linux_dsm_epyc7002/arch/sparc/mm/init_64.h
David S. Miller 0dd5b7b09e sparc64: Fix physical memory management regressions with large max_phys_bits.
If max_phys_bits needs to be > 43 (f.e. for T4 chips), things like
DEBUG_PAGEALLOC stop working because the 3-level page tables only
can cover up to 43 bits.

Another problem is that when we increased MAX_PHYS_ADDRESS_BITS up to
47, several statically allocated tables became enormous.

Compounding this is that we will need to support up to 49 bits of
physical addressing for M7 chips.

The two tables in question are sparc64_valid_addr_bitmap and
kpte_linear_bitmap.

The first holds a bitmap, with 1 bit for each 4MB chunk of physical
memory, indicating whether that chunk actually exists in the machine
and is valid.

The second table is a set of 2-bit values which tell how large of a
mapping (4MB, 256MB, 2GB, 16GB, respectively) we can use at each 256MB
chunk of ram in the system.

These tables are huge and take up an enormous amount of the BSS
section of the sparc64 kernel image.  Specifically, the
sparc64_valid_addr_bitmap is 4MB, and the kpte_linear_bitmap is 128K.

So let's solve the space wastage and the DEBUG_PAGEALLOC problem
at the same time, by using the kernel page tables (as designed) to
manage this information.

We have to keep using large mappings when DEBUG_PAGEALLOC is disabled,
and we do this by encoding huge PMDs and PUDs.

On a T4-2 with 256GB of ram the kernel page table takes up 16K with
DEBUG_PAGEALLOC disabled and 256MB with it enabled.  Furthermore, this
memory is dynamically allocated at run time rather than coded
statically into the kernel image.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
2014-10-05 16:53:39 -07:00

46 lines
1.3 KiB
C

#ifndef _SPARC64_MM_INIT_H
#define _SPARC64_MM_INIT_H
#include <asm/page.h>
/* Most of the symbols in this file are defined in init.c and
* marked non-static so that assembler code can get at them.
*/
#define MAX_PHYS_ADDRESS (1UL << MAX_PHYS_ADDRESS_BITS)
extern unsigned long kern_linear_pte_xor[4];
extern unsigned int sparc64_highest_unlocked_tlb_ent;
extern unsigned long sparc64_kern_pri_context;
extern unsigned long sparc64_kern_pri_nuc_bits;
extern unsigned long sparc64_kern_sec_context;
void mmu_info(struct seq_file *m);
struct linux_prom_translation {
unsigned long virt;
unsigned long size;
unsigned long data;
};
/* Exported for kernel TLB miss handling in ktlb.S */
extern struct linux_prom_translation prom_trans[512];
extern unsigned int prom_trans_ents;
/* Exported for SMP bootup purposes. */
extern unsigned long kern_locked_tte_data;
void prom_world(int enter);
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#define VMEMMAP_CHUNK_SHIFT 22
#define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
#define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
#define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
#define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
sizeof(struct page)) >> VMEMMAP_CHUNK_SHIFT)
extern unsigned long vmemmap_table[VMEMMAP_SIZE];
#endif
#endif /* _SPARC64_MM_INIT_H */