linux_dsm_epyc7002/sound/soc/codecs/nau8824.c
Thomas Gleixner d2912cb15b treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
Based on 2 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation #

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 4122 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19 17:09:55 +02:00

1957 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* NAU88L24 ALSA SoC audio driver
*
* Copyright 2016 Nuvoton Technology Corp.
* Author: John Hsu <KCHSU0@nuvoton.com>
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/acpi.h>
#include <linux/math64.h>
#include <linux/semaphore.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/jack.h>
#include "nau8824.h"
static int nau8824_config_sysclk(struct nau8824 *nau8824,
int clk_id, unsigned int freq);
static bool nau8824_is_jack_inserted(struct nau8824 *nau8824);
/* the ADC threshold of headset */
#define DMIC_CLK 3072000
/* the ADC threshold of headset */
#define HEADSET_SARADC_THD 0x80
/* the parameter threshold of FLL */
#define NAU_FREF_MAX 13500000
#define NAU_FVCO_MAX 100000000
#define NAU_FVCO_MIN 90000000
/* scaling for mclk from sysclk_src output */
static const struct nau8824_fll_attr mclk_src_scaling[] = {
{ 1, 0x0 },
{ 2, 0x2 },
{ 4, 0x3 },
{ 8, 0x4 },
{ 16, 0x5 },
{ 32, 0x6 },
{ 3, 0x7 },
{ 6, 0xa },
{ 12, 0xb },
{ 24, 0xc },
};
/* ratio for input clk freq */
static const struct nau8824_fll_attr fll_ratio[] = {
{ 512000, 0x01 },
{ 256000, 0x02 },
{ 128000, 0x04 },
{ 64000, 0x08 },
{ 32000, 0x10 },
{ 8000, 0x20 },
{ 4000, 0x40 },
};
static const struct nau8824_fll_attr fll_pre_scalar[] = {
{ 1, 0x0 },
{ 2, 0x1 },
{ 4, 0x2 },
{ 8, 0x3 },
};
/* the maximum frequency of CLK_ADC and CLK_DAC */
#define CLK_DA_AD_MAX 6144000
/* over sampling rate */
static const struct nau8824_osr_attr osr_dac_sel[] = {
{ 64, 2 }, /* OSR 64, SRC 1/4 */
{ 256, 0 }, /* OSR 256, SRC 1 */
{ 128, 1 }, /* OSR 128, SRC 1/2 */
{ 0, 0 },
{ 32, 3 }, /* OSR 32, SRC 1/8 */
};
static const struct nau8824_osr_attr osr_adc_sel[] = {
{ 32, 3 }, /* OSR 32, SRC 1/8 */
{ 64, 2 }, /* OSR 64, SRC 1/4 */
{ 128, 1 }, /* OSR 128, SRC 1/2 */
{ 256, 0 }, /* OSR 256, SRC 1 */
};
static const struct reg_default nau8824_reg_defaults[] = {
{ NAU8824_REG_ENA_CTRL, 0x0000 },
{ NAU8824_REG_CLK_GATING_ENA, 0x0000 },
{ NAU8824_REG_CLK_DIVIDER, 0x0000 },
{ NAU8824_REG_FLL1, 0x0000 },
{ NAU8824_REG_FLL2, 0x3126 },
{ NAU8824_REG_FLL3, 0x0008 },
{ NAU8824_REG_FLL4, 0x0010 },
{ NAU8824_REG_FLL5, 0xC000 },
{ NAU8824_REG_FLL6, 0x6000 },
{ NAU8824_REG_FLL_VCO_RSV, 0xF13C },
{ NAU8824_REG_JACK_DET_CTRL, 0x0000 },
{ NAU8824_REG_INTERRUPT_SETTING_1, 0x0000 },
{ NAU8824_REG_IRQ, 0x0000 },
{ NAU8824_REG_CLEAR_INT_REG, 0x0000 },
{ NAU8824_REG_INTERRUPT_SETTING, 0x1000 },
{ NAU8824_REG_SAR_ADC, 0x0015 },
{ NAU8824_REG_VDET_COEFFICIENT, 0x0110 },
{ NAU8824_REG_VDET_THRESHOLD_1, 0x0000 },
{ NAU8824_REG_VDET_THRESHOLD_2, 0x0000 },
{ NAU8824_REG_VDET_THRESHOLD_3, 0x0000 },
{ NAU8824_REG_VDET_THRESHOLD_4, 0x0000 },
{ NAU8824_REG_GPIO_SEL, 0x0000 },
{ NAU8824_REG_PORT0_I2S_PCM_CTRL_1, 0x000B },
{ NAU8824_REG_PORT0_I2S_PCM_CTRL_2, 0x0010 },
{ NAU8824_REG_PORT0_LEFT_TIME_SLOT, 0x0000 },
{ NAU8824_REG_PORT0_RIGHT_TIME_SLOT, 0x0000 },
{ NAU8824_REG_TDM_CTRL, 0x0000 },
{ NAU8824_REG_ADC_HPF_FILTER, 0x0000 },
{ NAU8824_REG_ADC_FILTER_CTRL, 0x0002 },
{ NAU8824_REG_DAC_FILTER_CTRL_1, 0x0000 },
{ NAU8824_REG_DAC_FILTER_CTRL_2, 0x0000 },
{ NAU8824_REG_NOTCH_FILTER_1, 0x0000 },
{ NAU8824_REG_NOTCH_FILTER_2, 0x0000 },
{ NAU8824_REG_EQ1_LOW, 0x112C },
{ NAU8824_REG_EQ2_EQ3, 0x2C2C },
{ NAU8824_REG_EQ4_EQ5, 0x2C2C },
{ NAU8824_REG_ADC_CH0_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_ADC_CH1_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_ADC_CH2_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_ADC_CH3_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_DAC_MUTE_CTRL, 0x0000 },
{ NAU8824_REG_DAC_CH0_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_DAC_CH1_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_ADC_TO_DAC_ST, 0x0000 },
{ NAU8824_REG_DRC_KNEE_IP12_ADC_CH01, 0x1486 },
{ NAU8824_REG_DRC_KNEE_IP34_ADC_CH01, 0x0F12 },
{ NAU8824_REG_DRC_SLOPE_ADC_CH01, 0x25FF },
{ NAU8824_REG_DRC_ATKDCY_ADC_CH01, 0x3457 },
{ NAU8824_REG_DRC_KNEE_IP12_ADC_CH23, 0x1486 },
{ NAU8824_REG_DRC_KNEE_IP34_ADC_CH23, 0x0F12 },
{ NAU8824_REG_DRC_SLOPE_ADC_CH23, 0x25FF },
{ NAU8824_REG_DRC_ATKDCY_ADC_CH23, 0x3457 },
{ NAU8824_REG_DRC_GAINL_ADC0, 0x0200 },
{ NAU8824_REG_DRC_GAINL_ADC1, 0x0200 },
{ NAU8824_REG_DRC_GAINL_ADC2, 0x0200 },
{ NAU8824_REG_DRC_GAINL_ADC3, 0x0200 },
{ NAU8824_REG_DRC_KNEE_IP12_DAC, 0x1486 },
{ NAU8824_REG_DRC_KNEE_IP34_DAC, 0x0F12 },
{ NAU8824_REG_DRC_SLOPE_DAC, 0x25F9 },
{ NAU8824_REG_DRC_ATKDCY_DAC, 0x3457 },
{ NAU8824_REG_DRC_GAIN_DAC_CH0, 0x0200 },
{ NAU8824_REG_DRC_GAIN_DAC_CH1, 0x0200 },
{ NAU8824_REG_MODE, 0x0000 },
{ NAU8824_REG_MODE1, 0x0000 },
{ NAU8824_REG_MODE2, 0x0000 },
{ NAU8824_REG_CLASSG, 0x0000 },
{ NAU8824_REG_OTP_EFUSE, 0x0000 },
{ NAU8824_REG_OTPDOUT_1, 0x0000 },
{ NAU8824_REG_OTPDOUT_2, 0x0000 },
{ NAU8824_REG_MISC_CTRL, 0x0000 },
{ NAU8824_REG_I2C_TIMEOUT, 0xEFFF },
{ NAU8824_REG_TEST_MODE, 0x0000 },
{ NAU8824_REG_I2C_DEVICE_ID, 0x1AF1 },
{ NAU8824_REG_SAR_ADC_DATA_OUT, 0x00FF },
{ NAU8824_REG_BIAS_ADJ, 0x0000 },
{ NAU8824_REG_PGA_GAIN, 0x0000 },
{ NAU8824_REG_TRIM_SETTINGS, 0x0000 },
{ NAU8824_REG_ANALOG_CONTROL_1, 0x0000 },
{ NAU8824_REG_ANALOG_CONTROL_2, 0x0000 },
{ NAU8824_REG_ENABLE_LO, 0x0000 },
{ NAU8824_REG_GAIN_LO, 0x0000 },
{ NAU8824_REG_CLASSD_GAIN_1, 0x0000 },
{ NAU8824_REG_CLASSD_GAIN_2, 0x0000 },
{ NAU8824_REG_ANALOG_ADC_1, 0x0011 },
{ NAU8824_REG_ANALOG_ADC_2, 0x0020 },
{ NAU8824_REG_RDAC, 0x0008 },
{ NAU8824_REG_MIC_BIAS, 0x0006 },
{ NAU8824_REG_HS_VOLUME_CONTROL, 0x0000 },
{ NAU8824_REG_BOOST, 0x0000 },
{ NAU8824_REG_FEPGA, 0x0000 },
{ NAU8824_REG_FEPGA_II, 0x0000 },
{ NAU8824_REG_FEPGA_SE, 0x0000 },
{ NAU8824_REG_FEPGA_ATTENUATION, 0x0000 },
{ NAU8824_REG_ATT_PORT0, 0x0000 },
{ NAU8824_REG_ATT_PORT1, 0x0000 },
{ NAU8824_REG_POWER_UP_CONTROL, 0x0000 },
{ NAU8824_REG_CHARGE_PUMP_CONTROL, 0x0300 },
{ NAU8824_REG_CHARGE_PUMP_INPUT, 0x0013 },
};
static int nau8824_sema_acquire(struct nau8824 *nau8824, long timeout)
{
int ret;
if (timeout) {
ret = down_timeout(&nau8824->jd_sem, timeout);
if (ret < 0)
dev_warn(nau8824->dev, "Acquire semaphore timeout\n");
} else {
ret = down_interruptible(&nau8824->jd_sem);
if (ret < 0)
dev_warn(nau8824->dev, "Acquire semaphore fail\n");
}
return ret;
}
static inline void nau8824_sema_release(struct nau8824 *nau8824)
{
up(&nau8824->jd_sem);
}
static bool nau8824_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8824_REG_ENA_CTRL ... NAU8824_REG_FLL_VCO_RSV:
case NAU8824_REG_JACK_DET_CTRL:
case NAU8824_REG_INTERRUPT_SETTING_1:
case NAU8824_REG_IRQ:
case NAU8824_REG_CLEAR_INT_REG ... NAU8824_REG_VDET_THRESHOLD_4:
case NAU8824_REG_GPIO_SEL:
case NAU8824_REG_PORT0_I2S_PCM_CTRL_1 ... NAU8824_REG_TDM_CTRL:
case NAU8824_REG_ADC_HPF_FILTER ... NAU8824_REG_EQ4_EQ5:
case NAU8824_REG_ADC_CH0_DGAIN_CTRL ... NAU8824_REG_ADC_TO_DAC_ST:
case NAU8824_REG_DRC_KNEE_IP12_ADC_CH01 ... NAU8824_REG_DRC_GAINL_ADC3:
case NAU8824_REG_DRC_KNEE_IP12_DAC ... NAU8824_REG_DRC_GAIN_DAC_CH1:
case NAU8824_REG_CLASSG ... NAU8824_REG_OTP_EFUSE:
case NAU8824_REG_OTPDOUT_1 ... NAU8824_REG_OTPDOUT_2:
case NAU8824_REG_I2C_TIMEOUT:
case NAU8824_REG_I2C_DEVICE_ID ... NAU8824_REG_SAR_ADC_DATA_OUT:
case NAU8824_REG_BIAS_ADJ ... NAU8824_REG_CLASSD_GAIN_2:
case NAU8824_REG_ANALOG_ADC_1 ... NAU8824_REG_ATT_PORT1:
case NAU8824_REG_POWER_UP_CONTROL ... NAU8824_REG_CHARGE_PUMP_INPUT:
return true;
default:
return false;
}
}
static bool nau8824_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8824_REG_RESET ... NAU8824_REG_FLL_VCO_RSV:
case NAU8824_REG_JACK_DET_CTRL:
case NAU8824_REG_INTERRUPT_SETTING_1:
case NAU8824_REG_CLEAR_INT_REG ... NAU8824_REG_VDET_THRESHOLD_4:
case NAU8824_REG_GPIO_SEL:
case NAU8824_REG_PORT0_I2S_PCM_CTRL_1 ... NAU8824_REG_TDM_CTRL:
case NAU8824_REG_ADC_HPF_FILTER ... NAU8824_REG_EQ4_EQ5:
case NAU8824_REG_ADC_CH0_DGAIN_CTRL ... NAU8824_REG_ADC_TO_DAC_ST:
case NAU8824_REG_DRC_KNEE_IP12_ADC_CH01:
case NAU8824_REG_DRC_KNEE_IP34_ADC_CH01:
case NAU8824_REG_DRC_SLOPE_ADC_CH01:
case NAU8824_REG_DRC_ATKDCY_ADC_CH01:
case NAU8824_REG_DRC_KNEE_IP12_ADC_CH23:
case NAU8824_REG_DRC_KNEE_IP34_ADC_CH23:
case NAU8824_REG_DRC_SLOPE_ADC_CH23:
case NAU8824_REG_DRC_ATKDCY_ADC_CH23:
case NAU8824_REG_DRC_KNEE_IP12_DAC ... NAU8824_REG_DRC_ATKDCY_DAC:
case NAU8824_REG_CLASSG ... NAU8824_REG_OTP_EFUSE:
case NAU8824_REG_I2C_TIMEOUT:
case NAU8824_REG_BIAS_ADJ ... NAU8824_REG_CLASSD_GAIN_2:
case NAU8824_REG_ANALOG_ADC_1 ... NAU8824_REG_ATT_PORT1:
case NAU8824_REG_POWER_UP_CONTROL ... NAU8824_REG_CHARGE_PUMP_CONTROL:
return true;
default:
return false;
}
}
static bool nau8824_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8824_REG_RESET:
case NAU8824_REG_IRQ ... NAU8824_REG_CLEAR_INT_REG:
case NAU8824_REG_DRC_GAINL_ADC0 ... NAU8824_REG_DRC_GAINL_ADC3:
case NAU8824_REG_DRC_GAIN_DAC_CH0 ... NAU8824_REG_DRC_GAIN_DAC_CH1:
case NAU8824_REG_OTPDOUT_1 ... NAU8824_REG_OTPDOUT_2:
case NAU8824_REG_I2C_DEVICE_ID ... NAU8824_REG_SAR_ADC_DATA_OUT:
case NAU8824_REG_CHARGE_PUMP_INPUT:
return true;
default:
return false;
}
}
static const char * const nau8824_companding[] = {
"Off", "NC", "u-law", "A-law" };
static const struct soc_enum nau8824_companding_adc_enum =
SOC_ENUM_SINGLE(NAU8824_REG_PORT0_I2S_PCM_CTRL_1, 12,
ARRAY_SIZE(nau8824_companding), nau8824_companding);
static const struct soc_enum nau8824_companding_dac_enum =
SOC_ENUM_SINGLE(NAU8824_REG_PORT0_I2S_PCM_CTRL_1, 14,
ARRAY_SIZE(nau8824_companding), nau8824_companding);
static const char * const nau8824_adc_decimation[] = {
"32", "64", "128", "256" };
static const struct soc_enum nau8824_adc_decimation_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_FILTER_CTRL, 0,
ARRAY_SIZE(nau8824_adc_decimation), nau8824_adc_decimation);
static const char * const nau8824_dac_oversampl[] = {
"64", "256", "128", "", "32" };
static const struct soc_enum nau8824_dac_oversampl_enum =
SOC_ENUM_SINGLE(NAU8824_REG_DAC_FILTER_CTRL_1, 0,
ARRAY_SIZE(nau8824_dac_oversampl), nau8824_dac_oversampl);
static const char * const nau8824_input_channel[] = {
"Input CH0", "Input CH1", "Input CH2", "Input CH3" };
static const struct soc_enum nau8824_adc_ch0_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH0_DGAIN_CTRL, 9,
ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel);
static const struct soc_enum nau8824_adc_ch1_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH1_DGAIN_CTRL, 9,
ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel);
static const struct soc_enum nau8824_adc_ch2_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH2_DGAIN_CTRL, 9,
ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel);
static const struct soc_enum nau8824_adc_ch3_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH3_DGAIN_CTRL, 9,
ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel);
static const char * const nau8824_tdm_slot[] = {
"Slot 0", "Slot 1", "Slot 2", "Slot 3" };
static const struct soc_enum nau8824_dac_left_sel_enum =
SOC_ENUM_SINGLE(NAU8824_REG_TDM_CTRL, 6,
ARRAY_SIZE(nau8824_tdm_slot), nau8824_tdm_slot);
static const struct soc_enum nau8824_dac_right_sel_enum =
SOC_ENUM_SINGLE(NAU8824_REG_TDM_CTRL, 4,
ARRAY_SIZE(nau8824_tdm_slot), nau8824_tdm_slot);
static const DECLARE_TLV_DB_MINMAX_MUTE(spk_vol_tlv, 0, 2400);
static const DECLARE_TLV_DB_MINMAX(hp_vol_tlv, -3000, 0);
static const DECLARE_TLV_DB_SCALE(mic_vol_tlv, 0, 200, 0);
static const DECLARE_TLV_DB_SCALE(dmic_vol_tlv, -12800, 50, 0);
static const struct snd_kcontrol_new nau8824_snd_controls[] = {
SOC_ENUM("ADC Companding", nau8824_companding_adc_enum),
SOC_ENUM("DAC Companding", nau8824_companding_dac_enum),
SOC_ENUM("ADC Decimation Rate", nau8824_adc_decimation_enum),
SOC_ENUM("DAC Oversampling Rate", nau8824_dac_oversampl_enum),
SOC_SINGLE_TLV("Speaker Right DACR Volume",
NAU8824_REG_CLASSD_GAIN_1, 8, 0x1f, 0, spk_vol_tlv),
SOC_SINGLE_TLV("Speaker Left DACL Volume",
NAU8824_REG_CLASSD_GAIN_2, 0, 0x1f, 0, spk_vol_tlv),
SOC_SINGLE_TLV("Speaker Left DACR Volume",
NAU8824_REG_CLASSD_GAIN_1, 0, 0x1f, 0, spk_vol_tlv),
SOC_SINGLE_TLV("Speaker Right DACL Volume",
NAU8824_REG_CLASSD_GAIN_2, 8, 0x1f, 0, spk_vol_tlv),
SOC_SINGLE_TLV("Headphone Right DACR Volume",
NAU8824_REG_ATT_PORT0, 8, 0x1f, 0, hp_vol_tlv),
SOC_SINGLE_TLV("Headphone Left DACL Volume",
NAU8824_REG_ATT_PORT0, 0, 0x1f, 0, hp_vol_tlv),
SOC_SINGLE_TLV("Headphone Right DACL Volume",
NAU8824_REG_ATT_PORT1, 8, 0x1f, 0, hp_vol_tlv),
SOC_SINGLE_TLV("Headphone Left DACR Volume",
NAU8824_REG_ATT_PORT1, 0, 0x1f, 0, hp_vol_tlv),
SOC_SINGLE_TLV("MIC1 Volume", NAU8824_REG_FEPGA_II,
NAU8824_FEPGA_GAINL_SFT, 0x12, 0, mic_vol_tlv),
SOC_SINGLE_TLV("MIC2 Volume", NAU8824_REG_FEPGA_II,
NAU8824_FEPGA_GAINR_SFT, 0x12, 0, mic_vol_tlv),
SOC_SINGLE_TLV("DMIC1 Volume", NAU8824_REG_ADC_CH0_DGAIN_CTRL,
0, 0x164, 0, dmic_vol_tlv),
SOC_SINGLE_TLV("DMIC2 Volume", NAU8824_REG_ADC_CH1_DGAIN_CTRL,
0, 0x164, 0, dmic_vol_tlv),
SOC_SINGLE_TLV("DMIC3 Volume", NAU8824_REG_ADC_CH2_DGAIN_CTRL,
0, 0x164, 0, dmic_vol_tlv),
SOC_SINGLE_TLV("DMIC4 Volume", NAU8824_REG_ADC_CH3_DGAIN_CTRL,
0, 0x164, 0, dmic_vol_tlv),
SOC_ENUM("ADC CH0 Select", nau8824_adc_ch0_enum),
SOC_ENUM("ADC CH1 Select", nau8824_adc_ch1_enum),
SOC_ENUM("ADC CH2 Select", nau8824_adc_ch2_enum),
SOC_ENUM("ADC CH3 Select", nau8824_adc_ch3_enum),
SOC_SINGLE("ADC CH0 TX Switch", NAU8824_REG_TDM_CTRL, 0, 1, 0),
SOC_SINGLE("ADC CH1 TX Switch", NAU8824_REG_TDM_CTRL, 1, 1, 0),
SOC_SINGLE("ADC CH2 TX Switch", NAU8824_REG_TDM_CTRL, 2, 1, 0),
SOC_SINGLE("ADC CH3 TX Switch", NAU8824_REG_TDM_CTRL, 3, 1, 0),
SOC_ENUM("DACL Channel Source", nau8824_dac_left_sel_enum),
SOC_ENUM("DACR Channel Source", nau8824_dac_right_sel_enum),
SOC_SINGLE("DACL LR Mix", NAU8824_REG_DAC_MUTE_CTRL, 0, 1, 0),
SOC_SINGLE("DACR LR Mix", NAU8824_REG_DAC_MUTE_CTRL, 1, 1, 0),
SOC_SINGLE("THD for key media",
NAU8824_REG_VDET_THRESHOLD_1, 8, 0xff, 0),
SOC_SINGLE("THD for key voice command",
NAU8824_REG_VDET_THRESHOLD_1, 0, 0xff, 0),
SOC_SINGLE("THD for key volume up",
NAU8824_REG_VDET_THRESHOLD_2, 8, 0xff, 0),
SOC_SINGLE("THD for key volume down",
NAU8824_REG_VDET_THRESHOLD_2, 0, 0xff, 0),
};
static int nau8824_output_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Disables the TESTDAC to let DAC signal pass through. */
regmap_update_bits(nau8824->regmap, NAU8824_REG_ENABLE_LO,
NAU8824_TEST_DAC_EN, 0);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(nau8824->regmap, NAU8824_REG_ENABLE_LO,
NAU8824_TEST_DAC_EN, NAU8824_TEST_DAC_EN);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8824_spk_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
regmap_update_bits(nau8824->regmap,
NAU8824_REG_ANALOG_CONTROL_2,
NAU8824_CLASSD_CLAMP_DIS, NAU8824_CLASSD_CLAMP_DIS);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(nau8824->regmap,
NAU8824_REG_ANALOG_CONTROL_2,
NAU8824_CLASSD_CLAMP_DIS, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8824_pump_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
/* Prevent startup click by letting charge pump to ramp up */
msleep(10);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_CHARGE_PUMP_CONTROL,
NAU8824_JAMNODCLOW, NAU8824_JAMNODCLOW);
break;
case SND_SOC_DAPM_PRE_PMD:
regmap_update_bits(nau8824->regmap,
NAU8824_REG_CHARGE_PUMP_CONTROL,
NAU8824_JAMNODCLOW, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int system_clock_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
struct regmap *regmap = nau8824->regmap;
unsigned int value;
bool clk_fll, error;
if (SND_SOC_DAPM_EVENT_OFF(event)) {
dev_dbg(nau8824->dev, "system clock control : POWER OFF\n");
/* Set clock source to disable or internal clock before the
* playback or capture end. Codec needs clock for Jack
* detection and button press if jack inserted; otherwise,
* the clock should be closed.
*/
if (nau8824_is_jack_inserted(nau8824)) {
nau8824_config_sysclk(nau8824,
NAU8824_CLK_INTERNAL, 0);
} else {
nau8824_config_sysclk(nau8824, NAU8824_CLK_DIS, 0);
}
} else {
dev_dbg(nau8824->dev, "system clock control : POWER ON\n");
/* Check the clock source setting is proper or not
* no matter the source is from FLL or MCLK.
*/
regmap_read(regmap, NAU8824_REG_FLL1, &value);
clk_fll = value & NAU8824_FLL_RATIO_MASK;
/* It's error to use internal clock when playback */
regmap_read(regmap, NAU8824_REG_FLL6, &value);
error = value & NAU8824_DCO_EN;
if (!error) {
/* Check error depending on source is FLL or MCLK. */
regmap_read(regmap, NAU8824_REG_CLK_DIVIDER, &value);
if (clk_fll)
error = !(value & NAU8824_CLK_SRC_VCO);
else
error = value & NAU8824_CLK_SRC_VCO;
}
/* Recover the clock source setting if error. */
if (error) {
if (clk_fll) {
regmap_update_bits(regmap,
NAU8824_REG_FLL6, NAU8824_DCO_EN, 0);
regmap_update_bits(regmap,
NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK,
NAU8824_CLK_SRC_VCO);
} else {
nau8824_config_sysclk(nau8824,
NAU8824_CLK_MCLK, 0);
}
}
}
return 0;
}
static int dmic_clock_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
int src;
/* The DMIC clock is gotten from system clock (256fs) divided by
* DMIC_SRC (1, 2, 4, 8, 16, 32). The clock has to be equal or
* less than 3.072 MHz.
*/
for (src = 0; src < 5; src++) {
if ((0x1 << (8 - src)) * nau8824->fs <= DMIC_CLK)
break;
}
dev_dbg(nau8824->dev, "dmic src %d for mclk %d\n", src, nau8824->fs * 256);
regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_DMIC_SRC_MASK, (src << NAU8824_CLK_DMIC_SRC_SFT));
return 0;
}
static const struct snd_kcontrol_new nau8824_adc_ch0_dmic =
SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL,
NAU8824_ADC_CH0_DMIC_SFT, 1, 0);
static const struct snd_kcontrol_new nau8824_adc_ch1_dmic =
SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL,
NAU8824_ADC_CH1_DMIC_SFT, 1, 0);
static const struct snd_kcontrol_new nau8824_adc_ch2_dmic =
SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL,
NAU8824_ADC_CH2_DMIC_SFT, 1, 0);
static const struct snd_kcontrol_new nau8824_adc_ch3_dmic =
SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL,
NAU8824_ADC_CH3_DMIC_SFT, 1, 0);
static const struct snd_kcontrol_new nau8824_adc_left_mixer[] = {
SOC_DAPM_SINGLE("MIC Switch", NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODEL_MIC1_SFT, 1, 0),
SOC_DAPM_SINGLE("HSMIC Switch", NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODEL_HSMIC_SFT, 1, 0),
};
static const struct snd_kcontrol_new nau8824_adc_right_mixer[] = {
SOC_DAPM_SINGLE("MIC Switch", NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODER_MIC2_SFT, 1, 0),
SOC_DAPM_SINGLE("HSMIC Switch", NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODER_HSMIC_SFT, 1, 0),
};
static const struct snd_kcontrol_new nau8824_hp_left_mixer[] = {
SOC_DAPM_SINGLE("DAC Right Switch", NAU8824_REG_ENABLE_LO,
NAU8824_DACR_HPL_EN_SFT, 1, 0),
SOC_DAPM_SINGLE("DAC Left Switch", NAU8824_REG_ENABLE_LO,
NAU8824_DACL_HPL_EN_SFT, 1, 0),
};
static const struct snd_kcontrol_new nau8824_hp_right_mixer[] = {
SOC_DAPM_SINGLE("DAC Left Switch", NAU8824_REG_ENABLE_LO,
NAU8824_DACL_HPR_EN_SFT, 1, 0),
SOC_DAPM_SINGLE("DAC Right Switch", NAU8824_REG_ENABLE_LO,
NAU8824_DACR_HPR_EN_SFT, 1, 0),
};
static const char * const nau8824_dac_src[] = { "DACL", "DACR" };
static SOC_ENUM_SINGLE_DECL(
nau8824_dacl_enum, NAU8824_REG_DAC_CH0_DGAIN_CTRL,
NAU8824_DAC_CH0_SEL_SFT, nau8824_dac_src);
static SOC_ENUM_SINGLE_DECL(
nau8824_dacr_enum, NAU8824_REG_DAC_CH1_DGAIN_CTRL,
NAU8824_DAC_CH1_SEL_SFT, nau8824_dac_src);
static const struct snd_kcontrol_new nau8824_dacl_mux =
SOC_DAPM_ENUM("DACL Source", nau8824_dacl_enum);
static const struct snd_kcontrol_new nau8824_dacr_mux =
SOC_DAPM_ENUM("DACR Source", nau8824_dacr_enum);
static const struct snd_soc_dapm_widget nau8824_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("System Clock", SND_SOC_NOPM, 0, 0,
system_clock_control, SND_SOC_DAPM_POST_PMD |
SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_INPUT("HSMIC1"),
SND_SOC_DAPM_INPUT("HSMIC2"),
SND_SOC_DAPM_INPUT("MIC1"),
SND_SOC_DAPM_INPUT("MIC2"),
SND_SOC_DAPM_INPUT("DMIC1"),
SND_SOC_DAPM_INPUT("DMIC2"),
SND_SOC_DAPM_INPUT("DMIC3"),
SND_SOC_DAPM_INPUT("DMIC4"),
SND_SOC_DAPM_SUPPLY("SAR", NAU8824_REG_SAR_ADC,
NAU8824_SAR_ADC_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("MICBIAS", NAU8824_REG_MIC_BIAS,
NAU8824_MICBIAS_POWERUP_SFT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DMIC12 Power", NAU8824_REG_BIAS_ADJ,
NAU8824_DMIC1_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DMIC34 Power", NAU8824_REG_BIAS_ADJ,
NAU8824_DMIC2_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DMIC Clock", SND_SOC_NOPM, 0, 0,
dmic_clock_control, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_SWITCH("DMIC1 Enable", SND_SOC_NOPM,
0, 0, &nau8824_adc_ch0_dmic),
SND_SOC_DAPM_SWITCH("DMIC2 Enable", SND_SOC_NOPM,
0, 0, &nau8824_adc_ch1_dmic),
SND_SOC_DAPM_SWITCH("DMIC3 Enable", SND_SOC_NOPM,
0, 0, &nau8824_adc_ch2_dmic),
SND_SOC_DAPM_SWITCH("DMIC4 Enable", SND_SOC_NOPM,
0, 0, &nau8824_adc_ch3_dmic),
SND_SOC_DAPM_MIXER("Left ADC", NAU8824_REG_POWER_UP_CONTROL,
12, 0, nau8824_adc_left_mixer,
ARRAY_SIZE(nau8824_adc_left_mixer)),
SND_SOC_DAPM_MIXER("Right ADC", NAU8824_REG_POWER_UP_CONTROL,
13, 0, nau8824_adc_right_mixer,
ARRAY_SIZE(nau8824_adc_right_mixer)),
SND_SOC_DAPM_ADC("ADCL", NULL, NAU8824_REG_ANALOG_ADC_2,
NAU8824_ADCL_EN_SFT, 0),
SND_SOC_DAPM_ADC("ADCR", NULL, NAU8824_REG_ANALOG_ADC_2,
NAU8824_ADCR_EN_SFT, 0),
SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("DACL", NULL, NAU8824_REG_RDAC,
NAU8824_DACL_EN_SFT, 0),
SND_SOC_DAPM_SUPPLY("DACL Clock", NAU8824_REG_RDAC,
NAU8824_DACL_CLK_SFT, 0, NULL, 0),
SND_SOC_DAPM_DAC("DACR", NULL, NAU8824_REG_RDAC,
NAU8824_DACR_EN_SFT, 0),
SND_SOC_DAPM_SUPPLY("DACR Clock", NAU8824_REG_RDAC,
NAU8824_DACR_CLK_SFT, 0, NULL, 0),
SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8824_dacl_mux),
SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8824_dacr_mux),
SND_SOC_DAPM_PGA_S("Output DACL", 0, NAU8824_REG_CHARGE_PUMP_CONTROL,
8, 1, nau8824_output_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_S("Output DACR", 0, NAU8824_REG_CHARGE_PUMP_CONTROL,
9, 1, nau8824_output_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_S("ClassD", 0, NAU8824_REG_CLASSD_GAIN_1,
NAU8824_CLASSD_EN_SFT, 0, nau8824_spk_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("Left Headphone", NAU8824_REG_CLASSG,
NAU8824_CLASSG_LDAC_EN_SFT, 0, nau8824_hp_left_mixer,
ARRAY_SIZE(nau8824_hp_left_mixer)),
SND_SOC_DAPM_MIXER("Right Headphone", NAU8824_REG_CLASSG,
NAU8824_CLASSG_RDAC_EN_SFT, 0, nau8824_hp_right_mixer,
ARRAY_SIZE(nau8824_hp_right_mixer)),
SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8824_REG_CHARGE_PUMP_CONTROL,
NAU8824_CHARGE_PUMP_EN_SFT, 0, nau8824_pump_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA("Output Driver L",
NAU8824_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
SND_SOC_DAPM_PGA("Output Driver R",
NAU8824_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
SND_SOC_DAPM_PGA("Main Driver L",
NAU8824_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA("Main Driver R",
NAU8824_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("HP Boost Driver", NAU8824_REG_BOOST,
NAU8824_HP_BOOST_DIS_SFT, 1, NULL, 0),
SND_SOC_DAPM_PGA("Class G", NAU8824_REG_CLASSG,
NAU8824_CLASSG_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("SPKOUTL"),
SND_SOC_DAPM_OUTPUT("SPKOUTR"),
SND_SOC_DAPM_OUTPUT("HPOL"),
SND_SOC_DAPM_OUTPUT("HPOR"),
};
static const struct snd_soc_dapm_route nau8824_dapm_routes[] = {
{"DMIC1 Enable", "Switch", "DMIC1"},
{"DMIC2 Enable", "Switch", "DMIC2"},
{"DMIC3 Enable", "Switch", "DMIC3"},
{"DMIC4 Enable", "Switch", "DMIC4"},
{"DMIC1", NULL, "DMIC12 Power"},
{"DMIC2", NULL, "DMIC12 Power"},
{"DMIC3", NULL, "DMIC34 Power"},
{"DMIC4", NULL, "DMIC34 Power"},
{"DMIC12 Power", NULL, "DMIC Clock"},
{"DMIC34 Power", NULL, "DMIC Clock"},
{"Left ADC", "MIC Switch", "MIC1"},
{"Left ADC", "HSMIC Switch", "HSMIC1"},
{"Right ADC", "MIC Switch", "MIC2"},
{"Right ADC", "HSMIC Switch", "HSMIC2"},
{"ADCL", NULL, "Left ADC"},
{"ADCR", NULL, "Right ADC"},
{"AIFTX", NULL, "MICBIAS"},
{"AIFTX", NULL, "ADCL"},
{"AIFTX", NULL, "ADCR"},
{"AIFTX", NULL, "DMIC1 Enable"},
{"AIFTX", NULL, "DMIC2 Enable"},
{"AIFTX", NULL, "DMIC3 Enable"},
{"AIFTX", NULL, "DMIC4 Enable"},
{"AIFTX", NULL, "System Clock"},
{"AIFRX", NULL, "System Clock"},
{"DACL", NULL, "AIFRX"},
{"DACL", NULL, "DACL Clock"},
{"DACR", NULL, "AIFRX"},
{"DACR", NULL, "DACR Clock"},
{"DACL Mux", "DACL", "DACL"},
{"DACL Mux", "DACR", "DACR"},
{"DACR Mux", "DACL", "DACL"},
{"DACR Mux", "DACR", "DACR"},
{"Output DACL", NULL, "DACL Mux"},
{"Output DACR", NULL, "DACR Mux"},
{"ClassD", NULL, "Output DACL"},
{"ClassD", NULL, "Output DACR"},
{"Left Headphone", "DAC Left Switch", "Output DACL"},
{"Left Headphone", "DAC Right Switch", "Output DACR"},
{"Right Headphone", "DAC Left Switch", "Output DACL"},
{"Right Headphone", "DAC Right Switch", "Output DACR"},
{"Charge Pump", NULL, "Left Headphone"},
{"Charge Pump", NULL, "Right Headphone"},
{"Output Driver L", NULL, "Charge Pump"},
{"Output Driver R", NULL, "Charge Pump"},
{"Main Driver L", NULL, "Output Driver L"},
{"Main Driver R", NULL, "Output Driver R"},
{"Class G", NULL, "Main Driver L"},
{"Class G", NULL, "Main Driver R"},
{"HP Boost Driver", NULL, "Class G"},
{"SPKOUTL", NULL, "ClassD"},
{"SPKOUTR", NULL, "ClassD"},
{"HPOL", NULL, "HP Boost Driver"},
{"HPOR", NULL, "HP Boost Driver"},
};
static bool nau8824_is_jack_inserted(struct nau8824 *nau8824)
{
struct snd_soc_jack *jack = nau8824->jack;
bool insert = false;
if (nau8824->irq && jack)
insert = jack->status & SND_JACK_HEADPHONE;
return insert;
}
static void nau8824_int_status_clear_all(struct regmap *regmap)
{
int active_irq, clear_irq, i;
/* Reset the intrruption status from rightmost bit if the corres-
* ponding irq event occurs.
*/
regmap_read(regmap, NAU8824_REG_IRQ, &active_irq);
for (i = 0; i < NAU8824_REG_DATA_LEN; i++) {
clear_irq = (0x1 << i);
if (active_irq & clear_irq)
regmap_write(regmap,
NAU8824_REG_CLEAR_INT_REG, clear_irq);
}
}
static void nau8824_dapm_disable_pin(struct nau8824 *nau8824, const char *pin)
{
struct snd_soc_dapm_context *dapm = nau8824->dapm;
const char *prefix = dapm->component->name_prefix;
char prefixed_pin[80];
if (prefix) {
snprintf(prefixed_pin, sizeof(prefixed_pin), "%s %s",
prefix, pin);
snd_soc_dapm_disable_pin(dapm, prefixed_pin);
} else {
snd_soc_dapm_disable_pin(dapm, pin);
}
}
static void nau8824_dapm_enable_pin(struct nau8824 *nau8824, const char *pin)
{
struct snd_soc_dapm_context *dapm = nau8824->dapm;
const char *prefix = dapm->component->name_prefix;
char prefixed_pin[80];
if (prefix) {
snprintf(prefixed_pin, sizeof(prefixed_pin), "%s %s",
prefix, pin);
snd_soc_dapm_force_enable_pin(dapm, prefixed_pin);
} else {
snd_soc_dapm_force_enable_pin(dapm, pin);
}
}
static void nau8824_eject_jack(struct nau8824 *nau8824)
{
struct snd_soc_dapm_context *dapm = nau8824->dapm;
struct regmap *regmap = nau8824->regmap;
/* Clear all interruption status */
nau8824_int_status_clear_all(regmap);
nau8824_dapm_disable_pin(nau8824, "SAR");
nau8824_dapm_disable_pin(nau8824, "MICBIAS");
snd_soc_dapm_sync(dapm);
/* Enable the insertion interruption, disable the ejection
* interruption, and then bypass de-bounce circuit.
*/
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_KEY_RELEASE_DIS | NAU8824_IRQ_KEY_SHORT_PRESS_DIS |
NAU8824_IRQ_EJECT_DIS | NAU8824_IRQ_INSERT_DIS,
NAU8824_IRQ_KEY_RELEASE_DIS | NAU8824_IRQ_KEY_SHORT_PRESS_DIS |
NAU8824_IRQ_EJECT_DIS);
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_INSERT_EN | NAU8824_IRQ_EJECT_EN,
NAU8824_IRQ_INSERT_EN);
regmap_update_bits(regmap, NAU8824_REG_ENA_CTRL,
NAU8824_JD_SLEEP_MODE, NAU8824_JD_SLEEP_MODE);
/* Close clock for jack type detection at manual mode */
if (dapm->bias_level < SND_SOC_BIAS_PREPARE)
nau8824_config_sysclk(nau8824, NAU8824_CLK_DIS, 0);
}
static void nau8824_jdet_work(struct work_struct *work)
{
struct nau8824 *nau8824 = container_of(
work, struct nau8824, jdet_work);
struct snd_soc_dapm_context *dapm = nau8824->dapm;
struct regmap *regmap = nau8824->regmap;
int adc_value, event = 0, event_mask = 0;
nau8824_dapm_enable_pin(nau8824, "MICBIAS");
nau8824_dapm_enable_pin(nau8824, "SAR");
snd_soc_dapm_sync(dapm);
msleep(100);
regmap_read(regmap, NAU8824_REG_SAR_ADC_DATA_OUT, &adc_value);
adc_value = adc_value & NAU8824_SAR_ADC_DATA_MASK;
dev_dbg(nau8824->dev, "SAR ADC data 0x%02x\n", adc_value);
if (adc_value < HEADSET_SARADC_THD) {
event |= SND_JACK_HEADPHONE;
nau8824_dapm_disable_pin(nau8824, "SAR");
nau8824_dapm_disable_pin(nau8824, "MICBIAS");
snd_soc_dapm_sync(dapm);
} else {
event |= SND_JACK_HEADSET;
}
event_mask |= SND_JACK_HEADSET;
snd_soc_jack_report(nau8824->jack, event, event_mask);
/* Enable short key press and release interruption. */
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_KEY_RELEASE_DIS |
NAU8824_IRQ_KEY_SHORT_PRESS_DIS, 0);
nau8824_sema_release(nau8824);
}
static void nau8824_setup_auto_irq(struct nau8824 *nau8824)
{
struct regmap *regmap = nau8824->regmap;
/* Enable jack ejection interruption. */
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_INSERT_EN | NAU8824_IRQ_EJECT_EN,
NAU8824_IRQ_EJECT_EN);
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_EJECT_DIS, 0);
/* Enable internal VCO needed for interruptions */
if (nau8824->dapm->bias_level < SND_SOC_BIAS_PREPARE)
nau8824_config_sysclk(nau8824, NAU8824_CLK_INTERNAL, 0);
regmap_update_bits(regmap, NAU8824_REG_ENA_CTRL,
NAU8824_JD_SLEEP_MODE, 0);
}
static int nau8824_button_decode(int value)
{
int buttons = 0;
/* The chip supports up to 8 buttons, but ALSA defines
* only 6 buttons.
*/
if (value & BIT(0))
buttons |= SND_JACK_BTN_0;
if (value & BIT(1))
buttons |= SND_JACK_BTN_1;
if (value & BIT(2))
buttons |= SND_JACK_BTN_2;
if (value & BIT(3))
buttons |= SND_JACK_BTN_3;
if (value & BIT(4))
buttons |= SND_JACK_BTN_4;
if (value & BIT(5))
buttons |= SND_JACK_BTN_5;
return buttons;
}
#define NAU8824_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
SND_JACK_BTN_2 | SND_JACK_BTN_3)
static irqreturn_t nau8824_interrupt(int irq, void *data)
{
struct nau8824 *nau8824 = (struct nau8824 *)data;
struct regmap *regmap = nau8824->regmap;
int active_irq, clear_irq = 0, event = 0, event_mask = 0;
if (regmap_read(regmap, NAU8824_REG_IRQ, &active_irq)) {
dev_err(nau8824->dev, "failed to read irq status\n");
return IRQ_NONE;
}
dev_dbg(nau8824->dev, "IRQ %x\n", active_irq);
if (active_irq & NAU8824_JACK_EJECTION_DETECTED) {
nau8824_eject_jack(nau8824);
event_mask |= SND_JACK_HEADSET;
clear_irq = NAU8824_JACK_EJECTION_DETECTED;
/* release semaphore held after resume,
* and cancel jack detection
*/
nau8824_sema_release(nau8824);
cancel_work_sync(&nau8824->jdet_work);
} else if (active_irq & NAU8824_KEY_SHORT_PRESS_IRQ) {
int key_status, button_pressed;
regmap_read(regmap, NAU8824_REG_CLEAR_INT_REG,
&key_status);
/* lower 8 bits of the register are for pressed keys */
button_pressed = nau8824_button_decode(key_status);
event |= button_pressed;
dev_dbg(nau8824->dev, "button %x pressed\n", event);
event_mask |= NAU8824_BUTTONS;
clear_irq = NAU8824_KEY_SHORT_PRESS_IRQ;
} else if (active_irq & NAU8824_KEY_RELEASE_IRQ) {
event_mask = NAU8824_BUTTONS;
clear_irq = NAU8824_KEY_RELEASE_IRQ;
} else if (active_irq & NAU8824_JACK_INSERTION_DETECTED) {
/* Turn off insertion interruption at manual mode */
regmap_update_bits(regmap,
NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_INSERT_DIS,
NAU8824_IRQ_INSERT_DIS);
regmap_update_bits(regmap,
NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_INSERT_EN, 0);
/* detect microphone and jack type */
cancel_work_sync(&nau8824->jdet_work);
schedule_work(&nau8824->jdet_work);
/* Enable interruption for jack type detection at audo
* mode which can detect microphone and jack type.
*/
nau8824_setup_auto_irq(nau8824);
}
if (!clear_irq)
clear_irq = active_irq;
/* clears the rightmost interruption */
regmap_write(regmap, NAU8824_REG_CLEAR_INT_REG, clear_irq);
if (event_mask)
snd_soc_jack_report(nau8824->jack, event, event_mask);
return IRQ_HANDLED;
}
static int nau8824_clock_check(struct nau8824 *nau8824,
int stream, int rate, int osr)
{
int osrate;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (osr >= ARRAY_SIZE(osr_dac_sel))
return -EINVAL;
osrate = osr_dac_sel[osr].osr;
} else {
if (osr >= ARRAY_SIZE(osr_adc_sel))
return -EINVAL;
osrate = osr_adc_sel[osr].osr;
}
if (!osrate || rate * osr > CLK_DA_AD_MAX) {
dev_err(nau8824->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
return -EINVAL;
}
return 0;
}
static int nau8824_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params, struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
nau8824_sema_acquire(nau8824, HZ);
/* CLK_DAC or CLK_ADC = OSR * FS
* DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
* multiplied by the audio sample rate (Fs). Note that the OSR and Fs
* values must be selected such that the maximum frequency is less
* than 6.144 MHz.
*/
nau8824->fs = params_rate(params);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
regmap_read(nau8824->regmap,
NAU8824_REG_DAC_FILTER_CTRL_1, &osr);
osr &= NAU8824_DAC_OVERSAMPLE_MASK;
if (nau8824_clock_check(nau8824, substream->stream,
nau8824->fs, osr))
return -EINVAL;
regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_DAC_SRC_MASK,
osr_dac_sel[osr].clk_src << NAU8824_CLK_DAC_SRC_SFT);
} else {
regmap_read(nau8824->regmap,
NAU8824_REG_ADC_FILTER_CTRL, &osr);
osr &= NAU8824_ADC_SYNC_DOWN_MASK;
if (nau8824_clock_check(nau8824, substream->stream,
nau8824->fs, osr))
return -EINVAL;
regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_ADC_SRC_MASK,
osr_adc_sel[osr].clk_src << NAU8824_CLK_ADC_SRC_SFT);
}
/* make BCLK and LRC divde configuration if the codec as master. */
regmap_read(nau8824->regmap,
NAU8824_REG_PORT0_I2S_PCM_CTRL_2, &ctrl_val);
if (ctrl_val & NAU8824_I2S_MS_MASTER) {
/* get the bclk and fs ratio */
bclk_fs = snd_soc_params_to_bclk(params) / nau8824->fs;
if (bclk_fs <= 32)
bclk_div = 0x3;
else if (bclk_fs <= 64)
bclk_div = 0x2;
else if (bclk_fs <= 128)
bclk_div = 0x1;
else if (bclk_fs <= 256)
bclk_div = 0;
else
return -EINVAL;
regmap_update_bits(nau8824->regmap,
NAU8824_REG_PORT0_I2S_PCM_CTRL_2,
NAU8824_I2S_LRC_DIV_MASK | NAU8824_I2S_BLK_DIV_MASK,
(bclk_div << NAU8824_I2S_LRC_DIV_SFT) | bclk_div);
}
switch (params_width(params)) {
case 16:
val_len |= NAU8824_I2S_DL_16;
break;
case 20:
val_len |= NAU8824_I2S_DL_20;
break;
case 24:
val_len |= NAU8824_I2S_DL_24;
break;
case 32:
val_len |= NAU8824_I2S_DL_32;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_1,
NAU8824_I2S_DL_MASK, val_len);
nau8824_sema_release(nau8824);
return 0;
}
static int nau8824_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
unsigned int ctrl1_val = 0, ctrl2_val = 0;
nau8824_sema_acquire(nau8824, HZ);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
ctrl2_val |= NAU8824_I2S_MS_MASTER;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
ctrl1_val |= NAU8824_I2S_BP_INV;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
ctrl1_val |= NAU8824_I2S_DF_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
ctrl1_val |= NAU8824_I2S_DF_LEFT;
break;
case SND_SOC_DAIFMT_RIGHT_J:
ctrl1_val |= NAU8824_I2S_DF_RIGTH;
break;
case SND_SOC_DAIFMT_DSP_A:
ctrl1_val |= NAU8824_I2S_DF_PCM_AB;
break;
case SND_SOC_DAIFMT_DSP_B:
ctrl1_val |= NAU8824_I2S_DF_PCM_AB;
ctrl1_val |= NAU8824_I2S_PCMB_EN;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_1,
NAU8824_I2S_DF_MASK | NAU8824_I2S_BP_MASK |
NAU8824_I2S_PCMB_EN, ctrl1_val);
regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_2,
NAU8824_I2S_MS_MASK, ctrl2_val);
nau8824_sema_release(nau8824);
return 0;
}
/**
* nau8824_set_tdm_slot - configure DAI TDM.
* @dai: DAI
* @tx_mask: Bitmask representing active TX slots. Ex.
* 0xf for normal 4 channel TDM.
* 0xf0 for shifted 4 channel TDM
* @rx_mask: Bitmask [0:1] representing active DACR RX slots.
* Bitmask [2:3] representing active DACL RX slots.
* 00=CH0,01=CH1,10=CH2,11=CH3. Ex.
* 0xf for DACL/R selecting TDM CH3.
* 0xf0 for DACL/R selecting shifted TDM CH3.
* @slots: Number of slots in use.
* @slot_width: Width in bits for each slot.
*
* Configures a DAI for TDM operation. Only support 4 slots TDM.
*/
static int nau8824_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
unsigned int tslot_l = 0, ctrl_val = 0;
if (slots > 4 || ((tx_mask & 0xf0) && (tx_mask & 0xf)) ||
((rx_mask & 0xf0) && (rx_mask & 0xf)) ||
((rx_mask & 0xf0) && (tx_mask & 0xf)) ||
((rx_mask & 0xf) && (tx_mask & 0xf0)))
return -EINVAL;
ctrl_val |= (NAU8824_TDM_MODE | NAU8824_TDM_OFFSET_EN);
if (tx_mask & 0xf0) {
tslot_l = 4 * slot_width;
ctrl_val |= (tx_mask >> 4);
} else {
ctrl_val |= tx_mask;
}
if (rx_mask & 0xf0)
ctrl_val |= ((rx_mask >> 4) << NAU8824_TDM_DACR_RX_SFT);
else
ctrl_val |= (rx_mask << NAU8824_TDM_DACR_RX_SFT);
regmap_update_bits(nau8824->regmap, NAU8824_REG_TDM_CTRL,
NAU8824_TDM_MODE | NAU8824_TDM_OFFSET_EN |
NAU8824_TDM_DACL_RX_MASK | NAU8824_TDM_DACR_RX_MASK |
NAU8824_TDM_TX_MASK, ctrl_val);
regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_LEFT_TIME_SLOT,
NAU8824_TSLOT_L_MASK, tslot_l);
return 0;
}
/**
* nau8824_calc_fll_param - Calculate FLL parameters.
* @fll_in: external clock provided to codec.
* @fs: sampling rate.
* @fll_param: Pointer to structure of FLL parameters.
*
* Calculate FLL parameters to configure codec.
*
* Returns 0 for success or negative error code.
*/
static int nau8824_calc_fll_param(unsigned int fll_in,
unsigned int fs, struct nau8824_fll *fll_param)
{
u64 fvco, fvco_max;
unsigned int fref, i, fvco_sel;
/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
* freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
* FREF = freq_in / NAU8824_FLL_REF_DIV_MASK
*/
for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
fref = fll_in / fll_pre_scalar[i].param;
if (fref <= NAU_FREF_MAX)
break;
}
if (i == ARRAY_SIZE(fll_pre_scalar))
return -EINVAL;
fll_param->clk_ref_div = fll_pre_scalar[i].val;
/* Choose the FLL ratio based on FREF */
for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
if (fref >= fll_ratio[i].param)
break;
}
if (i == ARRAY_SIZE(fll_ratio))
return -EINVAL;
fll_param->ratio = fll_ratio[i].val;
/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
* FDCO must be within the 90MHz - 124MHz or the FFL cannot be
* guaranteed across the full range of operation.
* FDCO = freq_out * 2 * mclk_src_scaling
*/
fvco_max = 0;
fvco_sel = ARRAY_SIZE(mclk_src_scaling);
for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
fvco_max < fvco) {
fvco_max = fvco;
fvco_sel = i;
}
}
if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
return -EINVAL;
fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
* input based on FDCO, FREF and FLL ratio.
*/
fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
fll_param->fll_int = (fvco >> 16) & 0x3FF;
fll_param->fll_frac = fvco & 0xFFFF;
return 0;
}
static void nau8824_fll_apply(struct regmap *regmap,
struct nau8824_fll *fll_param)
{
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK | NAU8824_CLK_MCLK_SRC_MASK,
NAU8824_CLK_SRC_MCLK | fll_param->mclk_src);
regmap_update_bits(regmap, NAU8824_REG_FLL1,
NAU8824_FLL_RATIO_MASK, fll_param->ratio);
/* FLL 16-bit fractional input */
regmap_write(regmap, NAU8824_REG_FLL2, fll_param->fll_frac);
/* FLL 10-bit integer input */
regmap_update_bits(regmap, NAU8824_REG_FLL3,
NAU8824_FLL_INTEGER_MASK, fll_param->fll_int);
/* FLL pre-scaler */
regmap_update_bits(regmap, NAU8824_REG_FLL4,
NAU8824_FLL_REF_DIV_MASK,
fll_param->clk_ref_div << NAU8824_FLL_REF_DIV_SFT);
/* select divided VCO input */
regmap_update_bits(regmap, NAU8824_REG_FLL5,
NAU8824_FLL_CLK_SW_MASK, NAU8824_FLL_CLK_SW_REF);
/* Disable free-running mode */
regmap_update_bits(regmap,
NAU8824_REG_FLL6, NAU8824_DCO_EN, 0);
if (fll_param->fll_frac) {
regmap_update_bits(regmap, NAU8824_REG_FLL5,
NAU8824_FLL_PDB_DAC_EN | NAU8824_FLL_LOOP_FTR_EN |
NAU8824_FLL_FTR_SW_MASK,
NAU8824_FLL_PDB_DAC_EN | NAU8824_FLL_LOOP_FTR_EN |
NAU8824_FLL_FTR_SW_FILTER);
regmap_update_bits(regmap, NAU8824_REG_FLL6,
NAU8824_SDM_EN, NAU8824_SDM_EN);
} else {
regmap_update_bits(regmap, NAU8824_REG_FLL5,
NAU8824_FLL_PDB_DAC_EN | NAU8824_FLL_LOOP_FTR_EN |
NAU8824_FLL_FTR_SW_MASK, NAU8824_FLL_FTR_SW_ACCU);
regmap_update_bits(regmap,
NAU8824_REG_FLL6, NAU8824_SDM_EN, 0);
}
}
/* freq_out must be 256*Fs in order to achieve the best performance */
static int nau8824_set_pll(struct snd_soc_component *component, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
struct nau8824_fll fll_param;
int ret, fs;
fs = freq_out / 256;
ret = nau8824_calc_fll_param(freq_in, fs, &fll_param);
if (ret < 0) {
dev_err(nau8824->dev, "Unsupported input clock %d\n", freq_in);
return ret;
}
dev_dbg(nau8824->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
fll_param.fll_int, fll_param.clk_ref_div);
nau8824_fll_apply(nau8824->regmap, &fll_param);
mdelay(2);
regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_VCO);
return 0;
}
static int nau8824_config_sysclk(struct nau8824 *nau8824,
int clk_id, unsigned int freq)
{
struct regmap *regmap = nau8824->regmap;
switch (clk_id) {
case NAU8824_CLK_DIS:
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_MCLK);
regmap_update_bits(regmap, NAU8824_REG_FLL6,
NAU8824_DCO_EN, 0);
break;
case NAU8824_CLK_MCLK:
nau8824_sema_acquire(nau8824, HZ);
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_MCLK);
regmap_update_bits(regmap, NAU8824_REG_FLL6,
NAU8824_DCO_EN, 0);
nau8824_sema_release(nau8824);
break;
case NAU8824_CLK_INTERNAL:
regmap_update_bits(regmap, NAU8824_REG_FLL6,
NAU8824_DCO_EN, NAU8824_DCO_EN);
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_VCO);
break;
case NAU8824_CLK_FLL_MCLK:
nau8824_sema_acquire(nau8824, HZ);
regmap_update_bits(regmap, NAU8824_REG_FLL3,
NAU8824_FLL_CLK_SRC_MASK, NAU8824_FLL_CLK_SRC_MCLK);
nau8824_sema_release(nau8824);
break;
case NAU8824_CLK_FLL_BLK:
nau8824_sema_acquire(nau8824, HZ);
regmap_update_bits(regmap, NAU8824_REG_FLL3,
NAU8824_FLL_CLK_SRC_MASK, NAU8824_FLL_CLK_SRC_BLK);
nau8824_sema_release(nau8824);
break;
case NAU8824_CLK_FLL_FS:
nau8824_sema_acquire(nau8824, HZ);
regmap_update_bits(regmap, NAU8824_REG_FLL3,
NAU8824_FLL_CLK_SRC_MASK, NAU8824_FLL_CLK_SRC_FS);
nau8824_sema_release(nau8824);
break;
default:
dev_err(nau8824->dev, "Invalid clock id (%d)\n", clk_id);
return -EINVAL;
}
dev_dbg(nau8824->dev, "Sysclk is %dHz and clock id is %d\n", freq,
clk_id);
return 0;
}
static int nau8824_set_sysclk(struct snd_soc_component *component,
int clk_id, int source, unsigned int freq, int dir)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
return nau8824_config_sysclk(nau8824, clk_id, freq);
}
static void nau8824_resume_setup(struct nau8824 *nau8824)
{
nau8824_config_sysclk(nau8824, NAU8824_CLK_DIS, 0);
if (nau8824->irq) {
/* Clear all interruption status */
nau8824_int_status_clear_all(nau8824->regmap);
/* Enable jack detection at sleep mode, insertion detection,
* and ejection detection.
*/
regmap_update_bits(nau8824->regmap, NAU8824_REG_ENA_CTRL,
NAU8824_JD_SLEEP_MODE, NAU8824_JD_SLEEP_MODE);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN,
NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_EJECT_DIS | NAU8824_IRQ_INSERT_DIS, 0);
}
}
static int nau8824_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
/* Setup codec configuration after resume */
nau8824_resume_setup(nau8824);
}
break;
case SND_SOC_BIAS_OFF:
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING, 0x3ff, 0x3ff);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN, 0);
break;
}
return 0;
}
static int nau8824_component_probe(struct snd_soc_component *component)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
nau8824->dapm = dapm;
return 0;
}
static int __maybe_unused nau8824_suspend(struct snd_soc_component *component)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
if (nau8824->irq) {
disable_irq(nau8824->irq);
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
}
regcache_cache_only(nau8824->regmap, true);
regcache_mark_dirty(nau8824->regmap);
return 0;
}
static int __maybe_unused nau8824_resume(struct snd_soc_component *component)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
regcache_cache_only(nau8824->regmap, false);
regcache_sync(nau8824->regmap);
if (nau8824->irq) {
/* Hold semaphore to postpone playback happening
* until jack detection done.
*/
nau8824_sema_acquire(nau8824, 0);
enable_irq(nau8824->irq);
}
return 0;
}
static const struct snd_soc_component_driver nau8824_component_driver = {
.probe = nau8824_component_probe,
.set_sysclk = nau8824_set_sysclk,
.set_pll = nau8824_set_pll,
.set_bias_level = nau8824_set_bias_level,
.suspend = nau8824_suspend,
.resume = nau8824_resume,
.controls = nau8824_snd_controls,
.num_controls = ARRAY_SIZE(nau8824_snd_controls),
.dapm_widgets = nau8824_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(nau8824_dapm_widgets),
.dapm_routes = nau8824_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(nau8824_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct snd_soc_dai_ops nau8824_dai_ops = {
.hw_params = nau8824_hw_params,
.set_fmt = nau8824_set_fmt,
.set_tdm_slot = nau8824_set_tdm_slot,
};
#define NAU8824_RATES SNDRV_PCM_RATE_8000_192000
#define NAU8824_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver nau8824_dai = {
.name = NAU8824_CODEC_DAI,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8824_RATES,
.formats = NAU8824_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8824_RATES,
.formats = NAU8824_FORMATS,
},
.ops = &nau8824_dai_ops,
};
static const struct regmap_config nau8824_regmap_config = {
.val_bits = NAU8824_REG_ADDR_LEN,
.reg_bits = NAU8824_REG_DATA_LEN,
.max_register = NAU8824_REG_MAX,
.readable_reg = nau8824_readable_reg,
.writeable_reg = nau8824_writeable_reg,
.volatile_reg = nau8824_volatile_reg,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = nau8824_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(nau8824_reg_defaults),
};
/**
* nau8824_enable_jack_detect - Specify a jack for event reporting
*
* @component: component to register the jack with
* @jack: jack to use to report headset and button events on
*
* After this function has been called the headset insert/remove and button
* events will be routed to the given jack. Jack can be null to stop
* reporting.
*/
int nau8824_enable_jack_detect(struct snd_soc_component *component,
struct snd_soc_jack *jack)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
int ret;
nau8824->jack = jack;
/* Initiate jack detection work queue */
INIT_WORK(&nau8824->jdet_work, nau8824_jdet_work);
ret = devm_request_threaded_irq(nau8824->dev, nau8824->irq, NULL,
nau8824_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"nau8824", nau8824);
if (ret) {
dev_err(nau8824->dev, "Cannot request irq %d (%d)\n",
nau8824->irq, ret);
}
return ret;
}
EXPORT_SYMBOL_GPL(nau8824_enable_jack_detect);
static void nau8824_reset_chip(struct regmap *regmap)
{
regmap_write(regmap, NAU8824_REG_RESET, 0x00);
regmap_write(regmap, NAU8824_REG_RESET, 0x00);
}
static void nau8824_setup_buttons(struct nau8824 *nau8824)
{
struct regmap *regmap = nau8824->regmap;
regmap_update_bits(regmap, NAU8824_REG_SAR_ADC,
NAU8824_SAR_TRACKING_GAIN_MASK,
nau8824->sar_voltage << NAU8824_SAR_TRACKING_GAIN_SFT);
regmap_update_bits(regmap, NAU8824_REG_SAR_ADC,
NAU8824_SAR_COMPARE_TIME_MASK,
nau8824->sar_compare_time << NAU8824_SAR_COMPARE_TIME_SFT);
regmap_update_bits(regmap, NAU8824_REG_SAR_ADC,
NAU8824_SAR_SAMPLING_TIME_MASK,
nau8824->sar_sampling_time << NAU8824_SAR_SAMPLING_TIME_SFT);
regmap_update_bits(regmap, NAU8824_REG_VDET_COEFFICIENT,
NAU8824_LEVELS_NR_MASK,
(nau8824->sar_threshold_num - 1) << NAU8824_LEVELS_NR_SFT);
regmap_update_bits(regmap, NAU8824_REG_VDET_COEFFICIENT,
NAU8824_HYSTERESIS_MASK,
nau8824->sar_hysteresis << NAU8824_HYSTERESIS_SFT);
regmap_update_bits(regmap, NAU8824_REG_VDET_COEFFICIENT,
NAU8824_SHORTKEY_DEBOUNCE_MASK,
nau8824->key_debounce << NAU8824_SHORTKEY_DEBOUNCE_SFT);
regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_1,
(nau8824->sar_threshold[0] << 8) | nau8824->sar_threshold[1]);
regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_2,
(nau8824->sar_threshold[2] << 8) | nau8824->sar_threshold[3]);
regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_3,
(nau8824->sar_threshold[4] << 8) | nau8824->sar_threshold[5]);
regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_4,
(nau8824->sar_threshold[6] << 8) | nau8824->sar_threshold[7]);
}
static void nau8824_init_regs(struct nau8824 *nau8824)
{
struct regmap *regmap = nau8824->regmap;
/* Enable Bias/VMID/VMID Tieoff */
regmap_update_bits(regmap, NAU8824_REG_BIAS_ADJ,
NAU8824_VMID | NAU8824_VMID_SEL_MASK, NAU8824_VMID |
(nau8824->vref_impedance << NAU8824_VMID_SEL_SFT));
regmap_update_bits(regmap, NAU8824_REG_BOOST,
NAU8824_GLOBAL_BIAS_EN, NAU8824_GLOBAL_BIAS_EN);
mdelay(2);
regmap_update_bits(regmap, NAU8824_REG_MIC_BIAS,
NAU8824_MICBIAS_VOLTAGE_MASK, nau8824->micbias_voltage);
/* Disable Boost Driver, Automatic Short circuit protection enable */
regmap_update_bits(regmap, NAU8824_REG_BOOST,
NAU8824_PRECHARGE_DIS | NAU8824_HP_BOOST_DIS |
NAU8824_HP_BOOST_G_DIS | NAU8824_SHORT_SHUTDOWN_EN,
NAU8824_PRECHARGE_DIS | NAU8824_HP_BOOST_DIS |
NAU8824_HP_BOOST_G_DIS | NAU8824_SHORT_SHUTDOWN_EN);
/* Scaling for ADC and DAC clock */
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_ADC_SRC_MASK | NAU8824_CLK_DAC_SRC_MASK,
(0x1 << NAU8824_CLK_ADC_SRC_SFT) |
(0x1 << NAU8824_CLK_DAC_SRC_SFT));
regmap_update_bits(regmap, NAU8824_REG_DAC_MUTE_CTRL,
NAU8824_DAC_ZC_EN, NAU8824_DAC_ZC_EN);
regmap_update_bits(regmap, NAU8824_REG_ENA_CTRL,
NAU8824_DAC_CH1_EN | NAU8824_DAC_CH0_EN |
NAU8824_ADC_CH0_EN | NAU8824_ADC_CH1_EN |
NAU8824_ADC_CH2_EN | NAU8824_ADC_CH3_EN,
NAU8824_DAC_CH1_EN | NAU8824_DAC_CH0_EN |
NAU8824_ADC_CH0_EN | NAU8824_ADC_CH1_EN |
NAU8824_ADC_CH2_EN | NAU8824_ADC_CH3_EN);
regmap_update_bits(regmap, NAU8824_REG_CLK_GATING_ENA,
NAU8824_CLK_ADC_CH23_EN | NAU8824_CLK_ADC_CH01_EN |
NAU8824_CLK_DAC_CH1_EN | NAU8824_CLK_DAC_CH0_EN |
NAU8824_CLK_I2S_EN | NAU8824_CLK_GAIN_EN |
NAU8824_CLK_SAR_EN | NAU8824_CLK_DMIC_CH23_EN,
NAU8824_CLK_ADC_CH23_EN | NAU8824_CLK_ADC_CH01_EN |
NAU8824_CLK_DAC_CH1_EN | NAU8824_CLK_DAC_CH0_EN |
NAU8824_CLK_I2S_EN | NAU8824_CLK_GAIN_EN |
NAU8824_CLK_SAR_EN | NAU8824_CLK_DMIC_CH23_EN);
/* Class G timer 64ms */
regmap_update_bits(regmap, NAU8824_REG_CLASSG,
NAU8824_CLASSG_TIMER_MASK,
0x20 << NAU8824_CLASSG_TIMER_SFT);
regmap_update_bits(regmap, NAU8824_REG_TRIM_SETTINGS,
NAU8824_DRV_CURR_INC, NAU8824_DRV_CURR_INC);
/* Disable DACR/L power */
regmap_update_bits(regmap, NAU8824_REG_CHARGE_PUMP_CONTROL,
NAU8824_SPKR_PULL_DOWN | NAU8824_SPKL_PULL_DOWN |
NAU8824_POWER_DOWN_DACR | NAU8824_POWER_DOWN_DACL,
NAU8824_SPKR_PULL_DOWN | NAU8824_SPKL_PULL_DOWN |
NAU8824_POWER_DOWN_DACR | NAU8824_POWER_DOWN_DACL);
/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
* signal to avoid any glitches due to power up transients in both
* the analog and digital DAC circuit.
*/
regmap_update_bits(regmap, NAU8824_REG_ENABLE_LO,
NAU8824_TEST_DAC_EN, NAU8824_TEST_DAC_EN);
/* Config L/R channel */
regmap_update_bits(regmap, NAU8824_REG_DAC_CH0_DGAIN_CTRL,
NAU8824_DAC_CH0_SEL_MASK, NAU8824_DAC_CH0_SEL_I2S0);
regmap_update_bits(regmap, NAU8824_REG_DAC_CH1_DGAIN_CTRL,
NAU8824_DAC_CH1_SEL_MASK, NAU8824_DAC_CH1_SEL_I2S1);
regmap_update_bits(regmap, NAU8824_REG_ENABLE_LO,
NAU8824_DACR_HPR_EN | NAU8824_DACL_HPL_EN,
NAU8824_DACR_HPR_EN | NAU8824_DACL_HPL_EN);
/* Default oversampling/decimations settings are unusable
* (audible hiss). Set it to something better.
*/
regmap_update_bits(regmap, NAU8824_REG_ADC_FILTER_CTRL,
NAU8824_ADC_SYNC_DOWN_MASK, NAU8824_ADC_SYNC_DOWN_64);
regmap_update_bits(regmap, NAU8824_REG_DAC_FILTER_CTRL_1,
NAU8824_DAC_CICCLP_OFF | NAU8824_DAC_OVERSAMPLE_MASK,
NAU8824_DAC_CICCLP_OFF | NAU8824_DAC_OVERSAMPLE_64);
/* DAC clock delay 2ns, VREF */
regmap_update_bits(regmap, NAU8824_REG_RDAC,
NAU8824_RDAC_CLK_DELAY_MASK | NAU8824_RDAC_VREF_MASK,
(0x2 << NAU8824_RDAC_CLK_DELAY_SFT) |
(0x3 << NAU8824_RDAC_VREF_SFT));
/* PGA input mode selection */
regmap_update_bits(regmap, NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODEL_SHORT_EN | NAU8824_FEPGA_MODER_SHORT_EN,
NAU8824_FEPGA_MODEL_SHORT_EN | NAU8824_FEPGA_MODER_SHORT_EN);
/* Digital microphone control */
regmap_update_bits(regmap, NAU8824_REG_ANALOG_CONTROL_1,
NAU8824_DMIC_CLK_DRV_STRG | NAU8824_DMIC_CLK_SLEW_FAST,
NAU8824_DMIC_CLK_DRV_STRG | NAU8824_DMIC_CLK_SLEW_FAST);
regmap_update_bits(regmap, NAU8824_REG_JACK_DET_CTRL,
NAU8824_JACK_LOGIC,
/* jkdet_polarity - 1 is for active-low */
nau8824->jkdet_polarity ? 0 : NAU8824_JACK_LOGIC);
regmap_update_bits(regmap,
NAU8824_REG_JACK_DET_CTRL, NAU8824_JACK_EJECT_DT_MASK,
(nau8824->jack_eject_debounce << NAU8824_JACK_EJECT_DT_SFT));
if (nau8824->sar_threshold_num)
nau8824_setup_buttons(nau8824);
}
static int nau8824_setup_irq(struct nau8824 *nau8824)
{
/* Disable interruption before codec initiation done */
regmap_update_bits(nau8824->regmap, NAU8824_REG_ENA_CTRL,
NAU8824_JD_SLEEP_MODE, NAU8824_JD_SLEEP_MODE);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING, 0x3ff, 0x3ff);
regmap_update_bits(nau8824->regmap, NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN, 0);
return 0;
}
static void nau8824_print_device_properties(struct nau8824 *nau8824)
{
struct device *dev = nau8824->dev;
int i;
dev_dbg(dev, "jkdet-polarity: %d\n", nau8824->jkdet_polarity);
dev_dbg(dev, "micbias-voltage: %d\n", nau8824->micbias_voltage);
dev_dbg(dev, "vref-impedance: %d\n", nau8824->vref_impedance);
dev_dbg(dev, "sar-threshold-num: %d\n", nau8824->sar_threshold_num);
for (i = 0; i < nau8824->sar_threshold_num; i++)
dev_dbg(dev, "sar-threshold[%d]=%x\n", i,
nau8824->sar_threshold[i]);
dev_dbg(dev, "sar-hysteresis: %d\n", nau8824->sar_hysteresis);
dev_dbg(dev, "sar-voltage: %d\n", nau8824->sar_voltage);
dev_dbg(dev, "sar-compare-time: %d\n", nau8824->sar_compare_time);
dev_dbg(dev, "sar-sampling-time: %d\n", nau8824->sar_sampling_time);
dev_dbg(dev, "short-key-debounce: %d\n", nau8824->key_debounce);
dev_dbg(dev, "jack-eject-debounce: %d\n",
nau8824->jack_eject_debounce);
}
static int nau8824_read_device_properties(struct device *dev,
struct nau8824 *nau8824) {
int ret;
ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
&nau8824->jkdet_polarity);
if (ret)
nau8824->jkdet_polarity = 1;
ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
&nau8824->micbias_voltage);
if (ret)
nau8824->micbias_voltage = 6;
ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
&nau8824->vref_impedance);
if (ret)
nau8824->vref_impedance = 2;
ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
&nau8824->sar_threshold_num);
if (ret)
nau8824->sar_threshold_num = 4;
ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
nau8824->sar_threshold, nau8824->sar_threshold_num);
if (ret) {
nau8824->sar_threshold[0] = 0x0a;
nau8824->sar_threshold[1] = 0x14;
nau8824->sar_threshold[2] = 0x26;
nau8824->sar_threshold[3] = 0x73;
}
ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
&nau8824->sar_hysteresis);
if (ret)
nau8824->sar_hysteresis = 0;
ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
&nau8824->sar_voltage);
if (ret)
nau8824->sar_voltage = 6;
ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
&nau8824->sar_compare_time);
if (ret)
nau8824->sar_compare_time = 1;
ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
&nau8824->sar_sampling_time);
if (ret)
nau8824->sar_sampling_time = 1;
ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
&nau8824->key_debounce);
if (ret)
nau8824->key_debounce = 0;
ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
&nau8824->jack_eject_debounce);
if (ret)
nau8824->jack_eject_debounce = 1;
return 0;
}
static int nau8824_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct device *dev = &i2c->dev;
struct nau8824 *nau8824 = dev_get_platdata(dev);
int ret, value;
if (!nau8824) {
nau8824 = devm_kzalloc(dev, sizeof(*nau8824), GFP_KERNEL);
if (!nau8824)
return -ENOMEM;
ret = nau8824_read_device_properties(dev, nau8824);
if (ret)
return ret;
}
i2c_set_clientdata(i2c, nau8824);
nau8824->regmap = devm_regmap_init_i2c(i2c, &nau8824_regmap_config);
if (IS_ERR(nau8824->regmap))
return PTR_ERR(nau8824->regmap);
nau8824->dev = dev;
nau8824->irq = i2c->irq;
sema_init(&nau8824->jd_sem, 1);
nau8824_print_device_properties(nau8824);
ret = regmap_read(nau8824->regmap, NAU8824_REG_I2C_DEVICE_ID, &value);
if (ret < 0) {
dev_err(dev, "Failed to read device id from the NAU8824: %d\n",
ret);
return ret;
}
nau8824_reset_chip(nau8824->regmap);
nau8824_init_regs(nau8824);
if (i2c->irq)
nau8824_setup_irq(nau8824);
return devm_snd_soc_register_component(dev,
&nau8824_component_driver, &nau8824_dai, 1);
}
static const struct i2c_device_id nau8824_i2c_ids[] = {
{ "nau8824", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, nau8824_i2c_ids);
#ifdef CONFIG_OF
static const struct of_device_id nau8824_of_ids[] = {
{ .compatible = "nuvoton,nau8824", },
{}
};
MODULE_DEVICE_TABLE(of, nau8824_of_ids);
#endif
#ifdef CONFIG_ACPI
static const struct acpi_device_id nau8824_acpi_match[] = {
{ "10508824", 0 },
{},
};
MODULE_DEVICE_TABLE(acpi, nau8824_acpi_match);
#endif
static struct i2c_driver nau8824_i2c_driver = {
.driver = {
.name = "nau8824",
.of_match_table = of_match_ptr(nau8824_of_ids),
.acpi_match_table = ACPI_PTR(nau8824_acpi_match),
},
.probe = nau8824_i2c_probe,
.id_table = nau8824_i2c_ids,
};
module_i2c_driver(nau8824_i2c_driver);
MODULE_DESCRIPTION("ASoC NAU88L24 driver");
MODULE_AUTHOR("John Hsu <KCHSU0@nuvoton.com>");
MODULE_LICENSE("GPL v2");