver = {
.name = "fcpci",
.probe = fritzpci_probe,
.remove = fritz_remove_pci,
.id_table = fcpci_ids,
};
static int __init AVM_init(void)
{
int err;
pr_notice("AVM Fritz PCI driver Rev. %s\n", AVMFRITZ_REV);
err = pci_register_driver(&fcpci_driver);
return err;
}
static void __exit AVM_cleanup(void)
{
pci_unregister_driver(&fcpci_driver);
}
module_init(AVM_init);
module_exit(AVM_cleanup);