mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 01:49:20 +07:00
f7a1570da9
Function tracing can trace in NMIs and such. If the TSC is determined to be unstable, the tracing clock will switch to the global clock on boot up, unless "trace_clock" is specified on the kernel command line. The global clock disables interrupts to access sched_clock_cpu(), and in doing so can be done within lockdep internals (because of function tracing and NMIs). This can trigger false lockdep splats. The trace_clock_global() is special, best not to trace the irq logic within it. Link: http://lkml.kernel.org/r/20180404145015.77bde42d@gandalf.local.home Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
142 lines
3.6 KiB
C
142 lines
3.6 KiB
C
/*
|
|
* tracing clocks
|
|
*
|
|
* Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
|
|
*
|
|
* Implements 3 trace clock variants, with differing scalability/precision
|
|
* tradeoffs:
|
|
*
|
|
* - local: CPU-local trace clock
|
|
* - medium: scalable global clock with some jitter
|
|
* - global: globally monotonic, serialized clock
|
|
*
|
|
* Tracer plugins will chose a default from these clocks.
|
|
*/
|
|
#include <linux/spinlock.h>
|
|
#include <linux/irqflags.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/module.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/trace_clock.h>
|
|
|
|
/*
|
|
* trace_clock_local(): the simplest and least coherent tracing clock.
|
|
*
|
|
* Useful for tracing that does not cross to other CPUs nor
|
|
* does it go through idle events.
|
|
*/
|
|
u64 notrace trace_clock_local(void)
|
|
{
|
|
u64 clock;
|
|
|
|
/*
|
|
* sched_clock() is an architecture implemented, fast, scalable,
|
|
* lockless clock. It is not guaranteed to be coherent across
|
|
* CPUs, nor across CPU idle events.
|
|
*/
|
|
preempt_disable_notrace();
|
|
clock = sched_clock();
|
|
preempt_enable_notrace();
|
|
|
|
return clock;
|
|
}
|
|
EXPORT_SYMBOL_GPL(trace_clock_local);
|
|
|
|
/*
|
|
* trace_clock(): 'between' trace clock. Not completely serialized,
|
|
* but not completely incorrect when crossing CPUs either.
|
|
*
|
|
* This is based on cpu_clock(), which will allow at most ~1 jiffy of
|
|
* jitter between CPUs. So it's a pretty scalable clock, but there
|
|
* can be offsets in the trace data.
|
|
*/
|
|
u64 notrace trace_clock(void)
|
|
{
|
|
return local_clock();
|
|
}
|
|
EXPORT_SYMBOL_GPL(trace_clock);
|
|
|
|
/*
|
|
* trace_jiffy_clock(): Simply use jiffies as a clock counter.
|
|
* Note that this use of jiffies_64 is not completely safe on
|
|
* 32-bit systems. But the window is tiny, and the effect if
|
|
* we are affected is that we will have an obviously bogus
|
|
* timestamp on a trace event - i.e. not life threatening.
|
|
*/
|
|
u64 notrace trace_clock_jiffies(void)
|
|
{
|
|
return jiffies_64_to_clock_t(jiffies_64 - INITIAL_JIFFIES);
|
|
}
|
|
EXPORT_SYMBOL_GPL(trace_clock_jiffies);
|
|
|
|
/*
|
|
* trace_clock_global(): special globally coherent trace clock
|
|
*
|
|
* It has higher overhead than the other trace clocks but is still
|
|
* an order of magnitude faster than GTOD derived hardware clocks.
|
|
*
|
|
* Used by plugins that need globally coherent timestamps.
|
|
*/
|
|
|
|
/* keep prev_time and lock in the same cacheline. */
|
|
static struct {
|
|
u64 prev_time;
|
|
arch_spinlock_t lock;
|
|
} trace_clock_struct ____cacheline_aligned_in_smp =
|
|
{
|
|
.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
|
|
};
|
|
|
|
u64 notrace trace_clock_global(void)
|
|
{
|
|
unsigned long flags;
|
|
int this_cpu;
|
|
u64 now;
|
|
|
|
raw_local_irq_save(flags);
|
|
|
|
this_cpu = raw_smp_processor_id();
|
|
now = sched_clock_cpu(this_cpu);
|
|
/*
|
|
* If in an NMI context then dont risk lockups and return the
|
|
* cpu_clock() time:
|
|
*/
|
|
if (unlikely(in_nmi()))
|
|
goto out;
|
|
|
|
arch_spin_lock(&trace_clock_struct.lock);
|
|
|
|
/*
|
|
* TODO: if this happens often then maybe we should reset
|
|
* my_scd->clock to prev_time+1, to make sure
|
|
* we start ticking with the local clock from now on?
|
|
*/
|
|
if ((s64)(now - trace_clock_struct.prev_time) < 0)
|
|
now = trace_clock_struct.prev_time + 1;
|
|
|
|
trace_clock_struct.prev_time = now;
|
|
|
|
arch_spin_unlock(&trace_clock_struct.lock);
|
|
|
|
out:
|
|
raw_local_irq_restore(flags);
|
|
|
|
return now;
|
|
}
|
|
EXPORT_SYMBOL_GPL(trace_clock_global);
|
|
|
|
static atomic64_t trace_counter;
|
|
|
|
/*
|
|
* trace_clock_counter(): simply an atomic counter.
|
|
* Use the trace_counter "counter" for cases where you do not care
|
|
* about timings, but are interested in strict ordering.
|
|
*/
|
|
u64 notrace trace_clock_counter(void)
|
|
{
|
|
return atomic64_add_return(1, &trace_counter);
|
|
}
|