mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
29ac40cbed
The PAT bit is in different locations for 4k and 2M/1G page table
entries.
Add a definition for _PAGE_LARGE_CACHE_MASK to represent the three
caching bits (PWT, PCD, PAT), similar to _PAGE_CACHE_MASK for 4k pages,
and use it in the definition of PMD_FLAGS_DEC_WP to get the correct PAT
index for write-protected pages.
Fixes: 6ebcb06071
("x86/mm: Add support to encrypt the kernel in-place")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201111160946.147341-1-nivedita@alum.mit.edu
587 lines
17 KiB
C
587 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* AMD Memory Encryption Support
|
|
*
|
|
* Copyright (C) 2016 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
*/
|
|
|
|
#define DISABLE_BRANCH_PROFILING
|
|
|
|
/*
|
|
* Since we're dealing with identity mappings, physical and virtual
|
|
* addresses are the same, so override these defines which are ultimately
|
|
* used by the headers in misc.h.
|
|
*/
|
|
#define __pa(x) ((unsigned long)(x))
|
|
#define __va(x) ((void *)((unsigned long)(x)))
|
|
|
|
/*
|
|
* Special hack: we have to be careful, because no indirections are
|
|
* allowed here, and paravirt_ops is a kind of one. As it will only run in
|
|
* baremetal anyway, we just keep it from happening. (This list needs to
|
|
* be extended when new paravirt and debugging variants are added.)
|
|
*/
|
|
#undef CONFIG_PARAVIRT
|
|
#undef CONFIG_PARAVIRT_XXL
|
|
#undef CONFIG_PARAVIRT_SPINLOCKS
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mem_encrypt.h>
|
|
|
|
#include <asm/setup.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/cmdline.h>
|
|
|
|
#include "mm_internal.h"
|
|
|
|
#define PGD_FLAGS _KERNPG_TABLE_NOENC
|
|
#define P4D_FLAGS _KERNPG_TABLE_NOENC
|
|
#define PUD_FLAGS _KERNPG_TABLE_NOENC
|
|
#define PMD_FLAGS _KERNPG_TABLE_NOENC
|
|
|
|
#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
|
|
|
|
#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
|
|
#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
|
|
(_PAGE_PAT_LARGE | _PAGE_PWT))
|
|
|
|
#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
|
|
|
|
#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
|
|
|
|
#define PTE_FLAGS_DEC PTE_FLAGS
|
|
#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
|
|
(_PAGE_PAT | _PAGE_PWT))
|
|
|
|
#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
|
|
|
|
struct sme_populate_pgd_data {
|
|
void *pgtable_area;
|
|
pgd_t *pgd;
|
|
|
|
pmdval_t pmd_flags;
|
|
pteval_t pte_flags;
|
|
unsigned long paddr;
|
|
|
|
unsigned long vaddr;
|
|
unsigned long vaddr_end;
|
|
};
|
|
|
|
/*
|
|
* This work area lives in the .init.scratch section, which lives outside of
|
|
* the kernel proper. It is sized to hold the intermediate copy buffer and
|
|
* more than enough pagetable pages.
|
|
*
|
|
* By using this section, the kernel can be encrypted in place and it
|
|
* avoids any possibility of boot parameters or initramfs images being
|
|
* placed such that the in-place encryption logic overwrites them. This
|
|
* section is 2MB aligned to allow for simple pagetable setup using only
|
|
* PMD entries (see vmlinux.lds.S).
|
|
*/
|
|
static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch");
|
|
|
|
static char sme_cmdline_arg[] __initdata = "mem_encrypt";
|
|
static char sme_cmdline_on[] __initdata = "on";
|
|
static char sme_cmdline_off[] __initdata = "off";
|
|
|
|
static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
|
|
{
|
|
unsigned long pgd_start, pgd_end, pgd_size;
|
|
pgd_t *pgd_p;
|
|
|
|
pgd_start = ppd->vaddr & PGDIR_MASK;
|
|
pgd_end = ppd->vaddr_end & PGDIR_MASK;
|
|
|
|
pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
|
|
|
|
pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
|
|
|
|
memset(pgd_p, 0, pgd_size);
|
|
}
|
|
|
|
static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = ppd->pgd + pgd_index(ppd->vaddr);
|
|
if (pgd_none(*pgd)) {
|
|
p4d = ppd->pgtable_area;
|
|
memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
|
|
ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
|
|
set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
|
|
}
|
|
|
|
p4d = p4d_offset(pgd, ppd->vaddr);
|
|
if (p4d_none(*p4d)) {
|
|
pud = ppd->pgtable_area;
|
|
memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
|
|
ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
|
|
set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
|
|
}
|
|
|
|
pud = pud_offset(p4d, ppd->vaddr);
|
|
if (pud_none(*pud)) {
|
|
pmd = ppd->pgtable_area;
|
|
memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
|
|
ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
|
|
set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
|
|
}
|
|
|
|
if (pud_large(*pud))
|
|
return NULL;
|
|
|
|
return pud;
|
|
}
|
|
|
|
static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pud = sme_prepare_pgd(ppd);
|
|
if (!pud)
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, ppd->vaddr);
|
|
if (pmd_large(*pmd))
|
|
return;
|
|
|
|
set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
|
|
}
|
|
|
|
static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pud = sme_prepare_pgd(ppd);
|
|
if (!pud)
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, ppd->vaddr);
|
|
if (pmd_none(*pmd)) {
|
|
pte = ppd->pgtable_area;
|
|
memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
|
|
ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
|
|
set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
|
|
}
|
|
|
|
if (pmd_large(*pmd))
|
|
return;
|
|
|
|
pte = pte_offset_map(pmd, ppd->vaddr);
|
|
if (pte_none(*pte))
|
|
set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
|
|
}
|
|
|
|
static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
|
|
{
|
|
while (ppd->vaddr < ppd->vaddr_end) {
|
|
sme_populate_pgd_large(ppd);
|
|
|
|
ppd->vaddr += PMD_PAGE_SIZE;
|
|
ppd->paddr += PMD_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
|
|
{
|
|
while (ppd->vaddr < ppd->vaddr_end) {
|
|
sme_populate_pgd(ppd);
|
|
|
|
ppd->vaddr += PAGE_SIZE;
|
|
ppd->paddr += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
|
|
pmdval_t pmd_flags, pteval_t pte_flags)
|
|
{
|
|
unsigned long vaddr_end;
|
|
|
|
ppd->pmd_flags = pmd_flags;
|
|
ppd->pte_flags = pte_flags;
|
|
|
|
/* Save original end value since we modify the struct value */
|
|
vaddr_end = ppd->vaddr_end;
|
|
|
|
/* If start is not 2MB aligned, create PTE entries */
|
|
ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
|
|
__sme_map_range_pte(ppd);
|
|
|
|
/* Create PMD entries */
|
|
ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
|
|
__sme_map_range_pmd(ppd);
|
|
|
|
/* If end is not 2MB aligned, create PTE entries */
|
|
ppd->vaddr_end = vaddr_end;
|
|
__sme_map_range_pte(ppd);
|
|
}
|
|
|
|
static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
|
|
{
|
|
__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
|
|
}
|
|
|
|
static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
|
|
{
|
|
__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
|
|
}
|
|
|
|
static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
|
|
{
|
|
__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
|
|
}
|
|
|
|
static unsigned long __init sme_pgtable_calc(unsigned long len)
|
|
{
|
|
unsigned long entries = 0, tables = 0;
|
|
|
|
/*
|
|
* Perform a relatively simplistic calculation of the pagetable
|
|
* entries that are needed. Those mappings will be covered mostly
|
|
* by 2MB PMD entries so we can conservatively calculate the required
|
|
* number of P4D, PUD and PMD structures needed to perform the
|
|
* mappings. For mappings that are not 2MB aligned, PTE mappings
|
|
* would be needed for the start and end portion of the address range
|
|
* that fall outside of the 2MB alignment. This results in, at most,
|
|
* two extra pages to hold PTE entries for each range that is mapped.
|
|
* Incrementing the count for each covers the case where the addresses
|
|
* cross entries.
|
|
*/
|
|
|
|
/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
|
|
if (PTRS_PER_P4D > 1)
|
|
entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
|
|
entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
|
|
entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
|
|
entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
|
|
|
|
/*
|
|
* Now calculate the added pagetable structures needed to populate
|
|
* the new pagetables.
|
|
*/
|
|
|
|
if (PTRS_PER_P4D > 1)
|
|
tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
|
|
tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
|
|
tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
|
|
|
|
return entries + tables;
|
|
}
|
|
|
|
void __init sme_encrypt_kernel(struct boot_params *bp)
|
|
{
|
|
unsigned long workarea_start, workarea_end, workarea_len;
|
|
unsigned long execute_start, execute_end, execute_len;
|
|
unsigned long kernel_start, kernel_end, kernel_len;
|
|
unsigned long initrd_start, initrd_end, initrd_len;
|
|
struct sme_populate_pgd_data ppd;
|
|
unsigned long pgtable_area_len;
|
|
unsigned long decrypted_base;
|
|
|
|
if (!sme_active())
|
|
return;
|
|
|
|
/*
|
|
* Prepare for encrypting the kernel and initrd by building new
|
|
* pagetables with the necessary attributes needed to encrypt the
|
|
* kernel in place.
|
|
*
|
|
* One range of virtual addresses will map the memory occupied
|
|
* by the kernel and initrd as encrypted.
|
|
*
|
|
* Another range of virtual addresses will map the memory occupied
|
|
* by the kernel and initrd as decrypted and write-protected.
|
|
*
|
|
* The use of write-protect attribute will prevent any of the
|
|
* memory from being cached.
|
|
*/
|
|
|
|
/* Physical addresses gives us the identity mapped virtual addresses */
|
|
kernel_start = __pa_symbol(_text);
|
|
kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
|
|
kernel_len = kernel_end - kernel_start;
|
|
|
|
initrd_start = 0;
|
|
initrd_end = 0;
|
|
initrd_len = 0;
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
initrd_len = (unsigned long)bp->hdr.ramdisk_size |
|
|
((unsigned long)bp->ext_ramdisk_size << 32);
|
|
if (initrd_len) {
|
|
initrd_start = (unsigned long)bp->hdr.ramdisk_image |
|
|
((unsigned long)bp->ext_ramdisk_image << 32);
|
|
initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
|
|
initrd_len = initrd_end - initrd_start;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We're running identity mapped, so we must obtain the address to the
|
|
* SME encryption workarea using rip-relative addressing.
|
|
*/
|
|
asm ("lea sme_workarea(%%rip), %0"
|
|
: "=r" (workarea_start)
|
|
: "p" (sme_workarea));
|
|
|
|
/*
|
|
* Calculate required number of workarea bytes needed:
|
|
* executable encryption area size:
|
|
* stack page (PAGE_SIZE)
|
|
* encryption routine page (PAGE_SIZE)
|
|
* intermediate copy buffer (PMD_PAGE_SIZE)
|
|
* pagetable structures for the encryption of the kernel
|
|
* pagetable structures for workarea (in case not currently mapped)
|
|
*/
|
|
execute_start = workarea_start;
|
|
execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
|
|
execute_len = execute_end - execute_start;
|
|
|
|
/*
|
|
* One PGD for both encrypted and decrypted mappings and a set of
|
|
* PUDs and PMDs for each of the encrypted and decrypted mappings.
|
|
*/
|
|
pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
|
|
pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
|
|
if (initrd_len)
|
|
pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
|
|
|
|
/* PUDs and PMDs needed in the current pagetables for the workarea */
|
|
pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
|
|
|
|
/*
|
|
* The total workarea includes the executable encryption area and
|
|
* the pagetable area. The start of the workarea is already 2MB
|
|
* aligned, align the end of the workarea on a 2MB boundary so that
|
|
* we don't try to create/allocate PTE entries from the workarea
|
|
* before it is mapped.
|
|
*/
|
|
workarea_len = execute_len + pgtable_area_len;
|
|
workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
|
|
|
|
/*
|
|
* Set the address to the start of where newly created pagetable
|
|
* structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
|
|
* structures are created when the workarea is added to the current
|
|
* pagetables and when the new encrypted and decrypted kernel
|
|
* mappings are populated.
|
|
*/
|
|
ppd.pgtable_area = (void *)execute_end;
|
|
|
|
/*
|
|
* Make sure the current pagetable structure has entries for
|
|
* addressing the workarea.
|
|
*/
|
|
ppd.pgd = (pgd_t *)native_read_cr3_pa();
|
|
ppd.paddr = workarea_start;
|
|
ppd.vaddr = workarea_start;
|
|
ppd.vaddr_end = workarea_end;
|
|
sme_map_range_decrypted(&ppd);
|
|
|
|
/* Flush the TLB - no globals so cr3 is enough */
|
|
native_write_cr3(__native_read_cr3());
|
|
|
|
/*
|
|
* A new pagetable structure is being built to allow for the kernel
|
|
* and initrd to be encrypted. It starts with an empty PGD that will
|
|
* then be populated with new PUDs and PMDs as the encrypted and
|
|
* decrypted kernel mappings are created.
|
|
*/
|
|
ppd.pgd = ppd.pgtable_area;
|
|
memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
|
|
ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
|
|
|
|
/*
|
|
* A different PGD index/entry must be used to get different
|
|
* pagetable entries for the decrypted mapping. Choose the next
|
|
* PGD index and convert it to a virtual address to be used as
|
|
* the base of the mapping.
|
|
*/
|
|
decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
|
|
if (initrd_len) {
|
|
unsigned long check_base;
|
|
|
|
check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
|
|
decrypted_base = max(decrypted_base, check_base);
|
|
}
|
|
decrypted_base <<= PGDIR_SHIFT;
|
|
|
|
/* Add encrypted kernel (identity) mappings */
|
|
ppd.paddr = kernel_start;
|
|
ppd.vaddr = kernel_start;
|
|
ppd.vaddr_end = kernel_end;
|
|
sme_map_range_encrypted(&ppd);
|
|
|
|
/* Add decrypted, write-protected kernel (non-identity) mappings */
|
|
ppd.paddr = kernel_start;
|
|
ppd.vaddr = kernel_start + decrypted_base;
|
|
ppd.vaddr_end = kernel_end + decrypted_base;
|
|
sme_map_range_decrypted_wp(&ppd);
|
|
|
|
if (initrd_len) {
|
|
/* Add encrypted initrd (identity) mappings */
|
|
ppd.paddr = initrd_start;
|
|
ppd.vaddr = initrd_start;
|
|
ppd.vaddr_end = initrd_end;
|
|
sme_map_range_encrypted(&ppd);
|
|
/*
|
|
* Add decrypted, write-protected initrd (non-identity) mappings
|
|
*/
|
|
ppd.paddr = initrd_start;
|
|
ppd.vaddr = initrd_start + decrypted_base;
|
|
ppd.vaddr_end = initrd_end + decrypted_base;
|
|
sme_map_range_decrypted_wp(&ppd);
|
|
}
|
|
|
|
/* Add decrypted workarea mappings to both kernel mappings */
|
|
ppd.paddr = workarea_start;
|
|
ppd.vaddr = workarea_start;
|
|
ppd.vaddr_end = workarea_end;
|
|
sme_map_range_decrypted(&ppd);
|
|
|
|
ppd.paddr = workarea_start;
|
|
ppd.vaddr = workarea_start + decrypted_base;
|
|
ppd.vaddr_end = workarea_end + decrypted_base;
|
|
sme_map_range_decrypted(&ppd);
|
|
|
|
/* Perform the encryption */
|
|
sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
|
|
kernel_len, workarea_start, (unsigned long)ppd.pgd);
|
|
|
|
if (initrd_len)
|
|
sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
|
|
initrd_len, workarea_start,
|
|
(unsigned long)ppd.pgd);
|
|
|
|
/*
|
|
* At this point we are running encrypted. Remove the mappings for
|
|
* the decrypted areas - all that is needed for this is to remove
|
|
* the PGD entry/entries.
|
|
*/
|
|
ppd.vaddr = kernel_start + decrypted_base;
|
|
ppd.vaddr_end = kernel_end + decrypted_base;
|
|
sme_clear_pgd(&ppd);
|
|
|
|
if (initrd_len) {
|
|
ppd.vaddr = initrd_start + decrypted_base;
|
|
ppd.vaddr_end = initrd_end + decrypted_base;
|
|
sme_clear_pgd(&ppd);
|
|
}
|
|
|
|
ppd.vaddr = workarea_start + decrypted_base;
|
|
ppd.vaddr_end = workarea_end + decrypted_base;
|
|
sme_clear_pgd(&ppd);
|
|
|
|
/* Flush the TLB - no globals so cr3 is enough */
|
|
native_write_cr3(__native_read_cr3());
|
|
}
|
|
|
|
void __init sme_enable(struct boot_params *bp)
|
|
{
|
|
const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
|
|
unsigned int eax, ebx, ecx, edx;
|
|
unsigned long feature_mask;
|
|
bool active_by_default;
|
|
unsigned long me_mask;
|
|
char buffer[16];
|
|
u64 msr;
|
|
|
|
/* Check for the SME/SEV support leaf */
|
|
eax = 0x80000000;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
if (eax < 0x8000001f)
|
|
return;
|
|
|
|
#define AMD_SME_BIT BIT(0)
|
|
#define AMD_SEV_BIT BIT(1)
|
|
/*
|
|
* Set the feature mask (SME or SEV) based on whether we are
|
|
* running under a hypervisor.
|
|
*/
|
|
eax = 1;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
|
|
|
|
/*
|
|
* Check for the SME/SEV feature:
|
|
* CPUID Fn8000_001F[EAX]
|
|
* - Bit 0 - Secure Memory Encryption support
|
|
* - Bit 1 - Secure Encrypted Virtualization support
|
|
* CPUID Fn8000_001F[EBX]
|
|
* - Bits 5:0 - Pagetable bit position used to indicate encryption
|
|
*/
|
|
eax = 0x8000001f;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
if (!(eax & feature_mask))
|
|
return;
|
|
|
|
me_mask = 1UL << (ebx & 0x3f);
|
|
|
|
/* Check if memory encryption is enabled */
|
|
if (feature_mask == AMD_SME_BIT) {
|
|
/* For SME, check the SYSCFG MSR */
|
|
msr = __rdmsr(MSR_K8_SYSCFG);
|
|
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
|
|
return;
|
|
} else {
|
|
/* For SEV, check the SEV MSR */
|
|
msr = __rdmsr(MSR_AMD64_SEV);
|
|
if (!(msr & MSR_AMD64_SEV_ENABLED))
|
|
return;
|
|
|
|
/* Save SEV_STATUS to avoid reading MSR again */
|
|
sev_status = msr;
|
|
|
|
/* SEV state cannot be controlled by a command line option */
|
|
sme_me_mask = me_mask;
|
|
sev_enabled = true;
|
|
physical_mask &= ~sme_me_mask;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Fixups have not been applied to phys_base yet and we're running
|
|
* identity mapped, so we must obtain the address to the SME command
|
|
* line argument data using rip-relative addressing.
|
|
*/
|
|
asm ("lea sme_cmdline_arg(%%rip), %0"
|
|
: "=r" (cmdline_arg)
|
|
: "p" (sme_cmdline_arg));
|
|
asm ("lea sme_cmdline_on(%%rip), %0"
|
|
: "=r" (cmdline_on)
|
|
: "p" (sme_cmdline_on));
|
|
asm ("lea sme_cmdline_off(%%rip), %0"
|
|
: "=r" (cmdline_off)
|
|
: "p" (sme_cmdline_off));
|
|
|
|
if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
|
|
active_by_default = true;
|
|
else
|
|
active_by_default = false;
|
|
|
|
cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
|
|
((u64)bp->ext_cmd_line_ptr << 32));
|
|
|
|
cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
|
|
|
|
if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
|
|
sme_me_mask = me_mask;
|
|
else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
|
|
sme_me_mask = 0;
|
|
else
|
|
sme_me_mask = active_by_default ? me_mask : 0;
|
|
|
|
physical_mask &= ~sme_me_mask;
|
|
}
|