linux_dsm_epyc7002/drivers/mmc/host/mmci_stm32_sdmmc.c
Ludovic Barre 0e68de6aa7 mmc: mmci: sdmmc: add busy_complete callback
This patch adds a specific busy_complete callback for sdmmc variant.

sdmmc has 2 status flags:
-busyd0: This is a hardware status flag (inverted value of d0 line).
it does not generate an interrupt.
-busyd0end: This indicates only end of busy following a CMD response.
On busy to Not busy changes, an interrupt is generated (if unmask)
and BUSYD0END status flag is set. Status flag is cleared by writing
corresponding interrupt clear bit in MMCICLEAR.

The legacy busy completion has no dedicated interrupt for the end
of busy, so it's must monitor step by step the busy progression.
On sdmmc variant, this procedure is not needed, it's just need
to wait the busyd0end interrupt.

Signed-off-by: Ludovic Barre <ludovic.barre@st.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2019-11-13 16:10:16 +01:00

343 lines
8.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2018 - All Rights Reserved
* Author: Ludovic.barre@st.com for STMicroelectronics.
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include "mmci.h"
#define SDMMC_LLI_BUF_LEN PAGE_SIZE
#define SDMMC_IDMA_BURST BIT(MMCI_STM32_IDMABNDT_SHIFT)
struct sdmmc_lli_desc {
u32 idmalar;
u32 idmabase;
u32 idmasize;
};
struct sdmmc_priv {
dma_addr_t sg_dma;
void *sg_cpu;
};
int sdmmc_idma_validate_data(struct mmci_host *host,
struct mmc_data *data)
{
struct scatterlist *sg;
int i;
/*
* idma has constraints on idmabase & idmasize for each element
* excepted the last element which has no constraint on idmasize
*/
for_each_sg(data->sg, sg, data->sg_len - 1, i) {
if (!IS_ALIGNED(sg_dma_address(data->sg), sizeof(u32)) ||
!IS_ALIGNED(sg_dma_len(data->sg), SDMMC_IDMA_BURST)) {
dev_err(mmc_dev(host->mmc),
"unaligned scatterlist: ofst:%x length:%d\n",
data->sg->offset, data->sg->length);
return -EINVAL;
}
}
if (!IS_ALIGNED(sg_dma_address(data->sg), sizeof(u32))) {
dev_err(mmc_dev(host->mmc),
"unaligned last scatterlist: ofst:%x length:%d\n",
data->sg->offset, data->sg->length);
return -EINVAL;
}
return 0;
}
static int _sdmmc_idma_prep_data(struct mmci_host *host,
struct mmc_data *data)
{
int n_elem;
n_elem = dma_map_sg(mmc_dev(host->mmc),
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
if (!n_elem) {
dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
return -EINVAL;
}
return 0;
}
static int sdmmc_idma_prep_data(struct mmci_host *host,
struct mmc_data *data, bool next)
{
/* Check if job is already prepared. */
if (!next && data->host_cookie == host->next_cookie)
return 0;
return _sdmmc_idma_prep_data(host, data);
}
static void sdmmc_idma_unprep_data(struct mmci_host *host,
struct mmc_data *data, int err)
{
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
static int sdmmc_idma_setup(struct mmci_host *host)
{
struct sdmmc_priv *idma;
idma = devm_kzalloc(mmc_dev(host->mmc), sizeof(*idma), GFP_KERNEL);
if (!idma)
return -ENOMEM;
host->dma_priv = idma;
if (host->variant->dma_lli) {
idma->sg_cpu = dmam_alloc_coherent(mmc_dev(host->mmc),
SDMMC_LLI_BUF_LEN,
&idma->sg_dma, GFP_KERNEL);
if (!idma->sg_cpu) {
dev_err(mmc_dev(host->mmc),
"Failed to alloc IDMA descriptor\n");
return -ENOMEM;
}
host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
sizeof(struct sdmmc_lli_desc);
host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
} else {
host->mmc->max_segs = 1;
host->mmc->max_seg_size = host->mmc->max_req_size;
}
return 0;
}
static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
{
struct sdmmc_priv *idma = host->dma_priv;
struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
struct mmc_data *data = host->data;
struct scatterlist *sg;
int i;
if (!host->variant->dma_lli || data->sg_len == 1) {
writel_relaxed(sg_dma_address(data->sg),
host->base + MMCI_STM32_IDMABASE0R);
writel_relaxed(MMCI_STM32_IDMAEN,
host->base + MMCI_STM32_IDMACTRLR);
return 0;
}
for_each_sg(data->sg, sg, data->sg_len, i) {
desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
| MMCI_STM32_ABR;
desc[i].idmabase = sg_dma_address(sg);
desc[i].idmasize = sg_dma_len(sg);
}
/* notice the end of link list */
desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
dma_wmb();
writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
host->base + MMCI_STM32_IDMACTRLR);
return 0;
}
static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
{
writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
}
static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
{
unsigned int clk = 0, ddr = 0;
if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
ddr = MCI_STM32_CLK_DDR;
/*
* cclk = mclk / (2 * clkdiv)
* clkdiv 0 => bypass
* in ddr mode bypass is not possible
*/
if (desired) {
if (desired >= host->mclk && !ddr) {
host->cclk = host->mclk;
} else {
clk = DIV_ROUND_UP(host->mclk, 2 * desired);
if (clk > MCI_STM32_CLK_CLKDIV_MSK)
clk = MCI_STM32_CLK_CLKDIV_MSK;
host->cclk = host->mclk / (2 * clk);
}
} else {
/*
* while power-on phase the clock can't be define to 0,
* Only power-off and power-cyc deactivate the clock.
* if desired clock is 0, set max divider
*/
clk = MCI_STM32_CLK_CLKDIV_MSK;
host->cclk = host->mclk / (2 * clk);
}
/* Set actual clock for debug */
if (host->mmc->ios.power_mode == MMC_POWER_ON)
host->mmc->actual_clock = host->cclk;
else
host->mmc->actual_clock = 0;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
clk |= MCI_STM32_CLK_WIDEBUS_4;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
clk |= MCI_STM32_CLK_WIDEBUS_8;
clk |= MCI_STM32_CLK_HWFCEN;
clk |= host->clk_reg_add;
clk |= ddr;
/*
* SDMMC_FBCK is selected when an external Delay Block is needed
* with SDR104.
*/
if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) {
clk |= MCI_STM32_CLK_BUSSPEED;
if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104) {
clk &= ~MCI_STM32_CLK_SEL_MSK;
clk |= MCI_STM32_CLK_SELFBCK;
}
}
mmci_write_clkreg(host, clk);
}
static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
{
struct mmc_ios ios = host->mmc->ios;
pwr = host->pwr_reg_add;
if (ios.power_mode == MMC_POWER_OFF) {
/* Only a reset could power-off sdmmc */
reset_control_assert(host->rst);
udelay(2);
reset_control_deassert(host->rst);
/*
* Set the SDMMC in Power-cycle state.
* This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
* are driven low, to prevent the Card from being supplied
* through the signal lines.
*/
mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
} else if (ios.power_mode == MMC_POWER_ON) {
/*
* After power-off (reset): the irq mask defined in probe
* functionis lost
* ault irq mask (probe) must be activated
*/
writel(MCI_IRQENABLE | host->variant->start_err,
host->base + MMCIMASK0);
/*
* After a power-cycle state, we must set the SDMMC in
* Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
* driven high. Then we can set the SDMMC to Power-on state
*/
mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
mdelay(1);
mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
}
}
static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
{
u32 datactrl;
datactrl = mmci_dctrl_blksz(host);
if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
host->data->blocks == 1)
datactrl |= MCI_DPSM_STM32_MODE_SDIO;
else if (host->data->stop && !host->mrq->sbc)
datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
else
datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
return datactrl;
}
static bool sdmmc_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
{
void __iomem *base = host->base;
u32 busy_d0, busy_d0end, mask, sdmmc_status;
mask = readl_relaxed(base + MMCIMASK0);
sdmmc_status = readl_relaxed(base + MMCISTATUS);
busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
/* complete if there is an error or busy_d0end */
if ((status & err_msk) || busy_d0end)
goto complete;
/*
* On response the busy signaling is reflected in the BUSYD0 flag.
* if busy_d0 is in-progress we must activate busyd0end interrupt
* to wait this completion. Else this request has no busy step.
*/
if (busy_d0) {
if (!host->busy_status) {
writel_relaxed(mask | host->variant->busy_detect_mask,
base + MMCIMASK0);
host->busy_status = status &
(MCI_CMDSENT | MCI_CMDRESPEND);
}
return false;
}
complete:
if (host->busy_status) {
writel_relaxed(mask & ~host->variant->busy_detect_mask,
base + MMCIMASK0);
writel_relaxed(host->variant->busy_detect_mask,
base + MMCICLEAR);
host->busy_status = 0;
}
return true;
}
static struct mmci_host_ops sdmmc_variant_ops = {
.validate_data = sdmmc_idma_validate_data,
.prep_data = sdmmc_idma_prep_data,
.unprep_data = sdmmc_idma_unprep_data,
.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
.dma_setup = sdmmc_idma_setup,
.dma_start = sdmmc_idma_start,
.dma_finalize = sdmmc_idma_finalize,
.set_clkreg = mmci_sdmmc_set_clkreg,
.set_pwrreg = mmci_sdmmc_set_pwrreg,
.busy_complete = sdmmc_busy_complete,
};
void sdmmc_variant_init(struct mmci_host *host)
{
host->ops = &sdmmc_variant_ops;
}